
Discovery and Analysis About the Evolution
of Service Composition Patterns

Zhenfeng Gao1,2, Yushun Fan3,∗, Xiu Li1,∗, Liang Gu2,
Cheng Wu3 and Jia Zhang4

1Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
2Sangfor Technologies Inc., Shenzhen, China
3Tsinghua National Laboratory for Information Science and Technology, Beijing,
China
4Department of Electrical and Computer Engineering, Carnegie Mellon University,
Silicon Valley, California, USA
E-mail: li.xiu@sz.tsinghua.edu.cn; gzf@sangfor.com.cn; guliang@sangfor.com.cn;
fanyus@tsinghua.edu.cn; wuc@tsinghua.edu.cn; jia.zhang@sv.cmu.edu
∗Corresponding Authors

Received 7 January 2019; Accepted 19 November 2019;
Publication 28 November 2019

Abstract

Service ecosystems, consisting of various kinds of services and mashups,
usually keep evolving over time. Existing works on the evolution of service
ecosystems focus on either evaluating the impacts of single services’ changes
on the usage of services and the stability of the whole ecosystem, or discov-
ering co-occurrence relationship between services, but fail to disclose any
knowledge from the aspect of the evolution of service composition patterns.
Based on our previous work, this paper moves one step further, revealing the
latent service composition trends in a service ecosystem and providing more
distinct explanation of different topic evolution patterns. A novel method-
ology, named Extended Dependency-Compensated Service Co-occurrence
LDA (EDC-SeCo-LDA), is developed to calculate the directed dependencies
between different topics and build topic evolution graph. The evolution trend

Journal of Web Engineering, Vol. 18 7, 579–626.
doi: 10.13052/jwe1540-9589.1872
c© 2019 River Publishers

580 Z. Gao et al.

of service composition could be disclosed by the graph intuitively. What’s
more, EDC-SeCo-LDA proposes five different ways to adopt dependency
compensation to improve the performance when making service recommen-
dation. Experiments on ProgrammableWeb.com show that EDC-SeCo-LDA
can reveal significant topic dependencies, and recommend service compo-
sition more effectively, i.e., 6% better in terms of Mean Average Precision
compared with baseline approaches.

Keywords: Topic evolution graph, service composition recommendation,
topic model.

1 Introduction

As Service-Oriented Architecture (SOA) and Cloud Computing are widely
adopted, the amount of published web services on the Internet has been
rapidly growing [1]. By reusing existing services (i.e., APIs), software devel-
opers are able to quickly create service compositions (i.e., mashups) to meet
complex functional needs and offer additional business values [2]. However,
users’ demands on mashups could vary over time. As a consequence, devel-
opers’ preference for combining certain domains of services may gradually
change, making the trend of services composition patterns keep on evolving.
The evolution of service system makes it challenging for developers to com-
prehend the trend of service composition patterns. ProgrammableWeb.com,
which is recognized as a typical web service ecosystem, has establish “API
University” to help developers understand the latest services and trend of
make compositions. But people may still get confused when manually select-
ing proper candidates to meet their specific functional requirements. Such
challenges call for new techniques to help developers gain a better under-
standing of the evolutionary characteristics of service ecosystem, and select
services more effectively and intelligently.

In the research of service ecosystem evolution, most works make efforts
to analyze the impact of a single service’s change, and try to deal with the
version problem in order to maintain system stability [3–8]. Although evolu-
tionary characteristics can be mined, these works study the evolution problem
from the perspective of individual services or service dependencies, which
could not expose any information about the trend of service composition in
the service ecosystem, e.g., what kind of service composition patterns are
becoming more and more popular recently, how they merged or branched
into new ones, whether they were inspired by some relatively old patterns and

Discovery and Analysis About the Evolution of Service Composition Patterns 581

so on. As a result of which, existing researches on service recommendation
usually lose sight of the inherent information about the evolution of service
composition patterns.

Few have considered mining evolution characteristics of service ecosys-
tem from the perspective of service composition patterns. In [9], we intro-
duced a concept of “service co-occurrence topic,” which demonstrated the
existence of latent service composition patterns described with the distribu-
tion over services. That is to say, the inherent importance of different services
in one topic describes a certain service composition pattern. For example,
a topic on people’s social life is described by the distribution on services
like {Twitter: 0.24, Facebook: 0.12, Yahoo Blog: 0.11, ...}. In this paper, we
further study the service ecosystem’s evolution problem from the perspective
of service co-occurrence topics, and define the directed evolutionary rela-
tionship between topics as “topic dependency.” Some existing probabilistic
topic models on text mining could reveal semantic topics [10–12], which are
described with distributions over text words. Their results could be used to
calculate topic similarity, which is an undirected correlation between topics.
In contrast, we argue that “topic dependency” is a kind of directed relation-
ship, reflecting the latent evolution trend of service composition patterns.
For example, with the development of service ecosystem and the change
of people’s demands, a topic on multimedia information and a topic on
shopping guidance might gradually merge into a new topic on multimedia-
based shopping recommendation. That is to say, service developers gradually
combine services about multimedia information and services about shop-
ping guidence together to create new mashups and provide funcitionalities
of multimedia-based shopping recommendation to meet people’s changing
demands. What’s more, if developers could comprehend this specific trend,
they may naturally consider combine multimedia information services when
they decide to enrich a specific service about shopping guidence.

Up-to-date machine learning algorithms were used to make the web
service discovery and recommendation more effective and efficient [13].
Nevertheless, without the consideration of evolutionary information of ser-
vice compositions, existing researches on service recommendation or ser-
vice discovery just utilized easily-obtained information provided by service
ecosystems (e.g., services’ and mashups’ descriptions, time information, QoS
values and so on) [14].

To the best of our knowledge, no algorithm exists to mine such depen-
dencies of service co-occurrence topics and then utilizes it to improve the
performance of service recommendation. Based on our previous work [15],

582 Z. Gao et al.

we propose a novel model, “Extended Dependency-Compensated Service
Co-occurrence LDA” (EDC-SeCo-LDA), by extending SeCo-LDA [9] to
identify the evolutionary characteristics of service ecosystem at the topic
level. Leveraging the information of mashups’ published time, we design
an algorithm to calculate the topic dependencies based on topic-service
distribution. Topic dependencies, which is directed, reveal the latent trend
of service composition patterns in the service ecosystem. Inspired by [8,
16], we propose four “topic evolution patterns” (i.e., Merge, Branch, Co-
occur and Arise) and construct a topic evolution graph. The evolution graph
could provide information more intuitively, and help people understand
the evolution of topics at a systemic level. What’s more, to make full
advantage of topic dependencies when making service recommendation, we
move one step further based on our previous work [15] and design five
different ways to make dependency compensation (i.e., Basic Dependency
Compensation (BDC), Time-decaying Dependency Compensation (TDC),
Importance-based Dependency Compensation (IDC), Relative-Importance-
based Dependency Compensation (RIDC) and 2-Generation Dependency
Compensation (2GDC)). The intuition of dependency compensation is that
based on the revealed evolutionary information between topics, it is able to
weaken the inherited characteristics between topics and make their particular
features more vivid. As a result, the compensated topics will be more explain-
able and the performance of service recommendation based on topics could
be improved.

The main contributions of this paper are summarized as follows:

(1) A concept of “topic dependency” is created to describe the evolution
relationship between different service co-occurrence topics. Meanwhile,
four “topic evolution patterns” are proposed (i.e., Merge, Branch, Co-
occur and Arise) to classify different forms of topic evolution trends.

(2) A novel method EDC-SeCo-LDA is developed to discover topic depen-
dencies and build topic evolution graph. Topic evolution graph presents
information concisely and intuitively and reveals the latent trend of
service composition patterns in a service ecosystem. Experiments over
real-world data set ProgrammableWeb.com show that EDC-SeCo-
LDA can discover significant topic dependencies to build evolution
graph. Detail explanations of the evolution of service composition
patterns are provided.

(3) EDC-SeCo-LDA also provide five different ways of making depen-
dency compensation (i.e., BDC, TDC, IDC, RIDC and 2GDC) when

Discovery and Analysis About the Evolution of Service Composition Patterns 583

making service recommendation to improve the performance. Compre-
hensive experiments over ProgrammableWeb.com are conducted. We
detailedly demonstrate the influence of dependency compensation on
topics’ distributions by examples. What’s more, EDC-SeCo-LDA can
achieve a higher MAP value than baselines when recommending related
services for a selected one, approximately 6% better than the second-
best baseline approach, verifying the significance of making dependency
compensation.

The rest of this paper is organized as follows. Section 2 provides the defi-
nition of background. Section 3 introduces EDC-SeCo-LDA model. Section 4
illustrates detailed algorithms in the model. Section 5 shows experimental
results on a real-world data set from ProgrammableWeb.com, including
discovering topic dependencies, building topic evolution graph and making
recommendation. Detailed discussion of parameter setting and coefficients’
influence are also presented. Section 6 summarizes the related work and
finally Section 7 concludes the paper.

2 Background

In this section, we provide definitions on service ecosystems and then pose
the problems to be addressed. In general, our solution to discovering topic
dependencies, building topic evolution graph and making compensation when
recommending for service compositions is suitable for any service ecosystem
that satisfies Definitions 1∼3.

Definition 1: Topology of service ecosystem. The topology of a service
ecosystem containing mashup-service citation records is modeled as an undi-
rected graph G = (M ∪ S,E) in which: M = {m1,m2, . . . ,mNM } is
the set of mashups and S = {s1, s2, . . . , sNS} is the set of services; NM

is the number of mashups and NS is the number of services; E ⊆ M × S is
the historical usage records between mashups and services, i.e., if mashup j
invokes service i, E(j, i) = 1.

Definition 2: Service Co-occurrence Topics. Service co-occurrence topics
[9] describe latent composition patterns between services and are represented
by the distribution over services in the service ecosystem. For example, topic
k is described by {φjk, j = 1, . . . , NS}, in which φjk describes the impact
of service j on topic k when making service composition, and

∑
j φjk = 1.

584 Z. Gao et al.

In this paper, we consider these characteristics of each service co-occurrence
topic:

(i) Topic Importance: Different service co-occurrence topics reveal differ-
ent composition patterns and have different importances in the service
ecosystem.

(ii) Topic Representative Services: Topic representative service are those
that are the most popular in a service co-occurrence topic, from which
we could tell the meaning of the composition pattern. Here, the more
“popular” a service is in a service co-occurrence topic, the higher prob-
ability it has to be chosen when designing service compositions about
this topic.

(iii) Topic Temporal Strength: The temporal strength of a topic is an distri-
bution over time, reflecting a service co-occurrence topic’s lifecycle and
revealing the change of its popularity.

(iv) Topic Time Expectation: Time expectation could be calculated with
topics’ temporal strength. With this, we could distinguish new topics
from old ones in the process of the development of service ecosystems.

Based on the above definitions, we now pose three problems that we
intend to address in this paper.

Problem 1: Discovery of Topic Dependencies. As mentioned in Section 1,
in this paper, we intend to study the service ecosystem’s evolution problem
from the perspective of service co-occurrence topics, discovering the directed
evolutionary relationship between topics as “topic dependency.” A graphic
example of topic dependency relationship is shown in Figure 1. Service co-
occurrence topics disclose information of service composition patterns. And
a directed dependency from topic i to topic j demonstrates that with the
development of service ecosystem and the change of people’s demands, a
relatively new topic j gradually formed based on topic i, reflecting the latent
evolution trend of service composition patterns. Or for short, we could tell
that topic i has an evolutionary effect on topic j.

i j

Figure 1 Graphic example of topic dependency relationship.

Discovery and Analysis About the Evolution of Service Composition Patterns 585

Some existing work with probabilistic topic models on text mining
[10–12] could lead to calculating topic similarity, which is an undirected
correlation between topics different from topic dependencies.

Problem 2: Building Topic Evolution Graph. Based on topic dependency
relationships, we mean to construct a topic graph as [16], presenting infor-
mation about the evolution of topics (composition patterns) in a conciser
and more visualized way. With the help of topic evolution graph, we could
discover significant service composition patterns more explicitly.

Problem 3: Recommendation for Service Composition. In this paper, to
evaluate whether it is significant to make dependency compensation, we
consider such a situation as in [9, 15, 17]: assuming a mashup-developer
selects the first API from the original search results provided by an online
service repository (e.g., ProgrammableWeb.com), now he needs to find other
APIs to create a new mashup. Different from scenarios in goal-based service
composition [18, 19], he might not know exactly what kind of mashup he
wants to make, and just hope to find related services to make significant
compositions. Here we refer to the selected service as sl, and the result
of recommendation for its service composition is provided as a ranked list
Rl = {sl1, sl2, . . .}.

3 Extended DC-SeCo-LDA Model

The key idea of EDC-SeCo-LDA is to discover directed topic dependencies,
build topic evolution graph, and make dependency compensation to promote
the performance of recommendation. Analogous to SeCo-LDA [9], we first
construct service co-occurrence documents and apply a probabilistic topic
model to reveal latent service co-occurrence topics. We make some changes
when calculating temporal strength, which we will illustrate in Section 4.
Then we design algorithms to discover topic dependencies and build topic
evolution graph. When recommending for service composition, we extend
[15] and design five ways to adopt dependency compensation to weaken the
inherent characteristics betweens topics and improve the recommendation
performance.

In this section, firstly, we give a general introduction to the overall
framework of EDC-SeCo-LDA. Then, details are introduced from several
aspects of SeCo-Part, Topic Dependency, Topic Evolution Graph, Depen-
dency Compensation and Recommendation for Service Composition.

586 Z. Gao et al.

3.1 Overall Framework

As is shown in Figure 2, for a mashup developer, EDC-SeCo-LDA is helpful
in understanding the trend of designing service compositions as well as
making recommendation for service compositions.

Multiple kinds of information in a service ecosystem is taken into
account, including mashups’ published time, service content information
and mashup-service usage records. In EDC-SeCo-LDA, we firstly create
service co-occurrence documents and derive service co-occurrence topics
and their characteristics as [9]. Then, we introduce the definition of “topic
dependency.” With the help of topic dependencies, we could build the
topic evolution graph, and design different ways to make compensation on
topics’ distribution over services. Topic evolution graph is a conciser and
more visualized way to show the evolutionary relationship between topics,
helping mashup developers to understand the trend of service composition.
Dependency compensation could improve the performance of recommending
service compositions.

3.2 SeCo Part

In EDC-SeCo-LDA, the processes of constructing service co-occurrence
documents and applying a probabilistic topic model on the corpora are similar
with those in our previous work [9]. Here is a brief overview.

Service Content Information

Service i Wi1, ..., WiNi
i=1,2,
...,NS

Mashup-service Usage Records

Mashup j Sj1, ..., SjNj
j=1,2,
...,NM

Service Ecosystem

Mashup Time Information

Mashup j Tj j=1,2,...,NM

Service Co-occurrence Topics

Topic k k=1,2,
...,K

Servicek1
Servicek2

…

φk1
φk2
…

Characteristics of Topics

Topic k

k=1,2,...,K

Importance
Representative Services
Temporal Strength

Service Co-occurrence Documents

Service i CSi1, CSi2, ..., CSiNcsi

i=1,2,...,NS

EDC-SeCo-LDA

Compensated Service Co-occurrence Topics
 (Five different ways)

Topic k k=1,2,
...,K

Servicek1
Servicek2

…

φk1
φk2
…

Topic Dependency

Topic k k=1,2,
...,K

Topic 1
Topic 2

…

Pk1
Pk2
…

Topic Evolution Graph

Topic Evolution Graph: Intuitively Presentation of the Evolution of Service Compositions

Select a Service:
Google Map

Return a Ranked List
Google Earth

Facebook
LinkedIn
Youtube

Make Recommendation

Understand the Trend of Designing Service Compositions

1

2

3

4

6

5

8

9

7

Improve Performance

Mashup
Developer

Figure 2 Framework of EDC-SeCo-LDA.

Discovery and Analysis About the Evolution of Service Composition Patterns 587

3.2.1 Service Co-occurrence documents
For each service si ∈ S, using its co-occurring services as word tokens, we
represent si as a “bag of service co-occurrences” di = {#(scj) = ci,j |j ∈ S}
in which: #(scj) = ci,j means service co-occurrence on sj appears ci,j times
in the description document of si, or service i and j are composited together
for ci,j times by mashups.

3.2.2 Service Co-occurrence LDA
Assume that there were K different service co-occurrence topics expressed
over NS unique services in service ecosystem. We set z = 1:K as the
topic indicator variable. The topic distribution for service co-occurrence
documents (i.e., P (z|d)) can be represented by aNS×K matrix Θ, each row
of which, θi, being a K-dimensional multinomial distribution for document
si and

∑K
z=1 θiz = 1. The distribution over services for topics (i.e., P (s|z))

can be represented by a K ×NS matrix Φ, each column of which, φz being
a NS-dimensional multinomial distribution for topic z and

∑NS
s=1 φzs = 1.

We use symmetric Dirichlet priors for Θ and Φ with hyper-parameters
α and β [20], respectively. Graphical model is shown in Figure 3. The
generative process of SeCo-LDA part is described as follows.

For each service i in the service ecosystem,

(i) Draw topic proportions θi ∼ Dirichlet(α).
(ii) For each co-occurring service scin of service i,

(a) Draw topic assignment zin ∼Multi(θi).
(b) Draw service i’s co-occurring service scin ∼Multi(φzin).

3.3 Topic Dependency

Definition 3: Topic Dependency. In this paper, we utilize conditional proba-
bility to put forward the novel conception of “topic dependency.” To be more
specific, correspond with the graphic example shown in Figure 1, we regard
the probability of the occurrence of one topic i conditioned on another topic j
as the topic dependency between them. That is, we represent Pr(ki → kj |kj)

α θ z cs β

Co-occurring Services
NS

K
s φk

Figure 3 Graphic model of service co-occurrence LDA part.

588 Z. Gao et al.

as the topic dependency from topic i to topic j, or the degree of topic i’s
evolutionary influence on topic j. We use a K ×K matrix TD to describe all
the topic dependencies, where each element td(j, i) = Pr(ki → kj |kj).

Definition 4: Child Topic & Parent Topic. Take the dependency relation-
ship provided in Figure 1 as example, when topic i has an evolutionary effect
on topic j, we define topic j as topic i’s “child topic,” and topic i as topic j’s
“parent topic.” It indicates that with the development of service ecosystem
and the change of people’s demands, service composition patterns of topic i
have an impact on the formation of the composition patterns of topic j, or
topic j inherits some part of the characteristics of topic i. And for short, we
could tell that topics j is generated partially from topic i.

Different from topic similarity [10, 11] which describes a kind of
undirected relationship between topics, topic dependency refers to directed
relationship between different topics, revealing the evolutionary influence of
one topic on another. The key to discover topic dependencies is to obtain the
topics’ distributions over services (i.e., topic-service distribution), while tra-
ditional word-based topic model [12] could not achieve this. With the results
of SeCo part in our model illustrated in Section 3.2 and the definition of the
directed topic dependencies, we can discover significant topic dependencies,
whose algorithm will be introduced in Section 4. Detailed experiments and
explanations are provided in the experimental section.

3.4 Topic Evolution Graph

With the help of topic dependencies, we could tell whether a topic is gen-
erated from or the ancestor of another topic. By accumulating significant
topic dependencies, a topic evolution graph could be created. As the example
shown in Figure 2, a topic evolution graph should contain information about
topics’ importance and time strength, as well as the dependencies between
them. It can provide mashup developers an overall view of the evolution
trend of service composition patterns, e.g., what kind of service composition
patterns are becoming more and more popular recently how the old topics
(composition patterns) merged or branched into new ones, whether they were
inspired by some relatively older patterns and so on. Here we propose a
formal definition of the topic evolution graph as follows.

Definition 5: Topic Evolution Graph. A topic evolution graph is modeled
as a directed graph GE = (T,TD) in which: T = {t1, t2, . . . , tK} is the
set of service co-occurrence topics, and each node in the graph represents

Discovery and Analysis About the Evolution of Service Composition Patterns 589

(a) Merge (b) Branch (c) Co-occur (d) Arise

1

2
3 4

5

6
97 8

Figure 4 Examples of the four topic evolution patterns.

a specific topic; TD is the edge set of directed topic dependencies, i.e., if
td(j, i) > 0, there exists an directed edge from node i pointing to node
j in the graph. What’s more, the size of nodes indicates the importance
of different topics, and their differences in color would help us distinguish
different topics’ expectation time.

Definition 6: Topic Evolution Patterns (Functionally). Generally, in a
topic evolution graph, four evolution patterns could be discovered as shown
in Figure 4.

(i) Merge: two or more topics merge into one new topic.
(ii) Branch: one topic branches into two or more new topics.

(iii) Co-occur: if a topic’s child topic is its parent topic at the same time,
we call these two topics a co-occur pattern, that is, the two topics have
influence on each other. Notice that their time expectations must be
closed.

(iv) Arise: if a topic just appears in the topic evolution graph without any
parents, we call this an arise pattern, that is, this topic just arises without
other old topics contributing to it.

Detailed experiments and explanation of results are provided in Section 5.

3.5 Dependency Compensation

The key intuition here is that since we’ve got the latent revolutionary rela-
tionship between different topics (i.e., topic dependencies), it is possible
to utilize this kind of information to weaken the inherited characteristics
between topics and make their particular features more vivid. To make
the revealed service co-occurrence topics more explainable and improve
the performance of service recommendation, we design algorithms called
“dependency compensation.”

Intuitively, we prefer the revealed topics to be more independent so that
the revealed topics could have their own features and provide a better descrip-
tion of service co-occurrence documents. Consider the worst case, if all the

590 Z. Gao et al.

revealed service co-occurrence topics had the same topic-service distribution,
they would make no contribution to disclosing service composition patterns
of the service ecosystem or making service recommendation, that is, the
revealed topics made no sense. On the contrary, if the revealed topics had
mutually independent distribution, each topic would have its own features.
And under this circumstances, these topics could provide a more compre-
hensive description of service ecosystem, resulting in better performance in
recommendation. Actually, due to the existence of dependency relationship,
some topics may have partial common features in distribution. As this may
lead to poor performance on recommendation.

Few have considered taking advantage of topic dependencies when rec-
ommending for service composition, because topic dependency relationship
could not be calculated through traditional models. In EDC-SeCo-LDA, we
leverage a topic’s parent and child topics to compensate the distribution of
this topic, highlighting the characteristics of its own. By extending our previ-
ous conference work [15], leveraging information about topic dependencies,
topics’ time expectation and topic importance, we propose five different
ways to make dependency compensation on the distribution of topics (i.e.,
topic-service distribution). As mentioned before, φi is a Ns-dimensional
multinomial distribution for topic i. Generally, we use φ̃i to represent the
compensated topic-service distribution for topic i.

3.5.1 Basic dependency compensation (BDC)
As shown in Figure 5, in Basic Topic Dependency (BTD), we introduce
coefficient λ for parentside dependency compensation, and coefficient µ for
child-side. When considering topic i’s distribution, we intend to weaken the
features inherited from its parent topics, and strengthen the features on which
it affects its child topics (which might be topic i’s particular features). So,
intuitively, λ might be a negative value (λ < 0), and µ be positive (µ > 0).
The compensated distribution of topic i is calculated as follows:

φ̃i = φi + λ · TD(i, j) · φj + µ · TD(k, i) · φk (1)

i k
topic dependency topic dependency

j

μλ

Figure 5 Example of basic dependency compensation (BDC).

Discovery and Analysis About the Evolution of Service Composition Patterns 591

where TD(i, j) represents for the topic dependency from topic j to topic
i, TD(k, i) represents for the topic dependency from topic i to topic k. φ̃i
stands for the compensated service distribution of topic i.

The complexity of the compensation part is O(Kdep), where Kdep is the
total number of topics that have dependencies with other ones.

3.5.2 Time-decaying dependency compensation (TDC)
Based on BDC, Time-decaying Dependency Compensation (TDC) takes
topics’ time expectation into consideration. Intuitively, taking topics i and
j in Figure 5 for example, topic j is a relatively older topic compared with
topic i. The more difference in time expectation between topic i and j, the
less effect topic j might have on topic i. Thus we should eliminate less j’s
influence on i when calculating topic i’s compensated distribution.

To achieve this, we introduce the concept of time decaying when con-
sidering both child-side and parent-side compensation in TDC. Also, we
consider the same situation as Figure 5 in BDC, the compensated distribution
of topic i is calculated as follows:

φ̃i = φi+λ ·e−η(|TEi−TEj |) ·TD(i, j) ·φj+µ ·e−η(|TEi−TEk|) ·TD(k, i) ·φk
(2)

where e−η(|TEi−TEj |) is the time-decaying part with coefficient η > 0.
|TEi − TEj | would get a large result if topic i is much newer than topic j,
resulting in a smaller value of the time-decaying part so that we just need to
eliminate a little of topic j’s influence on i. It is the same with the parent-side
of topic i. Intuitively, λ might be also a negative value (eliminate characteris-
tics inherited from parent topic), and µ be positive (strengthen characteristics
that influence child topic). And the complexity of the compensation part is
also O(Kdep).

3.5.3 Importance-based dependency compensation (IDC)
Based on BDC, Importance-based Dependency Compensation (IDC) takes
topic importance into consideration. The more important (or popular) a topic
is, the higher probability service compositions of this topic would have to be
chosen when creating new mashups. The most popular ones indicate the trend
of service composition in the service ecosystem. So it might be significant to
utilize topics’ importance to amend topic dependency compensation method.

Taking Figure 5 for example, if topic j has a high importance in the
service ecosystem, it would have more influence on topic i. So we need to
eliminate less part of j’s influence on the distribution of i. The compensated

592 Z. Gao et al.

distribution of topic i is calculated as follows:

φ̃i = φi + λ ·K · Im(j) · TD(i, j) · φj + µ ·K · Im(k) · TD(k, i) · φk
(3)

where Im(j) is the topic importance of topic j and
∑K

j=1 Im(j) = 1; K is
the number of topics. We employ K · Im(j) to make the value of λ and µ
similar with those in BDC and TDC roughly. Intuitively, λ should be also a
negative and µ be positive. The complexity of the compensation part is also
O(Kdep).

3.5.4 Relative-importance-based dependency compensation
(RIDC)

Relative-Importance-based Dependency Compensation (RIDC) resembles
IDC in considering topic importance, but with the difference that it utilizes
the relative importance of the two topics. To be more specifically, consider the
situation as in Figure 5, the compensated distribution of topic i is calculated
as follows:

φ̃i = φi + λ · Im(j)

Im(i)
· TD(i, j) · φj + µ · Im(k)

Im(i)
· TD(k, i) · φk

(4)

where Im(j)
Im(i) is the relative importance between topics j and i, and Im(k)

Im(i) is
the relative importance between topics k and i. Because we’re intending to
calculate the composited distribution of topic i, so the two denominator are
all Im(i). Similarly, λ should be also a negative and µ be positive, and the
complexity of the compensation part is also O(Kdep).

3.5.5 2-Generation dependency compensation (2GDC)
Furthermore, we design 2-Generation Dependency Compensation (2GDC) to
find out whether it is significant if we take a topic’s “grandson” or “grandpar-
ent” topic into consideration when making dependency compensation.

In 2GDC, for every topic, we consider at most two generation of both
its parent-side relationship or child-side relationship. As shown in Figure 6,
supposed that topic i’s parent topic j has a parent jj, and i’s child topic k
also has a child kk. Or we can say that topic jj is i’s grandparent topic, and
topic kk is i’s grandson topic. The compensated distribution of topic i could

Discovery and Analysis About the Evolution of Service Composition Patterns 593

i k
topic dependency topic dependency

j

μλ

jj kk
sign(λ)·λ2

topic
dependency

topic
dependency

sign(μ)·μ2

Figure 6 Example of 2 generation dependency compensation (2GDC).

be calculated as follows:

φ̃i = φi + λ · TD(i, j) · φj + µ · TD(k, i) · φk
+ sign(λ) · λ2 · TD(i, j) · TD(j, jj) · φjj
+ sign(µ) · µ2 · TD(k, i) · TD(kk, k) · φkk (5)

where sign(x) is the sign function (i.e., sign(x) = 1 when x ≥ 0, and −1
when x < 0). We introduce the sign function in Equation (5) to maintain the
original sign of λ and µ. And λ should be also a negative and µ be positive
by intuition. The complexity of the compensation part is also O(Kdep).

3.6 Recommendation for Service Composition

As discussed in Problem 3, in this paper we consider such a situation as in
[9, 15, 17]: assuming a mashup developer selects the first API (service), and
wants to find other APIs to create a new mashup. Actually it’s one of the
application scenarios in reality. Assume that an developer has selected service
sl ∈ S from the original search results provided by a online service repository
(e.g., ProgrammableWeb.com), then we mean to provide a ranked service
list to inspire him to make significant compositions. We could calculate sl’
co-occurrence expectation with another service sk ∈ S as follows:

c∗(l, k)

=
∑
z

Pr(cs = k|topic = z) · Pr(topic = z|sl) (6)

=
∑
z

φz,k · θl,z

Referring to the selected service as sl, the result of recommendation is
represented as a ranked list Rl = {sl1, sl2, . . .}.

594 Z. Gao et al.

4 Learn the EDC-SeCo-LDA Model

In this section, we first introduce the parameter learning and discovery of
service co-occurrence topics along with their characteristics. Then we will
present algorithms to calculate topic dependencies, construct topic evolution
graph and make dependency compensation for recommendation.

4.1 Parameter Learning of SeCo Part

Like [20], we use the collapsed Gibbs sampling to make inferences with
the SeCo-LDA part in our model. The sampling is initialized by assigning
random topic labels Z and then updates them iteratively until reaching the
setting number of iterationNG. In particular, for the t-th co-occurring service
ss in the service co-occurrence document of si, the topic assignment is
updated according to:

P (zit|csit = s, Z¬(i,t)D¬(i,t)) ∝ (αz + n¬itiz)× n¬itzs + βs∑
s(n
¬it
zs + βs)

(7)

After the burn-in stage, the sampling converges to the true posterior
distribution. Posterior expectation of θik and φjk could be described as:

θik =
#(d = i, z = k) + αk∑
k #(d = i, z = k) + αk

(8)

θjk =
#(z = k, sc = j) + βj∑
k #(z = k, sc = j) + βj

(9)

In summary, the algorithm of applying Gibbs sampling to learn parame-
ters is listed as Algorithm 1. Furthermore, the empirical posterior distribution
of topics, which reflects the importance or popularity of topics in the service
ecosystem (represented as Im(z)), is given by:

Im(z) = P (z|D) =
nz∑
z nz

(10)

where nz is the time that the topic of a co-occurring service has been assigned
to z.

Intuitively, Θ describes service-topic distribution, while Φ indicates
topic-service distribution. They are the two key components in the model
that would help to discover interesting insights about topics’ characteristics
and topic dependencies.

Discovery and Analysis About the Evolution of Service Composition Patterns 595

Algorithm 1: Gibbs sampling.
Input:
1) The hyper-parameters α and β
2) Co-occurring service CS in the documents
3) The setting number of iteration NG
Output:
1) Estimated parameters θ and φ

Procedure:
01. assigning random topic labels Z
02. For iter = 1 : NG
03. For each co-occurring service csit
04. Sample topic assignment for the t-th co-occuring service in document di:zit

according to Equation (7)
05. End
06. End
07. Get service-topic distribution θ according to Equation (8)
08. Get topic-service distribution φ according to Equation (9)

4.2 Discovery of Service Co-occurrence Topics’ Characteristics

Topic importance is provided with the posterior distribution of topics in
Equation 10. The list of representative services could be acquired with the
ranked value of services based on topic-service distribution {φjk}, which
reflects services’ popularity, or impact, on topic k.

When considering topics’ temporal strength, we use services’ impact
distribution over time to describe topics’ temporal characteristics. Instead of
counting the publication timestamps of service as in our previous work on
SeCo-LDA [9], in this paper, we take into account the invocation time of
services. The key intuition here is that if one service of a topic is invoked at
t0, it makes actual contribution to the temporal strength of the topic at time
t0, no matter when this service is published.

We represent the set of service s’s invoked time as TINs = {t(s)j |j = 1:

ins, t
(s)
1 ≤ · · · ≤ t

(s)
ins
}, in which t(s)j is the date (day as the unit) that service

s is invoked by mashups for the j-th time; ins is the total times that s has
been invoked. The accumulated temporal contribution of all services to topic
z until time t0 forms the cumulative distribution function (CDF) of topic z as
follows:

Pr(time ≤ t0|z) =
∑
s

∑
j,t

(s)
j ≤t0

φsz∑
s ins · φsz

(11)

596 Z. Gao et al.

In service ecosystem, the unit of time is day, which is discrete. The
probability mass function (PMF) for temporal distribution of z is:

Pr(time = t0|z) =
∑
s

∑
j,t

(s)
j =t0

φzs∑
s ins · φzs

(12)

The time expectation of topic z can be calculated as follows:

TEz = Ez[time(s)] =
∑
s

∑
j

t
(s)
j ·

φsz∑
s ins · φsz

(13)

With topics’ time expectations, we can distinguish new topics from old
ones, which will be helpful when calculating topic dependencies and building
topic evolution graph.

4.3 Discovery of Topic Dependency

The key of EDC-SeCo-LDA is to discover dependencies between different
service co-occurrence topics. According to Definition 3 and as shown in
Figure 1, the probability of the occurrence of topic i conditioned on topic
j is calculated by applying total probability formula as follows :

Pr(ki → kj |kj)
= Es(Pr(topics = ki|kj))

=

NS∑
s=1

P (topics = ki|services) · P (services|kj) (14)

=

NS∑
s=1

θski · φskj

An intuitive explanation of the above formula is: whenever randomly
drawing a service co-occurrence document of service s which contains
topic j, and then generating another co-occurring service in this document
(for service s), Pr(ki → kj |kj) is the probability that this co-occurring
service is assigned with latent service co-occurrence topic i. In other words,
Pr(ki → kj |kj) reflects the degree of topic i’s evolutionary influence on topic
j (as shown in Figure 1).

With topic–service and service–topic distribution, we can calculate this
kind of directed coefficient between any two different topics according to

Discovery and Analysis About the Evolution of Service Composition Patterns 597

Equation 14. Nevertheless, not all of the calculated dependencies are sig-
nificant enough. On the one hand, topic dependencies whose values are
relatively small might be noisy information and would hinder us from fur-
ther analysis. On the other hand, as investigated in [21], we treat topic
dependencies of relatively “new” topics on “old” ones as noisy information
too. This is reasonable: a new topic should have little influence on an old
one. To address these two types of situations, we design a two-step pruning
process:

Step 1: Threshold Cutting-off. We set a threshold ξ and remove all the topic
dependencies less than ξ in order to wipe out noisy information of little
significance.

Step 2: Temporal Regularization. After threshold cutting-off, we set a toler-
ance number of days ε (ε > 0) of two different topics and make temporal
regularization. Here we set ε to tolerate some degree of deviation for calcu-
lation. For a specific topic dependency td(j, i) > 0 from topic i to topic j,
we prune it only if TEi − TEj > ε. To be more specific, if topic j is newer
than topic i(TEi < TEj thus TEi − TEj < 0), we keep the dependency
from i to j; if topic j is older than topic i, we only keep the dependency if the
absolute difference between topic i’s time expectation and j’s is not larger
than ε.

After pruning, the topic dependencies left in TD represent significant and
meaningful directed dependency relationship between different service co-
occurrence topics. In summary, the algorithm of achieving significant topic
dependencies is summarized as Algorithm 2.

Algorithm 2: Discovery of significant topic dependencies.
Input:
1) the service-topic distribution θ
2) the topic-service distribution φ
3) threshold ξ (ξ > 0)
4) the tolerance number of days ε (ε > 0)

Output:
1) significant topic dependencies TD
Procedure:
01. for anytwo service co-occurrence topics i and j in service ecosystem, calculate the

probability Pr(ki → kj |kj) according to Equation 14 and get TD′

02. Threshold Cutting-off: let td′(j, i) = 0 if td′(j, i) < ξ
03. Temporal Regularization: let td′(j, i) = 0 if TEi − TEj > ε
04. get significant topic dependencies TD

598 Z. Gao et al.

4.4 Construction of Topic Evolution Graph

According to Definition 5, we design the process of building topic evolution
graph as follows:

(i) Drawing the Nodes. Each node in the graph stands for a specific service
co-occurrence topic. We set the size of these nodes in direct proportion
to the topics’ importance. Similarly, we use a series of gradually varied
colors to distinguish different topics’ time expectations.

(ii) Drawing the Edges. Each edge in the graph stands for a meaningful
topic dependency. We draw the directed edges according to the pruned
TD, whose thickness being in direct proportion to the value of topic
dependencies.

(iii) Integrated Layout. To make the graph conciser and more intuitive,
we apply Fruchterman-Reingold Algorithm [22] to the topic evolution
graph’s integrated layout.

Following the above steps, we could draw topic evolution graph of a
service ecosystem. Detailed experiments and explanations are provided in
Section 5.

4.5 Dependency Compensation

4.5.1 Dependency compensation on a topic level
The goal to make dependency compensation is to highlight the particular
characteristics of a topic. Considering the problem on a topic level, for a
specific topic, we need to eliminate features that inherit from its parent topics,
and strengthen the particular part of its distribution that may affect its child
topics. In Section 3.5, we’ve extended our previous work [15] and proposed
five different ways to make dependency compensation on a topic level.

Note that some of the compensated topic-service distributions may dissat-
isfy

∑
i φ
′
ik = 1. It is caused by the compensation process, which, in a sense,

makes adjustment of the topics’ importance in service ecosystem. Also, there
may occur negative value in φ′(i), indicating the topic’s degree of rejecting
specific service.

Examples of dependency compensation on a topic level are presented in
Section 5, along with detailed comparisons and explanations.

4.5.2 Dependency compensation for recommendation
In Section 3.5, we’ve proposed five different ways of utilizing topic depen-
dencies to make compensation on each topics’ topic-service distribution.

Discovery and Analysis About the Evolution of Service Composition Patterns 599

In order to make comparisons among the five different ways (i.e., BDC, TDC,
IDC, RIDC and 2GDC) and demonstrate that it is significant to make depen-
dency compensation, we summarize the algorithm of making dependency
compensation for service recommendation as Algorithm 3 on below.

Algorithm 3: Topic dependency compensation for recommendation.
Input:
1) topic-service distribution Φ & service-topic distribution Θ
2) TD: topic dependency matrix
3) sl: a service selected by the developer

Output:
1) Rl: recommended service list

Procedure:
01. Initialize compensated topic-service distribution Φ̃ = Φ
02. For each topic i(i = 1, 2, . . . ,K)
03. For topic i’s each parent topic j
04. Use parent-side dependency to compensate i’s distribution with

BDC: φ̃(i) = φ̃(i) + λ · TD(i, j) · φ(j)
TDC: φ̃(i) = φ̃(i) + λ · e−η(|TEi−TEj |) · TD(i, j) · φj
IDC: φ̃(i) = φ̃(i) + λ ·K · Im(j) · TD(i, j) · φj
RIDC: φ̃(i) = φ̃(i) + λ · Im(j)

Im(i)
· TD(i, j) · φj

2GDC: φ̃(i) = φ̃(i) + λ · TD(i, j) · φj
For topic j’s each parent topic jj (if exists)
φ̃(i) = φ̃(i) + sign(λ) · λ2 · TD(i, j) · TD(j, jj) · φjj

05. End
06. For topic i’s each child topic k
07. Use child-side dependency to compensate i’s distribution

BDC: φ̃(i) = φ̃(i) + µ · TD(k, i) · φ(k)
TDC: φ̃(i) = φ̃(i) + µ · e−η(|TEi−TEk|) · TD(k, i) · φk
IDC: φ̃(i) = φ̃(i) + µ ·K · Im(k) · TD(k, i) · φk
RIDC: φ̃(i) = φ̃(i) + µ · Im(k)

Im(i)
· TD(k, i) · φk

2GDC: φ̃(i) = φ̃(i) + µ · TD(k, i) · φk
For topic k’s each child topic kk (if exists)
φ̃(i) = φ̃(i) + sign(µ) · µ2 · TD(k, i) · TD(kk, k) · φkk

08. End
09. End
10. Get the compensated topic-service distribution Φ̃
11. Calculate sl’s expected co-occurrence with another service sm

c∗(l,m) =
∑
z P̃r(sc = m|topic = z) · Pr(topic = z|sl)

=
∑
z φ̃m,z · θl,z

12. Return the recommended list for sl:
Rl = {sl1, sl2, . . . |c∗(l, sl1) ≥ c∗(l, sl2) ≥ · · · }

600 Z. Gao et al.

Detail results of experiments on the service composition recommendation
and comparisons about the five different dependency compensation methods
are provided in the next section.

5 Experiments and Discussions

In this section, we will firstly introduce the ProgrammableWeb.com data set
on which we apply EDC-SeCo-LDA model and conduct related experiments.
We will not present detail results of individual topics and their characteristics,
which are analogous to those in our previous work [9]. In this paper, we focus
on discussing the experimental results about topic dependencies. Afterwards,
we will provide results of building topic evolution graph and finding topic
evolution patterns Then, we make profound discussion on the dependency
compensation algorithms both from the aspect of topic distribution and
service composition recommendation.

Further discussion about the number of topics and the threshold for
dependency pruning are available.

5.1 Data Set

ProgrammableWeb.com has been accumulating a variety of services and
mashups since established in 2005 [23, 24]. To evaluate our methodol-
ogy we crawled the information of all service APIs and mashups from its
inception (September 2005) to Dec 2016, including their descriptions and
mashup-service usage records. Details of the data set received is presented in
Table 1.

5.2 Basic Parameter Settings

Generally, parameters in this paper are set as Table 2. We will illustrate
the chosen of related parameters for dependency compensation (i.e., λ, µ
and η) in detail. What’s more, the influence of number of topics and pruning
threshold will also be discussed.

Table 1 Data set of ProgrammabelWeb.com
Total # of services 14,012

Total # of services that have been used by mashups 1,243

Total # of mashups 6,301

Average # of services in the mashups 2.06

Discovery and Analysis About the Evolution of Service Composition Patterns 601

Table 2 Basic parameter settings for EDC-SeCo-LDA
Parameter Meaning Setting Value
K total number of topics 35

α hyper-parameter 50/K

β hyper-parameter 0.01

NG iteration number of Gibbs sampling 1000

ξ threshold for dependency pruning 0.07

ε tolerance number of two topics’ difference in days 365

5.3 Discovery of Topic Dependencies

With Algorithm 1 and parameters set in Table 2, we can obtain service-topic
and topic-service distributions. As described in [9], in some topics, several
representative services may occupy a dominant position, regarded as core-
service-oriented service co-occurrence topics. In other topics however, top
representative services are not so dominant. The probability of occurrence
of any topic conditioned on the other one can be calculated according to
Equation 6, resulting in the original topic dependency matrix. To get a
more significant result, a pruning process was performed as described in
Algorithm 2.

We set the tolerance number of days ε = 365. Take Figure 1 as example,
we prune the dependency from topic i to j only if TEi − TEj > ε. More
specifically if topic j is newer than topic i(TEi < TEj thus TEi − TEj <
0), we keep the dependency from i to j; if topic j is older than topic i, we
only keep the dependency if the absolute difference between topic i’s time
expectation and j’s is not larger than ε. Intuitively, it is reasonable to set ε =
365, assuming that topics within one year could have an effect on each other.
Later we will explain why ξ = 0.07 is an appropriate choice in Section 5.8.

With settings above, we could get 22 significant (directed) topic depen-
dencies in ProgrammableWeb.com service ecosystem.

5.4 Building Topic Evolution Graph and Finding Evolution
Patterns

5.4.1 Topic evolution graph
The topic evolution graph for ProgrammableWeb.com is shown in Figure 7.
The coefficients are set as λ = −2 and µ = 1. The threshold for dependency
pruning is set as ξ = 0.07. It is a proper parameter setting for BDC, which
we will illustrate in detail later. We use a series of gradient colors from peach

602 Z. Gao et al.

Group 1

Group 2

Group 3 Group 4

service co-
occurrence topics

topic dependency

old new

time information

Legend

Figure 7 Topic Evolution Graph of ProgramrnableWeb.com with K = 35.

Table 3 Top 5 Representative Services For Topics 2 & 23 in Group 1
Topic 2 (2.21%) Topic 23 (2.11%)

φzs Service Name φzs Service Name
0.41733 Twilio SMS 0.54907 Twilio

0.18203 Twitter 0.05895 MailChimp

0.12876 Facebook 0.04965 Google App Engine

0.08585 Google App Engine 0.04189 Heroku

0.03109 SendGrid 0.03569 SendGrid

to green to express the difference of topics’ time expectations. The green
nodes stand for relatively new topics, while the peach ones are old. The size
of each node in the topic graph is proportional to the topics’ importance. And
the thickness of directed line segments is proportional to the value of topic
dependencies. As shown in Figure 7, there are 4 major topic groups. And
except the four groups identified, other topics are individual ones without
significant dependencies with other topics.

5.4.2 Discussion on group 1
• Topic 23⇔ Topic 2:

In Group 1 Topic 23 and Topic 2 constitute a “co-occur” pattern. Represen-
tative services and the corresponding topic-service distributions are listed in
Table 3.

Discovery and Analysis About the Evolution of Service Composition Patterns 603

Table 4 Top 5 Representative Services For Topics 10 & 13 in Group 2
Topic 10 (2.54%) Topic 13 (3.17%)

φzs Service Name φzs Service Name
0.22888 Google Analytics Managment 0.27121 Google AdSense
0.11059 Google AdSense 0.10725 Google Earth
0.10159 Google Webmaster Tools 0.08663 geocoder
0.06044 Google AdWords 0.08044 Oodle
0.05016 Bing Maps 0.07116 Google Ajax Feeds

As shown in the above table, Topic 2 is Twilio SMS-centered and Topic 23
is Twilio-centered. After checking the original data crawled from website, we
found that Twilio and Twilio SMS are actually the same service on voice and
SMS message delivering. So it’s obvious that these two topics show similar
time expectations and have strong dependency relationship on each other.

5.4.3 Discussion on group 2
Group 2 contains two topics: Topic 10 and Topic 13, whose representative
services are listed in Table 4 along with the topic-service distributions.

• Topic 13⇒ Topic 10:

Topic 13, whose representative services are Google AdSense, Google
AdWords, Google Earth, etc., is a Google service group that mainly focuses
on on-line advertising. To improve the performance, it is necessary to track
website visitors and evaluate the proposed advertisements’ effects. This is
exactly what Google Analytics Management solves. In other words, service
compositions of Topic 13 generate the demand for Google Analytics Man-
agement. And since it appeared, developers began to invoke it with other
Google services (especially Google AdSense) to promote the performance
of advertisement, which makes it easy to understand that Topic 13 has influ-
ence on (or generates) Topic 10, a Google Analytics Management-centered
Google service group. That is to say to cater to the changing needs of users,
service compositions of Topic 10 gradually generated Topic 13. The colors
of Topics are different in depth, telling us that Topic 13 is a relative old topic.
It is easy to find out that the above discussion is in conformity with the facts.

5.4.4 Discussion on group 3
Topics in Group 3 are relatively new, revealing the trend of service com-
position on social network sharing with text or multimedia information. The
representative services of Topics 33, 29, 24, 18 and 3 are listed in Table 5
along with the topic-service distributions. To make the tabular matter more

604 Z. Gao et al.

T
ab

le
5

To
p

5
R

ep
re

se
nt

at
iv

e
Se

rv
ic

es
Fo

r
To

pi
cs

33
,2

9,
24

,1
8

&
3

in
G

ro
up

3
To

pi
c

33
To

pi
c

29
To

pi
c

24
To

pi
c

18
To

pi
c

3
4.

22
%

3.
12

%
2.

78
%

3.
30

%
3.

66
%

φ
z
s

Se
rv

ic
e

φ
z
s

Se
rv

ic
e

φ
z
s

Se
rv

ic
e

φ
z
s

Se
rv

ic
e

φ
z
s

Se
rv

ic
e

0.
05

1
fo

ur
sq

ua
re

0.
27

4
L

as
t.f

m
0.

69
6

Tw
itt

er
0.

83
1

Fa
ce

bo
ok

0.
82

5
Tw

itt
er

0.
05

1
So

un
d-

C
lo

ud
0.

21
2

L
in

ke
dI

n
0.

24
3

Fa
ce

bo
ok

0.
05

4
G

A
M

2
0.

04
7

Fa
ce

bo
ok

G
ra

ph

0.
04

9
de

l.i
ci

o.
us

0.
12

1
B

it.
ly

0.
00

6
O

M
D

1
0.

03
4

de
l.i

ci
o.

us
0.

03
0

In
st

ag
ra

m

0.
04

7
T

um
bl

r
0.

09
6

T
um

bl
r

0.
00

5
B

in
g

0.
01

6
G

A
L
3

0.
03

0
G

A
M

2

0.
04

4
G

ra
va

ta
r

0.
07

6
G

oo
gl

e
Pl

us
0.

00
5

D
ay

lif
e

0.
01

0
E

ve
nt

fu
l

0.
01

0
Y

M
I4

1
O

M
D

is
th

e
ab

br
ev

ia
tio

n
fo

r
O

pe
n

M
ov

ie
D

at
ab

as
e.

2
G

A
M

is
th

e
ab

br
ev

ia
tio

n
fo

r
G

oo
gl

e
A

na
ly

tic
s

M
an

ag
em

en
t.

3
G

A
L

is
th

e
ab

br
ev

ia
tio

n
fo

r
G

oo
gl

e
A

JA
X

L
ib

ra
ri

es
.

4
Y

M
I

is
th

e
ab

br
ev

ia
tio

n
fo

r
Y

ah
oo

M
ap

Im
ag

e.

Discovery and Analysis About the Evolution of Service Composition Patterns 605

neatly we use abbreviations for some long name services as illustrated in the
footnote of Table 5.

• Topic 33⇒ Topic 29:

Topic 33 provides a set of tools that are invoked together often, e.g.,
foursquare Sound-Clouddel.icio.us etc. foursquare grants access to the
company’s database of locations as well as information on venue check in’s.
With the help of SoundCloud’s SDKs, it’s easy to integrate functionality like
audio sharing and recording directly into iOS, Android and web apps. What’s
more, del.icio.us make people able to use tags to organize and remember their
bookmarks, which is a much more flexible system than folders. Developers
used them to create mashups, thus Topic 33 appeared.

Then, new kinds of social network platforms were created (i.e., Last.fm
and LinkedIn) and co-occurred more frequently and they appeared to co-
occur with other tools more frequently illustrated by Topic 29. Last.fm
is a music-based on-line society established in 2000. The API of Last.fm
provide read and write access to the full slate of last.fm music data resources.
Launched in 2003, LinkedIn allows registered users to maintain a list of
contact details of people with whom they have some level of relationship,
called connections. As a extension of Topic 33, Topic 29 describes service
compositions of leveraging all kinds of tools with the core two services to
realize significant functionalities.

• Topic 29⇒ Topic 24:

Afterwards, developers began to combine Twitter and Facebook with
other services to enrich social network’s functionality generating, Twit-
ter-and-Facebook-centered Topic 24. Compared with Last.fm (2000) and
LinkedIn (2003), Twitter (2006) and Facebook (2004) were created later,
and they focus on people’s social network from a different view. After
they established, people intend to use their APIs to make significant service
compositions about social network.

• Topic 24⇔ Topic 18⇒ Topic 3:

Here Topic 24 and Topic 18 have a “co-occur” pattern. Topic 18 is
Facebook-centered, service compositions of which mainly utilize Google
Analytics Management API to leverage Google’s extensive website analytics
tools. Topic 29 and Topic 18 have an effect on each other. And Topic
18 has inspired people to leverage Google Analytics Management as well
as other APIs (e.g., Instagram, Facebook Graph and YMI) to enrich the

606 Z. Gao et al.

Table 6 Top 5 Representative Services For Tow Core Topics 4 & 5 in Group 4
Topic 4 (3.90%) Topic 5 (4.39%)

φzs Service Name φzs Service Name
0.84079 Google Maps 0.13406 GeoNames
0.09818 Wikipedia 0.09906 Panoramio
0.01259 Weather Channel 0.08342 Microsoft Bing Maps
0.01008 Zazzle 0.08193 Eventful
0.00420 OpinionCrawl Sentiment Analysis 0.06406 Yelp

functionalities of Twitter, paying more attention to graph information. As
a result of which, service compositions of Topic 3 gradually emerged.

As shown by the color in Figure 7, though Topic 18 is newer than Topic 3,
we still keep the dependency relationship from Topic 18 to Topic 3 since their
difference in time expectation is within ε.

5.4.5 Discussion on group 4
Group 4 is the biggest group in the graph, composed of relatively older
topics and revealing the trend of location-aware information storing, sharing,
searching and recommending. Two core topics of this group are Topics 4 & 5,
which have high topic importance and have evolutionary influence on many
other topics. Their representative services are listed in Table 6. Topic 4 is a
Google Maps-centered topic, and Topic 5 reflects service composition about
geographical databases, containing all kinds of information about each site.

• Topics 4, 5, 6 and 34⇒ Topic 17 (Example Merge Pattern):

An obvious “merge” evolution pattern shown here is that Topic 17 is
generated from Topics 4, 5, 6 and 34. Topic 6 is about YouTube-centered
product advertising. Topic 34, whose representative services are del.icio.us
and eBay, is about the organization of online information. Together with
Topics 4 and 5, the four topics generated Topic 17, which is Flickr-centered.
Flickr can organize photos according to interpersonal relationship or content
relation, and provide some functionality of social network. In other words,
its function is a combination of Topics 4, 5, 6 and 34, which shows an
example of service composition about location-aware information sharing
and recommending.

• Topics 5⇒ Topics 17, 32 and 20 (Example Branch Pattern):

A representative “branch” evolution pattern is that Topic 5 branched into
Topics 17, 32 and 20. Topic 32 reveals service composition about property
business based on location information; and Topic 20 reveals web tools that

Discovery and Analysis About the Evolution of Service Composition Patterns 607

are frequently used together with Google Maps. Topics 17, 32 and 20 are the
finer-grained functional extension of Topic 5.

5.4.6 Summary of composition trends
From the topic evolution graph, we could in general identify the trend of
service composition patterns of ProgrammableWeb.com from 2005 till now.
Supported by services like Google Maps, location-aware information storing,
sharing, searching and recommending (Group 4) was a popular service com-
position trend in earlier days. In recent years, however, developers prefer to
make service compositions to realize sharing text or multimedia information
in social networks (Group 3).

5.5 Discussion of Dependency Compensation on Topic
Distribution

As we pointed out in Section 3.5, the goal of making topic dependency
compensation is to weaken the inherited characteristics between topics and
highlight the characteristics of each topic itself. Before evaluating the per-
formance of recommendation for service compositions with dependency
compensation, we study the influence of dependency compensation on a topic
level. As the discussion in Section 5.4, we take the results of BDC here with
the same parameter settings.

As mentioned in Section 5.4.3, there is significant dependency relation-
ship from Topic 13 to Topic 10. Applying Equation 1, we could get the
compensated topic-service distributions for Topics 13 and 10. In order to
make a more intuitive comparison between compensated distributions and
original ones, we normalize the compensated topic-service distributions. The
experimental results are presented as Table 7.

As we discussed before, Topic 13 has an evolutionary influence on Topic
10. In short, compositions around Google Adsense promote the appearance
of Google Analytics Managment. Topic 13 is a Google Adsense-centered
topic. After dependency compensation, the particular features of its own have
been highlighted, i.e., the importance (probability) of Google Adsense has
been increased. Topic 10 has weakened the influence of Topic 13, Google
Adsense has less importance and drops one in the rankings of compensated
distribution of Topic 10. Meanwhile, Topic 10’s own characteristics have
been strengthened, shown as the increase of Google Analytics Managment’s
importance.

608 Z. Gao et al.

Table 7 Compensated and Original Topic-Service Distributions For Topics 10 & 13
Topic 10 (original) Topic 10 (compensated)

φzs Service Name φzs Service Name
0.22888 Google Analytics Managment 0.24845 ↑ Google Analytics Managment
0.11059 Google AdSense 0.11028 Google Webmaster Tools
0.10159 Google Webmaster Tools 0.09685 ↓ Google AdSense
0.06044 Google AdWords 0.05962 Google AdWords
0.05016 Bing Maps 0.05445 Bing Maps

Topic 13 (original) Topic 13 (compensated)
φzs Service Name φzs Service Name
0.27121 Google AdSense 0.28493 ↑ Google AdSense
0.10725 Google Earth 0.11641 Google Earth
0.08663 geocoder 0.09403 geocoder
0.08044 Oodle 0.08731 Oodle
0.07116 Google Ajax Feeds 0.07724 Google Ajax Feeds

5.6 Discussion of Dependency Compensation on Service
Recommendation

5.6.1 Evaluation metrics
MAP (Mean Average Precision) [25] was used as the basic evaluation metric
for recommen- dation in this part:

MAP@N =
1

|S|
∑
i∈S

1

N

∑
s∈SCi

n(s)

r(s)
(15)

where S denotes the set of testing services; N represents the recommended
number of services; SCi denotes the co-occurring services of service i. For
each s ∈ SCi, r(s) refers to the ranking position of s in recommended list and
n(s) represents the number of co-occurring services in SCi that rank higher
than or equal to s in recommendation list. MAP is a real number between
0 and 1. The higher MAP indicates a better accuracy of the recommendation
method. In reality, most mashups in data set contain less than five services, so
we make N vary from 1 to 8 when doing experiments on recommendation.
What’s more, we extend basic MAP@N to define three metrics to help us
compare the five different dependency compensation methods from different
aspects, listed as follows:

• MEAN MAP@1-4: the average of MAP@N, where N = 1 . . . 4;
• MEAN MAP@5-8: the average of MAP@N, where N = 5 . . . 8;
• MEAN MAP@1-8: the average of MAP@N, where N = 1 . . . 8.

Discovery and Analysis About the Evolution of Service Composition Patterns 609

Generally, MEAN MAP@1-4 gives the evaluation of algorithms when
we only consider the top candidates on the recommendation list, while
MEAN MAP@5-8 focuses on the performance of recommending more ser-
vices (5–8). MEAN MAP@1-8 comprehensively evaluates the algorithms
with N ranging from 1 to 8.

5.6.2 Parameter setting and comparison results of five DC
methods

• Basic Dependency Compensation (BDC)

We design experiments to verify the intuitive guess that λ might be a
negative value (λ < 0), and µ be positive (µ > 0), which is proposed in
Section 3.5.1.

To determine the sign of parent-side coefficient λ, setting µ = 0, we
made λ vary from −4 to 4 with interval 0.5 to make dependency compen-
sation and recommend for service compositions. Other parameters are set as
Table 2. We calculate the MEAN MAP@1-8 to evaluate the performance
roughly. And we compare the results with the baseline of [9], which also
utilizes service co-occurrence topcis to make recommendation but doesn’t
consider dependency information. Their differences in MEAN MAP@1-8
are presented as shown in Figure 8. Similar experiment with µ, is conducted
as shown in Figure 9. The results of Figures 8 and 9 have proved that when

-4 -3 -2 -1 0 1 2 3 4

λ

0

-0.05

-0.04

-0.03

-0.02

-0.01

0.01

0.02

0.03

△
M

E
A

N
_M

A
P

@
1-

8

Figure 8 ∆MEAN MAP@1-8 with different λ (µ = 0) in BDC.

610 Z. Gao et al.

-4 -3 -2 -1 0 1 2 3 4

µ

0

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0.02

△
M

E
A

N
_M

A
P

@
1-

8

Figure 9 ∆MEAN MAP@1-8 with different µ (λ = 0) in BDC.

λ < 0 and µ > 0 with proper values, the dependency relationship could
contribute to recommendation. The experimental results consists with our
previous intuitive guess.

To find the most proper values of λ and µ, we make λ vary from −4 to 4
with interval 0.5 and the same for µ. The highest MAP with the value of
coefficients will be presented later.

• Time-decaying Dependency Compensation (TDC)

In EDC-SeCo-LDA, the basic unit of topics’ time expectations is day. To
verify that it is significant to consider time-decaying problem, with λ = −4
and µ = 2, we make the time-decaying coefficient η defined in Equation 2
vary from 0 to 0.02 with interval 0.001. MEAN MAP@1-8 results with
different value of η are presented in Figure 10. The red line in the figure
stands for the result of baseline as in [9].

Figure 10 demonstrates that it is significant to take time decay into consid-
eration, and MEAN MAP@1-8 achieves the highest value when η = 0.03.
Further, to find the most proper values of λ and µ, we also make grid search
with parameters λ, µ, and η. The highest MAP with the value of coefficients
will be presented later.

• Importance-based Dependency Compensation (IDC)

As in Equation 3, we introduce K · Im(z) to consider the influence of
topics’ importance on dependency compensation. Grid search of parameters

Discovery and Analysis About the Evolution of Service Composition Patterns 611

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

η

0.47

0.475

0.48

0.485

0.49

0.495

0.5

0.505

M
E

A
N

_M
A

P
@

1-
8

Figure 10 MEAN MAP@1-8 with different η in TDC.

λ and µ has been conducted. The highest MAP with the value of coefficients
will be presented later.

• Relative-Importance-based Dependency Compensation (RIDC)

RIDC is similar with IDC, only with the difference that it utilize related
importance of topics when making dependency compensation. Grid search of
parameters λ and µ has been conducted. The highest MAP with the value of
coefficients will be presented later.

• 2GDC

2GDC considers dependencies more than one “generation.” As explained
in Figure 6, based on BDC, we design 2GDC to take more evolutionary
information into consideration. Grid search of parameters λ and µ has been
conducted. The highest MAP with the value of coefficients will be presented
next.

• Comprehensive Comparison

Based on the three metrics of MEAN MAP@1-4, MEAN MAP@5-
8 and MEAN MAP@1-8, we conduct grid searches for the parameters of
different dependency compensation methods and record the highest value for
each metric, shown as follows.

From results above, we could conclude that in general, with dependency
compensation, the performance of recommendation has been improved.

612 Z. Gao et al.

Among the five dependency compensation methods, IDC works best. To
be more specifically, when focusing on the top 4 candidates on the rec-
ommendation list (MEAN MAP@1-4), IDC has improved approximately
10% compared with the baseline. And it also makes a 4% improvement
when recommending 5-8 candidates. Overall, IDC gets approximately 6%
improvement compared to baseline in [9]. More baselines will be introduced
in the following part, provided with detailed discussions.

5.6.3 Comparison with baselines
To further find out whether it is significant to make dependency compensation
when recommending for service compositions, we introduce our work of
SeCo-LDA as Baseline 1, along with other baselines in [9]. Proposed methods
with dependency compensation in this paper are represented as BDC, TDC,
IDC, RIDC and 2GDC separately.

Baseline Method 1: SeCo-LDA. In [9], for a selected service sl, we calculate
its expected co-occurrence with other services, using Φ instead of Φ′. In other
words, there is no consideration about dependency compensation. We give
the results of recommendation for service composition as a service list R′l =
{sl1, sl2, . . . |c∗(l, sl1) ≥ c∗(l, sl2) ≥ . . .}.

Baseline Method 2: AA. Apriori Algorithm (AA) [26] is a commonly-
used technique to mine association rules. In this approach, each mashup is
represented as the union of annotated tags of its component services. Apriori
could mine positive rules of tags from the transactions of mashups [27].
The probability of composition of any two services s1 ∈ S and s2 ∈ S is
estimated as:

F (s1, s2) =
∑

r∈R(s1,s2)

βAA · support(r) + (1− βAA) · confidence(r) (16)

where R(s1, s2) denotes the rules that are satisfied by < s1, s2 >, which
means s1 and s2 appear together in the rules. β is a weighting coefficient.
The higher F (s1, s2) is, the more possiblely that a composition of s1 and s2
would appear. For a selected service sl, its recommended service list can be
described as RLAA = {sl1, sl2, . . . |F (sl, sl1) ≥ F (sl, sl2) ≥ . . .}.
Baseline Method 3: CMSD. Using Content Matching based on Service
Description (CMSD) [12, 28], based on service word descriptions, we apply
the LDA model to calculate the semantic similarities between the selected
service and others. We also run Gibbs sampling to get probability distribution
of services over topics p2(z|s) and topics over words p2(w|z).

Discovery and Analysis About the Evolution of Service Composition Patterns 613

When a selected service sl comes up, CMSD calculates the semantic
similarity between sl and another service si ∈ S, which is described as
SWi = {wi1, wi2, . . . , wini}, as follows:

pCM (si|sl) =
∑

w∈SWi

K∑
z=1

p2(w|z) · p2(z|sl) (17)

Services with higher semantic similarities are preferred to be recom-
mended. The recommendation list is: RLCMSD = {sl1, sl2, . . . |pCM (sl1|sl)
≥ pCM (sl2|sl) ≥ . . .}.

Baseline Method 3: MUR-LDA. We apply LDA directly using Mashup-
service Usage Records (MUR-LDA). That is we regard mashups as docu-
ments and services as word tokens, which is similar with [29]. We model
the generation of services in mashups with a probabilistic topic model. Using
collapsed Gibbs sampling, we can get the probability distribution of mashups
over topics p3(z|m) and topics over services p3(s|z). For a selected service
sl, we could calculate its expected co-occurrences with another service
si ∈ S:

c3(l, i) =
∑
m

∑
z

p3(s = i|z) · p3(z|m) · p(m|sl) (18)

where p(m|sl) stands for the probability of mashup mm given service sl.
It could be calculated using Bayes theorem. The recommended service list
is ranked by the value of c3(l, i): RLMUR = {sl1, sl2, . . . |c3(l, sl1) ≥
c3(l, sl2) ≥ . . .}.

The MAP results of EDC-SeCo-LDA and baselines with different num-
bers of N are shown in Figure 11. Parameters for dependency compensation
methods are set as the MEAN MAP@1-8 column in Table 8.

On the one hand, considering the four baseline methods with no depen-
dency compensation, CMSD only uses the word description of services to
reveal latent semantic topics and make recommendation. Experiments show
that its MAP value is the lowest among the four methods, indicating that the
description of services might not be a good indicator of service composition
patterns individually. The other three methods take the usage records of
services into consideration. AA is the most popular model to draw association
rules, which has a higher MAP value than CMSD as shown in Figure 11.
MUR-LDA and SeCo-LDA models both use topic model to analyze the
association relationship of services in the system. But the core difference

614 Z. Gao et al.

1 2 3 4 5 6 7 8
N

0

0.1

0.2

0.3

0.4

0.5

0.6
M

A
P

@
N

BDC
TDC
IDC

SeCo-LDA

RIDC
2GDC

MUR-LDA
AA
CMSD

Figure 11 The MAP for EDC-SeCo-LDA models (i.e., BDC, TDC, IDC, RIDC and 2GDC),
MUR-LDA, AA and CMSD with Different Number of N.

Table 8 Comprehensive Comparison for Five DC Methods
MEAN MAP@1-4 MEAN MAP@5-8 MEAN MAP@1-8

Baseline1 0.4158 0.5336 0.4747
BDC 0.4593 0.5465 0.5029
parameters λ = −2, µ = 1 λ = −2, µ = 1 λ = −2, µ = 1

TDC 0.4597 0.5479 0.5029
parameters λ = −3, µ = 1, λ = −4, µ = 1.5, λ = −4, µ = 2,

η = 0.01 η = 0.014 η = 0.003

IDC 0.4614 0.5508 0.5060
parameters λ = −1.5, µ = 0.5 λ = −2, µ = 0.5 λ = −2, µ = 0.5

RIDC 0.4609 0.5473 0.5034
parameters λ = −1.5, µ = 1 λ = −2, µ = 1 λ = −1.5, µ = 1

2GDC 0.4606 0.5455 0.5031
parameters λ = −1.5, µ = 1 λ = −1.5, µ = 1 λ = −1.5, µ = 1
1We use SeCo-LDA in [9] as baseline here.

is that MUR-LDA regards mashups as documents and containing services
as word tokens, while SeCo-LDA models regard services as documents and
its co-occurring services as word tokens. MUR-LDA may come up with the
sparsity problem for that most mashups usually contain less than five services.
As a result of which, SeCo-LDA achieves the best performance among the
four baselines.

On the other hand, with dependency compensation (i.e., BDC, TDC, IDC,
RIDC and 2GDC), the performance have improved significantly compared
with baseline methods, especially when N is relatively small. Taking infor-
mation of time decaying, topic importance and 2 generation’s evolutionary
influence into consideration, TDC, IDC, RIDC and 2GDC achieve higher

Discovery and Analysis About the Evolution of Service Composition Patterns 615

performance than BDC. With results listed in Table 8, in sum, IDC could get
the highest among the five dependency compensation methods when recom-
mending for service compositions, approximately 6% better than SeCo-LDA,
and 1% better than BDC using metric MEAN MAP@1-8.

5.7 Discussion of Topic K

The total number of topics K is an important parameter in topic models.
When applying probabilistic generative model on the service co-occurrence
documents, our goal is to achieve high likelihood of the corpus as in [20]. In
particular, we computed the perplexity of the corpus to evaluate the models.
And then we verify the result by comparing the MAP value of BDC with
different number of topics.

5.7.1 Influence of K on perplexity
The perplexity, used by conventional language modeling, is monotonically
decreasing in the likelihood of the test data, and is algebraicly equivalent to
the inverse of the geometric mean per-word likelihood. Generally, a lower
perplexity score indicates better generation performance. For a set of M
documents, the perplexity is described as:

perplexity(D) = exp

{
−
∑M

d=1 log p(wd)∑M
d=1Nd

}
(19)

where wd is the word vector of document d, and the probability of the word
vector p(wd) could be calculated as p(wd) = Πn

∑
z p(wdn|topic = z) ·

p(topic = z|d).
With other parameters fixed, perplexity with different numbers of topics

for EDC-SeCo-LDA is presented in Figure 12. The lowest perplexity is got
when the number of topics is 35. So when doing experiments afterwards, we
set the number of topics for EDC-SeCo-LDA as 35.

5.7.2 Influence of K on recommendation
To verify the significance of parameter setting forK, we conduct experiments
to find out the influence of K on the performance of recommendation. Take
BDC as example. With other parameters fixed, the results of MEAN M-
AP@1-8 with different number of K is shown as Figure 13. From the results
we could conclude that K = 35 is a proper choice, which consists with the
conclusion of Section 5.7.1.

616 Z. Gao et al.

10 15 20 25 30 35 40 45 50 55 60

K

15.8

16

16.2

16.4

16.6

16.8

17

P
er

pl
ex

ity

Figure 12 Perplexity for EDC-SeCo-LDA with different number of K.

20 25 30 35 40 45 50 55 60 65 70

Number of Topics

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

M
E

A
N

_M
A

P
@

1-
8

Figure 13 MEAN M-AP@1-8 for EDC-SeCo-LDA with different number of K.

5.8 Discussion of Threshold

To get significant topic dependencies, it is necessary to apply the two-step
pruning process as described in Algorithm 2. Intuitively, ξ should be set a
proper value so that the results make sense. If ξ was too small, there might
be too many dependencies left after pruning, containing noisy information

Discovery and Analysis About the Evolution of Service Composition Patterns 617

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

ξ

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

M
E

A
M

_M
A

P
@

1-
8

Figure 14 MEAN MAP@1-8 with different ξ in BDC.

and hindering people from understanding the trend of service compositions;
if ξ was set a relatively higher value, the number of topic dependencies may
be very small, losing some important information about topic evolutionary
characteristics.

Intuitively, we set ξ = 0.07. After pruning processes, we have 22 signif-
icant topic dependencies left. And we think it is a proper value. To verify it,
for convenience, we also take BDC as example. With other parameters fixed
(N = 35, λ = −2 and µ = 1), we let ξ vary from 0.01 to 0.08 with interval
0.005, and recorded the results of MEAN M-AP@1-8 shown as in Figure 14.
With the results, we could conclude that ξ = 0.07 is a proper choice, pruning
dependencies that are some kind of noisy information and leaving significant
ones. As a result, we set ξ = 0.07 in our previous experiments.

5.9 Conclusion of Experiments

In Section 5, we conduct a series of experiments on a real-world data set
Programmable-Web.com. We list basic parameter settings and present the
results of mining significant topic dependencies. With the topic evolution
graph and results of topics’ representative services, we give detailed explana-
tions of the evolution patterns in the service ecosystem. We make discussions
of dependency compensation on topic distribution, showing that dependency
compensation could highlight each topic’s particular characteristics intu-
itively Then, we continue discussing dependency compensation from the

618 Z. Gao et al.

aspect of service recommendation. We introduce four baseline methods, and
compare the five dependency compensation methods using MAP as the met-
ric. Experiments show that EDC-SeCo-LDA could improve the performance
of service composition recommendation significantly. And among them, IDC
gets the highest MAP value, approximately 6% better than SeCo-LDA and
1% better than BDC using metric MEAN M-AP@1-8. Last but not least, we
conduct experiments to illustrate how to choose the proper value of N and ξ
in EDC-SeCo-LDA.

In summary, with EDC-SeCo-LDA, we could discover significant
directed dependency relationship between topics, and make dependency
compensation to promote the performance of recommendation for service
composition.

6 Related Work

Most researches on service evolution focus on analyzing the impact of single
service’s changes and how to deal with the version problem to ensure system
stability. Different service changes have been examined in [1] to construct
a unifying theoretical framework for controlling the evolution of services.
Usage Profile has been used to evaluate service changes impact [3, 4]. Paper
[3] discusses the adoption of usage profiles and presents a framework for the
automatic evaluation of service changes impact during its lifecycle. Paper [4]
proposes a change management framework that supports service providers to
scope and quantify the impact of changes based on usage analysis. The frame-
work adopts a finer-grained versioning model in order to easily locate and
assess the compatibility of changes in service descriptions. The framework
also clusters client applications based on similar patterns of usage, summa-
rizing them in usage profiles. Changes to the WSDL specification of a service
interface have been considered in [5] and [6]. In [5], results of an empirical
study on WSDL evolution analysis are presented. A tool called WSDLDiff is
proposed in [6] to extract fine-grained changes from subsequent versions of
a web service interface defined in WSDL. In contrast to existing approaches,
WSDLDiff takes into account the syntax of WSDL and extracts the WSDL
elements affected by changes and the types of changes. An impact analysis
model based on service dependency is proposed in [7] to discovery the way
in which the change affects the services. Four service evolution patterns (i.e.,
compatibility, transition, split-map, and merge-map) are proposed in [8] to

Discovery and Analysis About the Evolution of Service Composition Patterns 619

estimate the impact changes to services. However, few have considered to
discover the latent trend of service composition in service system and find
out topic dependencies and topic evolution patterns.

Some popular topic models could revel semantic topics considering time
information, such as Dynamic Topic Model [10] and Correlated Topic Model
[11]. However, with their results, we can only get the undirected semantic
similarities of topics, which is a kind of undirected relationship and quite
different from the directed “topic dependency” defined in this paper.

7 Conclusions

In this paper, we have extended our previous work and proposed a novel
approach to discover and make analysis about the evolution of service com-
position patterns. The key idea is to define and calculate “topic dependencies”
with topic-service and service-topic distributions. Our work in this paper
includes three parts: (1) defining “topic dependencies” and calculating them
with EDC-SeCo-LDA model; (2) drawing topic evolution graph and find-
ing topic evolution patterns; (3) designing five different methods to make
dependency compensation to improve the performance of recommendation
for service compositions.

Experiments on a real-world data set ProgrammableWeb.com have
verified the rationality and effectiveness of EDC-SeCo-LDA. Topic depen-
dencies would help developers to understand the trend of service composition
patterns in a service ecosystem. Comparison with baseline approaches also
demonstrate that due to dependency compensation, Importance-based Depen-
dency Compensation (IDC) performs 6% better than baseline SeCo-LDA
and 2% better than BDC in terms of MAP when recommending for service
composition.

In the future, leveraging information about service co-occurrence top-
ics such as topics’ representative description words, we plan to design a
framework to deal with service-side cold-start problem.

Acknowledgements

This research has been partially supported by the National Natural Science
Foundation of China (No. 61673230 and No. 41876098), the Research Fund
for the High-tech Shipbuilding (17GC26102.01) and Shenzhen Science and
Technology Project (No. JCYJ20151117173236192).

620 Z. Gao et al.

References

1. V. Andrikopoulos, S. Benbernou, and M. P. Papazoglou (2012), On the
evolution of services, IEEE Transactions on Software Engineering, Vol.
38, no. 3, pp. 609–628.

2. X. Liu, Y. Hui, W. Sun, and H. Liang (2007), Towards service compo-
sition based on mashup, in Proceedings of IEEE World Congress on
Services (SERVICES), pp. 332–339.

3. M. Yamashita, K. Becker, and R. Galante (2011), Service evolution man-
agement based on usage profile, in Proceedings of IEEE International
Conference on Web Services (ICWS), pp. 746–747.

4. M. Yamashita, B. Vollino, K. Becker, and R. Galante (2012), Measur-
ing change impact based on usage profiles, in Proceedings of IEEE
International Conference on Web Services, pp. 226–233.

5. M. Fokaefs, R. Mikhaiel, N. Tsantalis, E. Stroulia, and A. Lau (2011),
An empirical study on web service evolution, in Proceedings of IEEE
International Conference on Web Services (ICWS), pp. 49–56.

6. D. Romano and M. Pinzger (2012), Analyzing the evolution of web ser-
vices using fine-grained changes, in Proceedings of IEEE International
Conference on Web Services (ICWS), 2012, pp. 392–399.

7. S. Wang and M. A. Capretz (2009), A dependency impact analysis model
for web services evolution, in Proceedings of International Conference
on Web Services (ICWS), pp. 359–365.

8. S. Wang, W. A. Higashino, M. Hayes, and M. A. M. Capretz (2014), Ser-
vice evolution patterns, in Proceedings of IEEE International Conference
on Web Services (ICWS), pp. 201–208.

9. Z. Gao, Y. Fan, C. Wu, W. Tan, J. Zhang, Y. Ni, B. Bai, and S.
Chen (2016), SeCo-LDA: mining service co-occurrence topics for rec-
ommendation, in Proceedings of IEEE International Conference on Web
Services (ICWS), pp. 25–32.

10. D. M. Blei and J. D. Lafferty (2006), Dynamic topic models, in Proceed-
ings of ACM International Conference on Machine Learning (ICML),
pp. 113–120.

11. D. Blei and J. Lafferty (2007), A correlated topic model of science, the
Annals of Applied Statistics, no. 1.1, pp. 1735.

12. Y. Zhong, Y. Fan, K. Huang, W. Tan, and J. Zhang (2014), Timeaware
service recommendation for mashup creation in an evolving service
ecosystem, in Proceedings of IEEE International Conference on Web
Services (ICWS), pp. 25–32.

Discovery and Analysis About the Evolution of Service Composition Patterns 621

13. K. C. Bhardwaj and R. K. Sharma (2015), Machine learning in efficient
and effective web service discovery, J. Web Engineering Vol. 14, pp. 196–
214.

14. S. Kamath and V. S. Ananthanrayana (2016), Semantic similarity based
context-aware web service discovery using nlp techniques, J. Web Engi-
neering, Vol. 15, pp. 110–139.

15. Z. Gao, Y. Fan, C. Wu, W. Tan and J. Zhang (2017), Service recommenda-
tion from the evolution of composition patterns, in Proceedings of IEEE
International Conference on Services Computing (SCC), pp. 108–115.

16. X. Wang, C. Zhai, and D. Roth (2013), Understanding evolution of
research themes: a probabilistic generative model for citations, in Pro-
ceedings of the ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 1115–1123.

17. B. Tapia, R. Torres, H. Astudillo, and P. Ortega (2011), Recommending
APIs for mashup completion using association rules mined from real
usage data, in Computer Science Society, pp. 83–89.

18. P. L. F. da Silva, L. O. B. Santos and E. G. da Silva (2009), Towards a
goalbased service framework for dynamic service discovery and compo-
sition, in Proceedings of IEEE International Conference on Information
Technology: New Generations, pp. 302–307.

19. D. Zhovtobryukh (2007), A petri net-based approach for automated goal-
driven web service composition, Simulation, Vol. 83, no. 1, pp. 33–63.

20. D. M. Blei, A. Y. Ng, and M. I. Jordan (2003), Latent dirichlet allocation,
the Journal of machine Learning research, Vol. 3, pp. 993–1022.

21. Y. Jo, J. E. Hopcroft, and C. Lagoze (2011), The web of topics:
discovering the topology of topic evolution in a corpus, in Proceedings
of International Conference on World Wide Web (WWW), pp. 257–266.

22. T. M. J. Fruchterman and E. M. Reingold (1991), Graph drawing by
force-directed placement, Software Practice and Experience, Vol. 21,
no. 11, pp. 1129–1164.

23. A. P. Barros and M. Dumas (2006), The rise of web service ecosystems,
IT professional, no. 5, pp. 31–37.

24. E. Al-Masri and Q. H. Mahmoud (2008), Investigating web services
on the World Wide Web, in Proceedings of International Conference on
World Wide Web (WWW), pp. 795–804.

25. Y. Yue, T. Finley, F. Radlinski, and T. Joachims (2007), A support vector
method for optimizing average precision, in Proceedings of the 30th
International Conference on Research and Development in Information
Retrieval, pp. 271–278.

622 Z. Gao et al.

26. K. Goarany, G. Kulczycki, and M. B. Blake (2010), Mining social tags to
predict mashup patterns, in Proceedings of ACM International Workshop
on Search and Mining User-generated Contents (SMUC), pp. 71–78.

27. R. Agrawal, R. Srikant et al. (1994), Fast algorithms for mining asso-
ciation rules, in Proceedings of 20th International Conference on Very
Large Data Base (VLDB), Vol. 1215, pp. 487–499.

28. C. Li, R. Zhang, J. Huai, X. Guo, and H. Sun (2013), A probabilistic
approach for web service discovery, in Proceedings of IEEE International
Conference on Services Computing (SCC), pp. 49–56.

29. Y. Zhang, T. Lei, and Y. Wang (2016), A service recommendation algo-
rithm based on modeling of implicit demands, in Proceedings of IEEE
International Conference on Web Services (ICWS), pp. 17–24.

Biographies

Zhenfeng Gao received the PhD degree in control theory and application
in 2018 from Tsinghua University, China. He is currently working as the
postdoctor at the Graduate school at Shenzhen, Tsinghua University as well
as the postdoctoral research center at Sangfor Technologies Inc. His research
interests include services computing, service recommendation, big data and
blockchain technology.

Discovery and Analysis About the Evolution of Service Composition Patterns 623

Yushun Fan received the PhD degree in control theory and application from
Tsinghua University, China, in 1990. He is currently a professor with the
Department of Automation, Director of the System Integration Institute, and
Director of the Networking Manufacturing Laboratory, Tsinghua University.
From September 1993 to 1995, he was a visiting scientist, supported by
Alexander von Humboldt Stiftung, with the Fraunhofer Institute for Produc-
tion System and Design Technology (FHG/IPK), Germany. He has authored
10 books and published more than 300 research papers in journals and
conferences. His research interests include enterprise modeling methods and
optimization analysis, business process reengineering, workflow manage-
ment, system integration, object-oriented technologies and flexible software
systems, petri nets modeling and analysis, and workshop management and
control.

Xiu Li received the PhD degree in mechanical manufacturing and automa-
tion from Nanjing University of Aeronautics and Astronautics in 2000.
She was once a visiting scientist at University of Hong Kong, the Hong
Kong Polytechnic University and Georgia institute of technology. She is
currently a professor with the Department of Information, Shenzhen Graduate
School, Tsinghua University. She has published more than 100 papers in

624 Z. Gao et al.

international transactions and conferences. Her research interests include
intelligent systems, data mining and pattern recognition.

Liang Gu received the PhD degree in Computer Software and Theory from
Peking University in 2010. He worked as an associate research fellow at
Yale university from 2010 to 2015. He is currently the chief scientist and
the director of Sangfor Research Institute at Sangfor Technology Inc. As
the person in charge of r&d technology at Sangfor, he is responsible for
the technical framework improvement of a series of core products, including
NGAF, AC, a Cloud HCI, aSAN and so on. These products have gained a
leading market share in China and have been recognized by users and the
market.

Cheng Wu received the BS and MS degrees in electrical engineering from
Tsinghua University, Beijing, China. He is currently a fellow of Chinese
Academy of Engineering. His research interests include complex system
modeling and optimization, and modeling and scheduling in supply chains.

Discovery and Analysis About the Evolution of Service Composition Patterns 625

Jia Zhang received the MS and BS degrees in computer science from
Nanjing University, China and the PhD degree in computer science from the
University of Illinois at Chicago. She is currently an associate professor at
the Department of Electrical and Computer Engineering, Carnegie Mellon
University. Her recent research interests center on service oriented comput-
ing, with a focus on collaborative scientific workflows, Internet of Things,
cloud computing, and big data management. She has published more than
130 refereed journal papers, book chapters, and conference papers. She is
currently an associate editor of the IEEE Transactions on Services Computing
(TSC) and of International Journal of Web Services Research (JWSR), and
editor-in-chief of International Journal of Services Computing (IJSC). She is
a senior member of the IEEE.

