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Abstract—As a promising paradigm, mobile edge computing (MEC) provides cloud resources in a network edge to offer low-latency

services to mobile devices (MDs). MEC addresses the limited resource and energy issues of MDs by deploying edge servers, which

are often located in small base stations. It is a big challenge, however, as how to dynamically connect resource-limited MDs to nearby

edge servers, and reduce total energy consumption by MDs, small base stations and a cloud data center (CDC) all in a hybrid system.

To tackle the challenge, this work provides an intelligent computation offloading method for both static and dynamic applications among

entities in such a hybrid system. The minimization problem of total energy consumption is first formulated as a typical mixed integer

non-linear program. An improved meta-heuristic optimization algorithm, named Particle swarm optimization based on Genetic Learning

(PGL), is tailored to solve the problem. PGL synergistically take advantage of both the fast convergence of particle swarm optimization,

and the global search ability of genetic algorithm. It jointly optimizes task offloading of heterogeneous applications, bandwidth allocation

of wireless channels, MDs’ association with small base stations and/or a cloud datacenter, and computing resource allocation of MDs.

Numerical results with real-life system configurations prove that PGL outperforms several state-of-the-art peers in terms of total energy

consumption of the hybrid system.

Index Terms—Computation offloading, MEC, cloud computing, particle swarm optimization, genetic algorithm

Ç

1 INTRODUCTION

A paradigm of mobile cloud computing has received a
great amount of attention in recent years [1]. It enables

resource-intensive applications on mobile devices (MDs) to
remotely run in a Cloud Data Center (CDC). MDs’ input
data for computation can be delivered to CDC for remote
execution, which is called computation offloading or offload-
ing in short [2]. However, since CDC is often located in
remote sites, geographical distances between CDC and
MDs typically incur variable and long latency. As a conse-
quence, such delay may significantly affect the quality-of-
service (QoS) of MDs’ delay-sensitive applications, e.g.,

online gaming and video conferencing. To solve this prob-
lem, mobile edge computing (MEC) emerges to enable
cloud computing abilities at a network edge. Its main idea is
to deploy small base stations (SBSs) that are close to
users [3], so that MDs’ tasks can then be offloaded to their
nearby SBSs for faster execution. With the advancement of
mobile computing, nowadays a huge number of MDs exist
and compete to offload their tasks to their connected SBSs
and/or CDC. Therefore, offloading methods have signifi-
cant effects on the performance of MDs’ tasks. In general,
offloading methods highly depend on available computing
resources at SBSs and CDC, as well as allocation methods
over available bandwidths of wireless channels [4].

In a hybridMEC includingmultiple SBSs andCDC around
MDs, actual performance of MDs’ computation offloading is
also significantly affected by MDs’ proper selection of SBSs
andCDC [5].Many recent studies have considered such selec-
tion problems [6]. Most of existing strategies depend on the
density of MDs to determine suitable SBSs and CDC in a spe-
cific region [7]. They assume that MDs in their regions are
often offloaded to a fixed set of SBSs and/or CDC. Neverthe-
less, MDs usually move dynamically and therefore, the den-
sity of tasks in different SBSs and CDC may be imbalanced,
thereby causing suboptimal usage of MEC resources and
resulting in long response time. Many offloading methods
also assume that each MD runs only one application in each
time slot, which is a simplified scenario and cannot reflect the
realistic characteristics of current hybridMEC systems.

In addition to performance, energy consumption has
become another big concern, asMDs, SBSs andCDC consume
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a huge amount of energy due to dramatic increase of tasks in
MDs. To achieve high-performance and low-energy goal in a
hybrid MEC environment, a computation offloading method
has to jointly optimize a variety of parameters such as task off-
loading ratios, bandwidth allocation of wireless channels,
association of MDs with SBSs and/or CDC, and computing
resource allocation of MDs. Toward this ultimate goal, this
work proposes an intelligent offloading method focusing on
decreasing the total energy consumption of a hybrid MEC
environment. Unlike existing studies, we consider two types
of applications that can be offloaded to SBSs and/or CDC.
Static applications have to be executed in SBSs and/or CDC,
while dynamic applications may be executed in MDs, SBSs
and/or CDC. This work jointly considers heterogeneous
delay limits of static and dynamic applications, constraints on
MDs’ association with SBS and/or CDC, bandwidth limit of
multiple availablewireless channels, and computing resource
limits ofMDs, SBSs andCDC, respectively.

Specifically, this workmakes the following twomajor con-
tributions to the field of hybridmobile edge cloud systems:

� This work introduces a framework of computation
offloading for both static and dynamic applications
in heterogeneous MEC networks comprising multi-
ple MDs, SBSs and CDC. MDs intelligently offload
tasks of two types of applications to SBSs and/or
CDC in an energy-optimized manner. Aiming to
minimize the total energy consumed by a hybrid
MEC system, the proposed framework formulates
the constrained computation offloading problem as
a mixed integer nonlinear program (MINLP).

� This work proposes a solution that is an improved
hybrid meta-heuristic algorithm, named Particle
swarm optimization based on Genetic Learning
(PGL). PGL synergistically owns the fast conver-
gence of particle swarm optimization (PSO) [8] and
high individual diversity and global search ability
brought by crossover, mutation and selection opera-
tions in a genetic algorithm (GA) [9]. PGL jointly
optimizes task offloading, wireless bandwidth allo-
cation, MDs’ association with SBSs and/or CDC,
and allocation of MDs’ computing resources.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the related work in computation offloading.
Section 3 introduces the proposed framework of a hybrid
MEC system, and formulates the constrained energy mini-
mization problem. The tailored optimization algorithm PGL
is explained in Section 4. The performance evaluations of
PGL over real-life data of system configurations are pre-
sented in Section 5. Finally, Section 6 concludes this work.

2 RELATED WORK

Many studies have been conducted to achieve computation
offloading to improve the performance ofMDs,which are clas-
sified according to two major objectives: computation offload-
ing, and placement/selection of base stations and cloudlets.

2.1 Computation Offloading

Several typical studies are presented to achieve intelligent
computation offloading to determine partial tasks that are

offloaded to SBSs and/or CDC [10], [11], [12], [13]. Chen
et al. [10] propose a robust computation offloading method
that considers failure recovery in an intermittently available
cloudlet. They aim to decrease completion time of applica-
tions and energy consumption. Two minimization problems
of local execution cost and offloading one are formulated,
and are solved by a distributed algorithm that specifies
CPU clock frequencies and transmission power of local
devices. Nevertheless, it does not consider energy consump-
tion reduction. Wang et al. [11] aim to minimize the average
running time of applications by using collaborative compu-
tation offloading in a network with vehicle-based cloudlets.
A problem of offloading is formulated and a Markov
decision process is designed by investigating randomness
of wireless channel information and moving speeds of
vehicles. A heuristic method is proposed to reduce compu-
tational complexity by using a structure of its state space.
However, it only focuses on minimizing the average com-
pletion time. Maleki et al. [12] consider spatio-temporal
uncertainties of MDs’ mobility and dynamic changes of
applications, and aim to minimize applications’ turnaround
time. An NP-hard problem is formulated and an integer
program is developed to yield optimal computation offload-
ing. A sampling-based approximation method and a fast
greedy-based one are proposed to assign applications to
cloudlets. However, their method does not consider a
hybrid system including heterogeneous SBSs and CDC.
Haber et al. [13] propose a low-latency and ultra-reliable
computation offloading method aided by unmanned aerial
vehicles (UAVs). They aim to maximize the rate of served
tasks by optimizing positions of UAVs, offloading decisions
and the number of allocated resources. A planning problem
is formulated to optimize UAVs’ locations, and an opera-
tional one is designed to optimize task offloading and
resource allocation. However, their method also ignores the
minimization of energy consumption.

Different from existing works, this work focuses on mini-
mizing the total energy consumed by the hybrid system
including multiple MDs, multiple SBSs and CDC. This
work considers the offloading of heterogeneous applica-
tions supporting static and dynamic offloading. Besides,
this work considers a hybrid system where MDs possess
considerable computing resources to run complex applica-
tions, while access points (APs) own tiny resources that do
not execute applications.

2.2 Placement/Selection of Base Stations
and Cloudlets

Placement and selection of base stations and cloudlets (small-
scale cloud center located at edge) are challenging for MEC,
and have received a growing amount of attention in recent
years [14], [15], [16], [17]. Cao et al. [14] optimize response
time of both individual and whole base stations, by using
heterogeneous servers in the edge. An offline placement
strategy is proposed for heterogeneous edge servers, and an
online mobility-aware method based on the game theory is
designed to deal with dynamic movements of users. How-
ever, it does not consider the usage of CDC in its system.
Zhang et al. [15] address a problem of online and dynamic
rendering-module placement, by using a model predictive
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control method in a mobile edge cloudlet environment. Per-
formance guarantee of the method is formally proven. Nev-
ertheless, it does not consider the total energy consumption.
Fan et al. [16] propose a cost-aware placement method in
MEC. A heuristic Lagrangian algorithm is proposed to place
cloudlets and allocate workload. However, it only minimizes
end-to-end delay between mobile users and their cloudlets.
Kasi et al. [17] address a placement problem of edge servers
in a typical network infrastructure with base stations. It is for-
mulated as a multi-objective constrained program to strategi-
cally place edge servers in a low-latency and balanced
manner. To solve it, GA is combined with local search algo-
rithms to yield the optimal strategy with a few explorations
of a solution space. Nevertheless, it ignores the minimization
of energy consumed by the system.

Although those methods enhance performance of MDs,
they assume that CDC has almost unlimited computing
resources. Therefore, they cannot directly be applied to
MEC where CDC only has limited computing resources. In
addition, different from these studies, our method aims to
minimize the total energy consumption by jointly optimiz-
ing task offloading, bandwidth allocation of wireless chan-
nels, MDs’ association with SBSs and/or CDC, and CPU
running speed of each MD.

3 PROBLEM FORMULATION

This section presents a framework motivating computation
offloading in an MEC system, supported by an energy
model followed by a latency model. Afterwards, a con-
strained energy minimization problem is formulated. For
clarity, Table 1 summarizes a list of abbreviations, and
Table 2 lists main notations in this paper.

3.1 Architecture Overview

This work considers a hybrid MEC system comprising
multiple MDs, APs, SBSs and a CDC, as illustrated in
Fig. 1. It is assumed that each SBS has already been co-
located with one or more APs. APs provide uplink and

downlink channels among MDs, SBSs and/or CDC. MDs
can communicate with SBSs and/or CDC through their
associated APs.

TABLE 1
List of Abbreviations

Abbreviation Definition

MEC Mobile edge computing
MDs Mobile devices
CDC Cloud data center
PGL Particle swarm optimization based on

Genetic Learning
QoS Quality-of-Service
SBSs Small base stations
MINLP Mixed integer nonlinear program
PSO Particle swarm optimization
GA Genetic algorithm
UAVs Unmanned aerial vehicles
APs Access points
SA Simulated annealing
SAPSO SA-based PSO
GSP Genetic SA-based PSO
NSO Nearest SBS for Offloading
POS Partial Offloading to SBSs
POC Partial Offloading to CDC

TABLE 2
Main Notations

Notation Definition

aj
m Task type of MDm associated with AP j

b
j;m
k Capacity of SBS k or CDC for executing MDm’s

tasks transmitted through AP j
djm Distance between MDm and AP j
€Dj
k Transmission latency between AP j and SBS kwith

Dijkstra
Ej

m Amount of energy consumed by executing tasks in
MDm associated with AP j

Ej;m
k Amount of energy consumed by executing MDm’s

tasks offloaded to SBS k through AP j
f̂m Maximum CPU running speed (cycles/sec.) of

MDm
f̂k Maximum CPU running speed (cycles/sec.) in SBS k

or CDC
fk CPU running speed (cycles/sec.) of SBS k or CDC
fm CPU running speed (cycles/sec.) of MDm

gjm Channel gain between MDm and AP j

J Number of APs
K Number of SBSs
Mj Number of MDs connected to AP j

P̂ j
m Transmission power of an uplink channel between

MDm and AP j
�Pj
m Transmission power of a downlink channel between

MDm and AP j
€P Transmission power between an AP and an SBS
�P Transmission power between an AP and CDC
�ujm Bit number in MDm’s input data transmitted

through AP j
~um Number of computational resources required by

MDm
�ujm Bit number in output data for MDm transmitted by

AP j
ûjm Maximum limit of Tj

m

Tj
m Actual latency of tasks of MDm associated with

AP j
_Tj
m Latency of executing tasks in MDm associated with

AP j
_Tj;m
k Latency of executing MDm’s tasks in SBS k for AP j
€Tj;m
k

Latency of transmitting input/output data between
MDm and SBS k or CDC through AP j

T̂ j
m Transmission time of an uplink channel between

MDm and AP j
�Tj
m Transmission time of a downlink channel between

MDm and AP j
s2 White Guassian noise
&m Constant reflecting chip architectures of MDm
&k Constant reflecting chip architectures of SBS k or

CDC
Ŵj Bandwidth of an uplink channel for AP j
�Wj Bandwidth of a downlink channel for AP j
�j
m Ratio of MDm’s tasks offloaded to SBSs and/or

CDC through AP j
mj
m Bandwidth proportion of an uplink (downlink)

channel between MDm and AP j
xj;m
k Binary variable. If MDm’s tasks are offloaded to

SBS k or CDC through AP j, xj;m
k ¼1; otherwise,

xj;m
k ¼0

�1 (�2) Coefficient showing effect of djm on gjm

234 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 8, NO. 2, APRIL-JUNE 2023

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 15:14:29 UTC from IEEE Xplore.  Restrictions apply. 



Similar to [18], this work considers two types of tasks
that can be offloaded from MDs to SBSs or CDC: static off-
loading and dynamic offloading. For the static offloading
type, each task is partitioned already and cannot be changed
dynamically. Its local tasks can only be executed in MDs
and its offloaded tasks can only be executed in SBSs and/or
CDC. A typical task of static offloading is an application of
FLUID running on Android [19] for simulations of particles.
A thin client part of FLUID is executed in MDs, while its
remote server part has to be executed in SBSs and/or CDC.
The reason is that the remote server part requires high-per-
formance computing processors of GPUs, which are not
available in MDs. For the dynamic offloading type, a task
has to be split at runtime following the availability of net-
works and resources in SBSs and/or CDC. Each MD has to
decide if it is energy-optimized to execute some tasks on
MDs or to offload partial tasks to SBSs and/or CDC. In
addition, MDs have to transmit source code and input data
of tasks of dynamic offloading. A typical example is an
application of Linpack benchmarks for evaluating perfor-
mance of Android [20]. This application can be completely
run in MDs or partially offloaded to SBSs and/or CDC.

Since this work focuses on the two types of tasks, a
binary variable, aj

m, is adopted to denote the task type of
MD m associated with AP j. If a task of MD m can be either
offloaded to SBSs and/or CDC or executed in MD m, aj

m¼0;
otherwise, if it has to be offloaded, and it can only be exe-
cuted in SBSs and/or CDC, aj

m¼1.

3.2 Energy Modeling

J denotes the number of APs, and Mj denotes the number
of MDs connected to AP j. Let �j

m denote a ratio of MD m’s
(1�m�Mj) tasks offloaded to SBSs and/or CDC through
AP j (1�j�J). For MD m’s tasks of static offloading, �j

m has
to be 1, which means that it must be offloaded. For MD m’s
tasks of dynamic offloading, �j

m can be any value in [0,1],
i.e., �j

m2½0; 1�. Besides, without loss of generality, we assume
that if a task of MD m is offloaded with a ratio of �j

m, the
amount of data transmitted is proportional to �j

m.
It is pointed out that for each server, its CPU consumes

about 37% of its total energy consumption [21]. In other
words, CPU is a major component that consumes the largest
amount of energy among all components for each server.
Let Ej

m denote the amount of energy consumed by execut-
ing tasks in MD m, which is connected to AP j. Follow-
ing [21], [22], Ej

m is obtained as

Ej
m ¼ 1��j

m

� �
~um&m fmð Þ2; (1)

where ~um denotes the number of computational resources
(CPU cycles) required by MD m, &m denotes a constant
reflecting a chip architecture of MD m, and fm denotes a
running speed (CPU cycles/sec.) of MDm.

In addition, let f̂m denote a maximum CPU running
speed (CPU cycles/sec.) of MDm. Then, we have

fm�f̂m; (2)

K denotes the total number of SBSs. Ej;m
k denotes the

amount of energy consumed by executing MDm’s tasks off-
loaded to SBS k (1�k�K) through AP j. Ej;m

k mainly
includes the following four parts.

3.2.1 Transmission Energy Between MDs and APs
_Ej;m
k denotes the amount of energy consumed by uploading

MD m’s input data to SBS k or CDC through AP j, and
downloading its corresponding output data from SBS k or
CDC back to MD m through AP j. P̂ j

m ( �Pj
m) denotes trans-

mission power of an uplink (downlink) channel between
MD m and AP j. T̂ j

m ( �Tj
m) denotes transmission time of an

uplink (downlink) channel between MD m and AP j. Then,
_Ej;m
k is obtained as

_Ej;m
k ¼P̂ j

mT̂
j
mþ �Pj

m
�Tj
m: (3)

3.2.2 Transmission Energy Between APs and SBSs
€Ej;m
k denotes the amount of energy consumed by uploading

MDm’s input data to SBS k through AP j, and downloading
its corresponding output data from SBS k back to MD m
through AP j. €P denotes transmission power between an
AP and an SBS. €Dj

k denotes transmission latency between
AP j and SBS k. €Dj

k is obtained by using the Dijkstra algo-
rithm [18]. Similar to [18], it is assumed that the transmis-
sion latency between each AP and an SBS is fixed and
known in advance. In addition, it is assumed that the trans-
mission latency from an AP to an SBS, and that from the
SBS to the AP are the same. Let xj;m

0 denote a binary vari-
able. If MD m’s tasks are offloaded to CDC through AP j,
xj;m0 ¼1; otherwise, xj;m0 ¼0. Then, €Ej;m

k is obtained as

€Ej;m
k ¼2ð1� xj;m

0 Þ €P €Dj
k: (4)

3.2.3 Transmission Energy Between APs and CDC
�Ej;m
0 denotes the amount of energy consumed by uploading

MD m’s input data to CDC through AP j, and downloading

its corresponding output data from CDC back to MD m

through AP j. �P denotes the transmission power between

an AP and a CDC. �Dj
0 denotes the transmission latency

between AP j and CDC. In addition, it is assumed that the

transmission latency between each AP and CDC is fixed.

Besides, the transmission latency from each AP to CDC, and
that from CDC to the AP are the same. Then, �Ej;m

0 is

obtained as

�Ej;m
0 ¼2xj;m

0
�P �Dj

0: (5)

Fig. 1. Proposed architecture of hybrid MDs, SBSs and CDC.
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3.2.4 Execution Energy in SBSs/CDC
�Ej;m
k is the amount of energy consumed by executing tasks

in SBS k (1�k�K) or CDC (k¼0). Following [22], �Ej;m
k is

obtained as

�Ej;m
k ¼�j

m
~um&k fkð Þ2; 0�k�K; (6)

where &k denotes a constant reflecting the chip architecture
of SBS k or CDC, and fk denotes a speed of SBS k or CDC.

Let f̂k denote the maximum CPU running speed (cycles/
sec.) in SBS k or CDC. Then, we have

XJ
j¼1

XMj

m¼1
xj;m
k fk�f̂k; 0�k�K: (7)

According to (3), (4), (5), and (6), Ej;m
k is obtained as

Ej;m
k ¼ _Ej;m

k þ €Ej;m
k þ �Ej;m

0 þ �Ej;m
k (8)

¼P̂ j
mT̂

j
mþ �Pj

m
�Tj
mþ2ð1� xj;m

0 Þ €P €Dj
k

þ2xj;m0 �P �Dj
0þ�j

m
~um&k fkð Þ2: (9)

Let xj;m
k denote a binary variable. If MD m’s tasks are off-

loaded to SBS k or CDC through AP j, xj;m
k ¼1; otherwise,

xj;m
k ¼0. Besides, if MD m’s tasks have to be offloaded, and

they can only be offloaded to one SBS or CDC,

XK
k¼0

xj;m
k �1; 1�j�J; 1�m�Mj: (10)

Let bj;m
k denote the capacity of SBS k or CDC for execut-

ing MDm’s tasks transmitted through AP j, i.e.,

xj;m
k �bj;m

k ; 1�j�J; 1�m�Mj: (11)

In addition, if a task of MDm belongs to static offloading,
it must be connected to one SBS or CDC. If it belongs to
dynamic offloading, it can be executed in MDs or can be
dynamically offloaded to SBSs and/or CDC. Thus, we have

aj
m�

XK
k¼0

xj;m
k ; 1�j�J; 1�m�Mj: (12)

Then, aj
m cannot exceed �j

m, i.e.,

aj
m��j

m; 1�j�J; 1�m�Mj: (13)

Besides, if a task of MD m associated with AP j has to be
offloaded, it must be connected to one SBS or CDC, i.e.,

�j
m�

XK
k¼0

xj;m
k ; 1�j�J; 1�m�Mj: (14)

Let D denote the total energy consumed by the hybrid
system, which is obtained as

D¼
XJ
j¼1

XMj

m¼1
Ej

mþ
XK
k¼0

xj;m
k Ej;m

k

 !
: (15)

3.3 Latency Modeling

Let _Tj
m denote the latency of executing tasks in MD m,

which is connected to AP j, and it is obtained as

_Tj
m¼ 1��j

m

� � ~um
fm

: (16)

3.3.1 Execution Latency in SBSs/CDC
_Tj;m
k denotes the latency of executing MD m’s tasks in SBS k

or CDC, which is connected to AP j. It is obtained as

_Tj;m
k ¼�j

m

~um
fk

: (17)

3.3.2 Transmission Latency Between MDs and APs
�ujm denotes the number of bits in MD m’s input data trans-
mitted through AP j. �ujm denotes the number of bits in the
output data for MD m transmitted through AP j. R̂j

m

denotes the uplink rate of MD m, and �Rj
m denotes its down-

link one. Then, T̂ j
m and �Tj

m are obtained as

T̂ j
m¼�j

m

�ujm
R̂j

m

(18)

�Tj
m¼�j

m

�ujm
�Rj
m

: (19)

Similar to [23], [24], this work adopts a wireless interfer-
ence model where MDs associated with the same AP j share
bandwidth resources of the same wireless channel simulta-
neously. Mj denotes a set of MDs associated with AP j.
Thus, the interference caused by MDs except MD m inMj

is obtained by (s2þPi2Mjnfmg
�Pj
i g

j
i). Then, R̂

j
m and �Rj

m are
obtained as

R̂j
m¼mj

mŴ
jlog 2 1þ P̂ j

mg
j
m

s2þPi2Mjnfmg P̂
j
i g

j
i

0@ 1A (20)

�Rj
m¼mj

m
�Wjlog 2 1þ

�Pj
mg

j
m

s2þPi2Mjnfmg
�Pj
i g

j
i

0@ 1A; (21)

where mj
m (mj

m2½0; 1�) denotes the bandwidth proportion of
the uplink (downlink) channel between MD m and AP j,
Ŵj ( �Wj) denotes the bandwidth of the uplink (downlink)
channel for AP j, gjm (gji) denotes the channel gain between
MD m (i) and AP j, s2 denotes the white Guassian noise,
and �Pj

i denotes the transmission power of the uplink
(downlink) channel between MD i and AP j.

According to [25], gjm is calculated as

gjm¼�1þ�2log ðdjmÞ; (22)

where djm denotes a distance between MD m and AP j, and
�1 and �2 are two coefficients showing effect of djm on gjm.

Then, the sum of mj
m has to be 1, i.e.,

XMj

m¼1
mj
m¼1: (23)

In addition, if a task of MDm associated with AP j is exe-
cuted locally, mj

m has to be 0; otherwise, if it is executed in
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SBSs and/or CDC, mj
m cannot exceed

PK
k¼0 x

j;m
k , i.e.,

mj
m�

XK
k¼0

xj;m
k ; 1�j�J; 1�m�Mj: (24)

3.3.3 Transmission Latency Between APs and SBSs/

CDC

The transmission latency between AP j and SBS k is
obtained as 2ð1� xj;m0 Þ�Dj

k. Besides, the transmission latency
between AP j and CDC is obtained as 2xj;m

0
�Dj
0.

€Tj;m
k denotes

the latency of transmitting input/output data between MD
m and SBS k or CDC through AP j. €Tj;m

k includes the trans-
mission latency between MD m and AP j, and that between
AP j and SBS/CDC. Thus,

€Tj;m
k ¼T̂ j

mþ �Tj
mþ2ð1�xj;m

0 Þ €Dj
k þ 2xj;m

0
�Dj
0: (25)

In addition, similar to [24], it is assumed that tasks exe-
cuted in MD m, and those offloaded to SBS/CDC can be
executed in parallel. Let Tj

m denote the actual latency of
tasks of MDm associated with AP j. Thus, we have

Tj
m¼max _Tj

m;
XK
k¼0

xj;m
k

_Tj;m
k þ €Tj;m

k

� � !
; (26)

ûjm denotes a maximum limit of Tj
m. Then, we have

Tj
m�ûjm; 1�j�J; 1�m�Mj: (27)

3.4 Constrained Optimization Problem

Based on the discussions in the above subsections, the mini-
mization problem of total energy consumption of the hybrid
system is formulated as follows, which is a typical mixed
integer nonlinear program (MINLP).

Min
�
j
m;m

j
m;x

j;m
k

;fm

Df g;

subject to (2), (7), (10), (11), (12), (13), (14), (23), (24) and (27), i.e.,

Tj
m�ûjm (28)XK
k¼0

xj;mk �1 (29)

xj;mk �bj;m
k (30)

aj
m�

XK
k¼0

xj;m
k (31)

aj
m��j

m (32)

�j
m�

XK
k¼0

xj;m
k (33)

�j
m2½0; 1� (34)

mj
m�

XK
k¼0

xj;m
k (35)

fm�f̂m (36)XMj

m¼1
mj
m¼1 (37)

XJ
j¼1

XMj

m¼1
xj;m
k fk�f̂k; 0�k�K (38)

mj
m2½0; 1� (39)

xj;m
k 2f0; 1g: (40)

D is nonlinear with respect to xj;m
k , �j

m, m
j
m and fm. The

first variable is integer and the last three ones are real.
Therefore, the constrained problem is a typical MINLP [26].
To handle the constraints, a method of penalty function is
adopted. Each constraint of equality/inequality is trans-
formed into a non-negative value. Thus, if the total penalty
is zero, all constraints are satisfied; otherwise, they are vio-
lated.

Min
~�h

(eD¼N1 VþDgV¼
XN 6¼
x1¼1
ðmaxf0;� h

¼
x1
ð~�hÞgÞ2þ

XN¼
x2¼1

�� h6¼
x2
ð~�hÞ��2

h
¼
x1
ð~�hÞ�0

h
6¼

x2
ð~�hÞ¼0; (41)

where~�h is a vector of xj;mk , �j
m, m

j
m and fm, eD is a new objec-

tive function showing a fitness value of a solution in PGL,

N
1

is a large positive constant, V is the total penalty of all

constraints, and N¼ and N 6¼ are the numbers of equality

and inequality constraints.

4 PARTICLE SWARM OPTIMIZATION BASED ON

GENETIC LEARNING (PGL)

This section will explain in detail our PGL algorithm. We
will first justify the rationale of PGL, then present PGL oper-
ators, followed by PGL algorithm.

4.1 PGL Rationale

To date, several classical methods have been developed to
solve this MINLP problem, e.g., dynamic programming,
Bender’s Decomposition, and branch and bound. Neverthe-
less, those methods usually assume that specific mathemati-
cal structures exist in their problems. For example, objective
functions are assumed to be differentiable. Yet, their solu-
tions are often not satisfying when they are used to solve
complicated optimization problems in limited time. To
address this drawback, meta-heuristic optimization algo-
rithms can be used to solve different realistic problems due
to their advantages including fast convergence, strong
robustness, and wide applicability, etc. However, classical
meta-heuristic algorithms each carries some disadvantages.
For example, particle swarm optimization (PSO)’s [8] search
speed is quick; yet it is often trapped into local optima
when it is used to solve high-dimensional complex prob-
lems [27]. In addition, its search process might oscillate if a
local position of a particle and a globally optimal position of
current population differ significantly.
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In recent years, several studies improve the performance
of PSO by using genetic algorithm (GA) [28], which are
divided into two categories. First, some PSO variants add a
specific genetic operation (mutation, selection, or crossover)
of GA, like GSP [22]. Second, some studies fully hybridize
PSO and GA, like SAPSO [29]. These hybrid algorithms split
a population into two parallel subpopulations, each of
which is guided by with PSO and GA, respectively, and
then combine two subpopulations periodically. In sum-
mary, existing algorithms combine GA and PSO in a loosely
coupled manner; and the impact from interactions of PSO
and GA is ambiguous to recognize.

We develop a novel hybrid algorithm called Particle
swarm optimization based on Genetic Learning (PGL). PGL
further improves existing hybrid algorithms by seamlessly
integrating PSO and GA in a highly cohesive manner. Spe-
cifically, PGL comprises two cascading layers: the first layer
produces a superior exemplar for each individual using
GA; the second layer changes each particle in PSO. In this
way, particles in PSO are guided by its locally best position,
the globally best particles of PSO, and the exemplars con-
structed by GA.

The rationale of our proposed PGL is three-fold. First,
by learning from exemplars produced by GA, the search
process of particles in PSO is more diversified, thereby
avoiding premature convergence. Second, the selection
operations in GA yield high-quality exemplars, which
effectively guiding particles and improving PSO’s search
efficiency. Third, search experiences of particles in PSO
transmit promising genetic information back to GA to
optimize the exemplars. In summary, PGL is incrementally
trained for higher quality of optimization, powered by the
reciprocity between its comprised two layers from such an
iterative joint learning process.

4.2 PGL Operators

jXXXXXXXj denotes the particle number in each population of PSO.
D denotes the total number of elements in each position. pi
denotes particle i’s locally best position (1�i�jXXXXXXXj), and pi;d
denotes its dth (1�d�D) element. g denotes a globally best
position of the whole population in each iteration, and gd is
its dth element. ei denotes a superior exemplar for each par-
ticle i, and ei;d is its dth element. Then, ei;d is obtained as

ei;d¼ c1�r1�pi;d þ c2�r2�gd
c1�r1 þ c2�r2 ; (42)

where c1 (c2) is a cognitive (social) acceleration parameter
showing the effect of pi;d (gd), and r1 (r2) is a random num-
ber uniformly generated in (0,1).

In each iteration, PGL has the following four major steps
including crossover, mutation, and selection operations for
yielding exemplars, and position updates of particles in
PSO.

4.2.1 Crossover Operation

Let eDð~�hiÞ denote a value of eD for each particle i. For each
entry d of particle i, a crossover operation is performed. We
first randomly select a particle z (z2f1; 2; . . . ; jXXXXXXXjg). Then,
we perform crossover on g and pi to yield a new offspring
oi=(oi;1, oi;2, . . . , oi;D), i.e.,

oi;d¼ rd�pi;dþð1� rdÞ�gd eDðpiÞ< eDðpzÞ
pz;d otherwise

(
; (43)

where rd is a random number uniformly generated in (0,1).
Specifically, if eDðpiÞ< eDðpzÞ, oi;d is produced by linearly
combing pi;d and gd; otherwise, oi adopts more elements
from pz. In this way, our crossover operation adopts histori-
cal search information to improve the search performance.

4.2.2 Mutation Operation

To enhance the diversity and quality of each superior exem-
plar for each particle, we perform the following mutation
operation on oi with a specified probability of z. Specifically,
if rd < z, oi;d is changed by a number randomly and uni-
formly generated in ð�bd; b̂dÞ, i.e.,

oi;d¼randð�bd; b̂dÞ; if rd < z; (44)

where b̂d (�bd) is an upper (lower) limit of element d of~�hi.

4.2.3 Selection Operation

We adopt the following operation of selection to update ei in
the next iteration. If~�hðoiÞ<~�hðeiÞ, oi is adopted; otherwise, ei
keeps unchanged, i.e.,

ei¼ oi ~�hðoiÞ<~�hðeiÞ
ei otherwise

(
: (45)

4.2.4 Position Update of Each Particle

Let t̂ denote the iteration number in PGL. Let vt denote a
value of inertia weight in each iteration t (1�t�t̂). We reduce
vt linearly from its upper limit v̂ to its lower one �v, i.e.,

vt¼v̂� tðv̂� �vÞ
t̂

: (46)

Let vi denote a velocity of particle i. Then, vi;d and~�hi;d are
updated as

vi;d ¼ v�vi;d þ c�rd�ðei;d �~�hi;dÞ (47)

~�hi;d ¼~�hi;d þ vi;d; (48)

where c is an acceleration parameter showing the effect of
difference between ei;d and xi;d.

In each position, the firstMJ entries keep �j
m. The nextMJ

entries keep mj
m. Then, the nextMJ entries keep xj;m

k . The last
M entries keep fm. Therefore,D¼3MJþM¼Mð3Jþ1Þ.

4.3 PGL Algorithm

Algorithm 1 lists PGL’s pseudo codes. Line 1 initializes
velocities and positions of particles in PSO. Line 2 updateseD for all particles with (41). Line 3 updates pi and g. Line 4
initializes z of GA, and PSO’s parameters including c, c1, c2,
�v, v̂, t̂ and jXXXXXXXj. Line 6 requires that the while loop termi-
nates if t> t̂. Line 7 conducts crossover (43) on entry d of
particle i to yield oi. Line 8 conducts mutation (44) on oi.
Line 9 conducts selection to update ei. Line 10 changes vi;d
with (47). Line 11 changes ~�hi;d with (48). Line 12 changes eD
for all particles with (41). Line 13 changes pi and g. Line 14
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linearly reduces vt in each iteration from v̂ to �v. Line 17
returns g, which yields a final offloading strategy deter-
mined by �j

m, m
j
m, x

j;m
k and fm.

Algorithm 1. PGL

1: Initialize velocities and positions of particles in PSO
2: Update eD for all particles with (41)
3: Update pi and g
4: Initialize z of GA, and PSO’s parameters including c, c1, c2,

�v, v̂, t̂ and jXXXXXXXj
5: t 1
6: while t�t̂ do
7: Conduct crossover (43) on entry d of particle i to yield oi
8: Conduct mutation (44) on oi
9: Conduct selection to update ei
10: Change vi;d with (47)
11: Change~�hi;d with (48)
12: Change eD for all particles with (41)
13: Change pi and g
14: vt  v̂� tðv̂��vÞ

t̂
15: t tþ 1
16: end while
17: return g

We further study the complexity analysis of Algorithm 1.
In Algorithm 1, the running overhead is mainly brought by
the while loop, which terminates after t̂ iterations. As given
in Lines 7–15, the complexity of each iteration is OðjXXXXXXXjDÞ.
In addition, D¼Mð3Jþ1Þ, and the complexity of each itera-
tion is OðjXXXXXXXjMð3Jþ1ÞÞ. Therefore, the total complexity of
Algorithm 1 is Oðt̂jXXXXXXXjMJÞ.

In this work, time-related parameters include Mj and djm.
When they are changed before PGL converges, its optimized
result might be impractical because its later optimization
process depends on their initial values. In this scenario, more
advanced strategies need to be designed. In the evolution of
PGL, once two parameters are changed in an iteration, all
decision variables in the iteration can be kept into a vector of
~�hold. ~�hnew denotes a vector of new decision variables in
remaining iterations of PGL. Then, specific and heuristic
rules can be designed to change ~�hold to ~�hnew, which can be
immediately updated according to new values ofMj and djm.
~�hnew can be used as initial decision variables in remaining
iterations or new ones of PGL. In this way, the convergence
speed and accuracy of PGL can be considerably accelerated.

For example, when initial parameters of Mj and djm are
changed to ~Mj and ~djm before PGL converges, all current deci-
sion variables can be kept in ~�hold at the changing iteration.
DMj denotes a set of users who move to new APj. For any
MD belonging to DMj, we select its nearest SBSk for APj

according to its €Dj
k. Then, x

j;m
k in ~�hold is updated with 1 in

~�hnew. In addition, other decision variables including �j
m, m

j
m

and fm keep unchanged. In this way, ~�hnew can be yielded
accordingly at the changing iteration, and it can be adopted
as an initial vector in remaining iterations or new ones of PGL.

5 PERFORMANCE EVALUATION

This section evaluates PGL with real-life data of system con-
figurations. We consider a hybrid MEC system including
multiple MDs, multiple SBSs and a remote CDC.

5.1 Experimental Setting

Following [30], the number of SBSs, K, varies from 3 to 5,
i.e., K¼3–5. A list of configuration settings of three SBSs is
given in Table 3. The number of APs, J , varies from 5 to 10,
i.e., J¼5–10. The number of users associated to AP j, Mj,
varies from 5 to 20, i.e., Mj¼5–20. It is worth noting that our
proposed PGL can also deal with a hybrid MEC system
with larger K, J and Mj. All APs and MDs are randomly
distributed, and each distance between AP j and MD m
varies from 0.5 km to 2 km, i.e., djm2½0:5; 2� km. In addition,
�1¼128.1 and �2¼37.6. Then, gjm is obtained.

Here, similar to [18], we consider six applications includ-
ing FACE, SPEECH, OBJECT, Linpack, CPUBENCH and PI
BENCH. The first three applications belong to the type of
static offloading, while the last three ones belong to that of
dynamic offloading. The configuration setting of the six
real-world applications is summarized in Table 4.

The parameters of each MD m associated with AP j are
set as follows. P̂ j

m¼23 dBm, �Pj
m¼23 dBm, f̂m¼1 Giga CPU

cycles/sec., and &m¼10�25. In addition, parameters of each
AP j are set as follows. Ŵj¼10 MHz, �Wj¼10 MHz, s2¼�
174 dBm, €P¼20 dBm and �P¼20 dBm. Parameters of each
SBS k (1�k�K) are set as follows. f̂k¼500 Giga CPU cycles/
sec., fk¼10 Giga CPU cycles/sec., and &k¼10�27. Follow-
ing [31], the latency between any two APs is 3 ms and that
between any AP and any SBS is 5 ms. In addition, the
latency between any AP and CDC is 100 ms. In addition,
each MD runs a single application in Table 4. The setting of
parameters of PGL is given as follows. z¼0:01, c1¼0:5,
c2¼0:5, c¼1:49618, v̂¼0:95, �v¼0:40, t̂¼200 and jXXXXXXXj¼500.

We have designed and conducted two groups of tests to
evaluate PGL: one on its optimization performance and the
other one on its computation offloading performance.

TABLE 3
List of Configuration Setting of Three SBSs

Configurations SBS 1 SBS 2 SBS 3

fk f̂k fk f̂k fk f̂k

Configuration 1 10 500 10 500 10 500
Configuration 2 10 500 10 750 10 1000
Configuration 3 5 500 10 500 15 500
Configuration 4 5 500 10 750 15 1000

TABLE 4
Configuration Setting of Six Real-World Applications

Applications �ujm
~um �ujm ûjm

(Kilobytes) (Giga CPU cycles) (Bytes) (Sec.)

Static offloading
FACE 62 12.3 60 5
SPEECH 243 15 50 5.1
OBJECT 73 44.6 50 13

Dynamic offloading
Linpack 10240 50 120 62.5
CPUBENCH 80 3.36 80 4.21
PI BENCH 10240 130 200 163
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5.2 Experimental Results From Group 1

To evaluate the optimization performance of PGL, we com-
pared PGL with its three recently-proposed algorithms, i.e.,
GA [32], simulated annealing (SA)-based PSO (SAPSO) [29],
and Genetic SA-based PSO (GSP) [22]. The reasons for
selecting them for comparison are as follows:

1) GA [32] owns genetic operations. It addresses com-
plicated optimization problems and has high diver-
sity of individuals. Therefore, the comparison with
GA will help verify the search accuracy of PGL.

2) SAPSO [29] loosely coupled PSO and SA. Therefore,
the comparison with SAPSO will help verify PGL’s
convergence speed.

3) GSP [22] integrates genetic operations of GA, and a
Metropolis acceptance criterion of SA [33] into PSO.
Therefore, the comparison with GSP will help verify
PGL’s search accuracy.

Figs. 2 and 3 illustrate convergence curves of total energy
consumption and total penalty of the four different algo-
rithms PGL, GSP, SAPSO and GA. Here, J¼5, K¼3 and
Mj¼10. As shown in Fig. 2, GA cannot reduce its penalty to
0 as iterations increase. This shows that GA’s final solution
cannot strictly meet the constraints (28), (29), (30), (31), (32),
(33), (34), (35), (36), (37), (38), (39), and (40). For PGL, GSP
and SAPSO, although their penalties in early iterations are
relatively large, they all reach 0 at their end of iterations.
The results shown in Fig. 2 mean that PGL, GSP and SAPSO
all strictly meet all the constraints in our constrained
problem.

In Fig. 3, GA converges at iteration 7, but its final solution
yields more energy than that of other three algorithms.
SAPSO converges at iteration 122, and its total energy con-
sumption of its final solution is 7.39% less than that of GA,

but it is still larger than that of PGL. Although GSP’s energy
consumption is 65.84% lower than that of SAPSO, it is still
larger than that of PGL. Finally, PGL converges at iteration
149 and its convergence speed is faster than GSP that con-
verges at iteration 198. In addition, compared with that of
GSP, SAPSO and GA, the total energy consumption of
PGL’s final solution decreases by 8.67%, 68.80% and 71.11%,
respectively. Therefore, PGL achieves the best performance
for our problem among them. In addition, we show the time
overheads of PGL, GSP, SAPSO and GA in Table 5. It can be
observed that the time overhead of PGL is the least among
four algorithms. Moreover, PGL only needs 3.9974 sec. to
find the best computation offloading strategy for static and
dynamic applications that have strict delay bounds in the
hybrid system. The results demonstrate the feasibility of the
proposed PGL.

It is shown that many studies require that dynamic appli-
cations have to be completed before their allowable limits,
which can be from 4 sec. to 11 sec. [22], [24], [34]. For exam-
ple, the maximum completion time of dynamic applications
in [24] follows a uniform distribution with U[5,10] sec.
In [34], completion deadlines of dynamic applications vary
from 5 sec. to 11 sec. In addition, delay limits of dynamic
applications running in smart mobile devices in [22] vary
from 4 sec. to 6 sec. Therefore, similar to studies [22], [24],
[34], the time overhead of our proposed PGL is about 4 sec.,
which is allowable and reasonable for dynamic applications
in mobile edge computing systems.

Fig. 4 shows the total energy consumption of PGL, GSP,
SAPSO and GA with respect to different numbers of MDs
(Mj). Here, J¼5, K¼3 andMj2½2; 10�. It is shown that PGL’s
final total energy consumption outperforms that of other
three algorithms given each number of MDs. Specifically,
comparedwith GSP, SAPSO andGA, PGL’s total energy con-
sumption is decreased by 4.25%, 54.36% and 68.35% on aver-
age, respectively. The reason is that PGL uses genetic
operations such as crossover, mutation and selection to pro-
duce examplars, which have good diversity and high quality
to update the velocity and position of each particle in PSO.
PGL not only keeps GA’s good global search capability, but
also solves the problem of PSO’s premature convergence.

Fig. 2. Total penalty of PGL, GSP, SAPSO and GA in each iteration.

Fig. 3. Total energy consumption of PGL, GSP, SAPSO and GA.

TABLE 5
Time Overheads (sec.) of PGL, GSP, SAPSO and GA

Algorithms PGL GSP SAPSO GA

Time overheads 3.9974 4.0010 3.5714 3.1562

Fig. 4. Total energy consumption of PGL, GSP, SAPSO and GA with
respect toMj.
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Then, it can converge to close-to-optimal solutions at a
faster speed. Besides, GSP’s final total energy consumption
is lower than PGL but its convergence speed is very slow.
The reason is that in SA’s Metropolis strategy, the initial
temperature is high and it is easy to jump from local optima
to a worse solution. Thus, it is not easy for GSP to find a bet-
ter solution, and therefore, PSO’s local and global optima
cannot be updated in a timely manner, thereby resulting in
its slower convergence. In addition, it is worth noting that
compared with GSP, SAPSO and GA, PGL’s energy con-
sumption reduction can be more significant as the number
of MDs increases. The experimental results demonstrate
that PGL also works better than other algorithms when it is
adopted to solve high-dimensional problems.

Fig. 5 shows the total energy consumption with respect to
f̂k of each SBS k. Fig. 6 shows the amount of energy consump-
tion of MDs, SBSs and CDC with respect to f̂k of each SBS k.
Here, J¼5 andK¼3. It is shown that given the same f̂k, fewer
MDs cause lower energy consumption. The reason is that
more MDsmean that more tasks have to be processed, trans-
mitted and computed in themselves, SBSs and CDC. Given
the sameMj, the total energy consumption initially decreases
as f̂k increases, and reaches its lowest point when f̂k¼4�109
and slightly increases. The SBSs and CDC can execute more
tasks as f̂k increases, and fewer tasks are executed in MDs,
thereby reducing the total energy consumption accordingly.
However, as f̂k continues to increase,MDs cannot completely
offload their tasks to SBSs and CDC due to the latency needs
of tasks. According to (6), the energy consumption in SBSs
and CDC also increases as f̂k increases significantly, thereby
increasing the total energy consumption.

Fig. 7 illustrates the total energy consumption with
respect to �j

m. It is worth noting that for each application,
the offloaded data size is proportional to its offloading ratio
of tasks. In addition, only applications that enable dynamic

offloading have varying offloading ratios. Thus, Fig. 7
shows the results of three applications including Linpack,
CPUBENCH, and PI BENCH. It can be observed that for
each application, its offloading ratio of tasks has significant
impact on the total energy consumption. The yellow circle
in each curve shows the optimal offloading ratio for each
application. It is observed that the total energy consumption
increases when the actual offloading ratio is larger or
smaller than the optimal one. Fig. 7 demonstrates that our
proposed PGL effectively reduces the total energy con-
sumption by determining the optimal offloading ratio of
tasks for each application.

5.3 Experimental Results From Group 2

To evaluate the performance of PGL, we compare it with
three heuristic strategies including the Nearest-SBS for Off-
loading (NSO) [24], Partial Offloading to SBSs (POS) [22]
and Partial Offloading to CDC (POC) [35].

� NSO [24]. Some selected tasks of MDs are directly
offloaded to their nearest SBSs for the remote
offloading.

� POS [22]. Tasks of MDs are partially and intelligently
offloaded to SBSs for the remote offloading. In POS,
some tasks are selectively offloaded to their associ-
ated SBSs in an energy-optimized manner.

� POC [35]. Similar to our PGL, POC intelligently exe-
cutes all tasks of MDs between MDs and CDC in an
energy-optimized way. Some tasks are remotely off-
loaded to CDC for processing within their delay
limits.

Fig. 8 shows the total energy consumption of NSO, POS,
POC and PGL with respect to different numbers of MDs.
Here, J¼5, K¼3 and Mj¼½2; 10�. In Fig. 8, it is shown that
for each strategy, its total energy consumption increases

Fig. 5. Total energy consumption with respect to f̂k of each SBS k.

Fig. 6. Energy consumption of MDs, SBSs and CDC with respect to f̂k of each SBS k.

Fig. 7. Total energy consumption with respect to �j
m.
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dramatically as the number of MDs increases. In addition,
PGL significantly outperforms other three strategies. The
reason is that PGL jointly considers the computation offload-
ing, MDs’ association with SBSs and/or CDC, and allocation
of resources (CPU running speed and wireless bandwidth).
Besides, compared with PGL, NSO allows MDs to offload
some of their tasks to their nearest SBS while POS executes
MDs’ tasks between MDs and SBSs. Thus, NSO and POS
have to execute a large number of tasks between MDs and
SBSs without the help of sufficient resources in CDC, result-
ing in an increase in total energy consumption. Similarly,
POC executes tasks betweenMDs and CDCwithout the help
of SBSs. The result in Fig. 8 demonstrates the effectiveness of
PGL that executes tasks amongMDs, SBSs andCDC. In addi-
tion, it is worth noting that as the number of MDs increases,
the reduction of the total energy consumption of PGL gradu-
ally increases. This proves that the effectiveness of PGL is
more obvious when it is used to solve higher-dimensional
andmore complex problems.

Fig. 9 shows the number of offloaded tasks of NSO, POS,
POC and PGL with respect to different numbers of MDs.
Here, J¼5, K¼3 and Mj¼½2; 10�. In Fig. 9, it is shown that
for each method, the number of offloaded tasks increases as
the number of MDs increases. Given the same number of
tasks, the number of offloaded tasks for PGL is the least
among four methods. In addition, as the number of MDs
increases, the percentage of tasks offloaded to SBSs for PGL
or POS decreases. The reason is given as follows. When the
number of MDs is small, e.g., 10, the wireless bandwidth of
uplink (downlink) channels between MDs and APs is suffi-
cient. Therefore, the numbers of offloaded tasks are the
same for PGL, POS and POC. As the number of MDs

increases, PGL executes all tasks among MDs, SBSs and
CDC in an energy-minimized manner by jointly optimizing
task offloading, bandwidth allocation of channels, MDs’
association with SBSs and/or CDC, and CPU running speed
of each MD.

Fig. 10 shows the normalized total energy consumption
of NSO, POS, POC and PGL with respect to different config-
uration settings of SBSs. Here, J¼8, K¼5 and Mj¼20. It is
shown that the normalized total energy consumption of
POC is the largest among four methods given each configu-
ration setting. In addition, given configuration 1 where all
SBSs have the same resources, the normalized total energy
consumption of PGL and POS is similar. However, given
configurations 2–4 where different SBSs have heterogeneous
setting of resources, the normalized total energy consump-
tion of PGL is much lower than that of POS and NSO.
Finally, the normalized total energy consumption of PGL is
the least among four methods given each configuration set-
ting. The reason is that PGL intelligently executes tasks
among MDs, SBSs and CDC in an energy-efficient manner.

6 CONCLUSION

Computation offloading in a hybrid mobile edge computing
system including multiple mobile devices (MDs), multiple
small base stations (SBSs), and a cloud data center (CDC) is a
challenging problem. Many current applications are often
resource-intensive and delay-sensitive. Each MD has limited
computing resources and battery capacities, thereby failing
to execute all tasks by themselves within latency limits.
Therefore, it is highly demanding to energy-efficiently off-
load partial tasks of heterogeneous applications of MDs to
their nearby SBSs and/or CDC. Existing studies cannotmini-
mize total energy consumed by static and dynamic applica-
tions with selectively offloading partial tasks in the hybrid
system. This work introduces a computation offloading
architecture for heterogeneous applications in such hybrid
system. We formulate the minimization problem of total
energy consumption as a mixed integer non-linear program,
which is NP-hard. We then present a hybrid meta-heuristic
optimization algorithm called PGL. PGL is powered by the
reciprocity between particle swarm optimization and genetic
algorithm from an iterative joint learning process. PGL com-
prehensively optimizes task offloading of both static and
dynamic applications, bandwidth allocation of wireless
channels, association of MDs with SBSs and/or CDC, and
computing resource allocation of MDs. Numerical results

Fig. 8. Total energy consumption of NSO, POS, POC and PGL with
respect to different numbers of MDs.

Fig. 9. Number of offloaded tasks of NSO, POS, POC and PGL with
respect to different numbers of MDs.

Fig. 10. Normalized total energy consumption of NSO, POS, POC and
PGLwith respect to different configuration settings of SBSs.
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have demonstrated that PGL outperforms existing offload-
ing methods in terms of total energy consumption and con-
vergence speed undermultiple parameter configurations.

As future work, we plan to extend our proposed method
tomore complex applications that own dependent tasks, and
apply it inmore emerging industrial Internet environments.
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