
Temporal Task Scheduling for Delay-constrained
Applications in Geo-Distributed Cloud Data Centers

Jing Bi1, Haitao Yuan2, Jia Zhang3, and MengChu Zhou4

1School of Software Engineering, Beijing University of Technology, Beijing, China
2School of Software Engineering, Beijing Jiaotong University, Beijing, China

3Department of Electrical and Computer Engineering, Carnegie Mellon University, Moffett Field, USA
4Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA

bijing@bjut.edu.cn, htyuan@bjtu.edu.cn, jia.zhang@sv.cmu.edu, zhou@njit.edu

Abstract—A growing number of global companies select Green
Cloud Data Centers (GCDCs) to manage their delay-constrained
applications. The fast growth of users’ tasks dramatically increas-
es the energy consumed by GCDC, e.g., Google. The random
nature of tasks brings a big challenge of scheduling tasks of
each application with limited infrastructure resources of GCDCs.
This work accurately computes a mathematical relation between
task service rates and the number of tasks refusal in GCDC.
Besides, it proposes a Temporal Task Scheduling (TTS) algorithm
investigating the temporal variation in geo-distributed cloud
data centers to schedule all tasks within their delay constraints.
Furthermore, a novel dynamic hybrid meta-heuristic algorithm is
developed for the formulated profit maximization problem, based
on genetic simulated annealing and particle swarm optimization.
The proposed algorithm can guarantee that differentiated service
qualities can be provided with higher overall performance and
lower energy cost. Trace-driven simulations demonstrate that
larger throughput and profit is achieved than several existing
scheduling algorithms.

Keywords-Green cloud data center, temporal task scheduling,
delay-constrained application, profit maximization, hybrid meta-
heuristic optimization

I. INTRODUCTION

Current cloud data centers manage many large-scale in-

frastructures including server farms and cooling facilities [1].

In recent years, an increasing number of users deploy their

delay-constrained applications, e.g., big data processing, video

analysis, and high-performance computing in data centers.

This significantly increases the amount of energy consumption

of large-scale data centers. Data centers consumed around

70 billion kilowatt-hours that was 2% of domestic energy in

U.S. in 2014 [2]. It is predicted that it will be doubled in

2020. Besides, more than 57% of electricity energy in U.S.

is generated by burning brown energy, e.g., petroleum and

coal, and it brings severe environmental damages. Current

Green Cloud Data Centers (GCDCs) are primarily powered

by three energy sources, i.e., power grid, solar energy and

wind energy, and these works aim to reduce the brown energy

consumption by adopting renewable energy devices [3]. The

aperiodic arrival of tasks makes it difficult to accurately predict

task arriving rate of each application. Thus, it is impossible

to execute all tasks of each application with limited resources

of the GCDC at peak time. For example, when Apple’s new

iPhones are released, more than two million pre-orders are sent

to its data centers in the first 24 hours, and the Apple Store

is unresponsive in some areas. In addition, the response time

of the GCDC may be relatively long and application crash

may happen at peak time. Thus, hybrid cloud is increasingly

deployed by the GCDC to handle peak tasks by outsourcing

some tasks to public clouds. Virtual Machines (VMs) are

dynamically created to support multiple applications in cloud

infrastructure environment and the operation cost of the GCDC

can be reduced. Currently, more than 82% of companies

choose hybrid cloud to deploy their applications [4]. In hybrid

cloud, the GCDC needs to pay the execution cost of VMs

due to the tasks scheduled to public clouds. Therefore, it is

challenging to schedule tasks of each application among the

GCDC and public clouds in a cost-effective way while strictly

guaranteeing their expected delay constraints.

Similar to [5], this work investigates task scheduling of

multiple applications whose delay constraints are relatively

long, e.g., high-performance simulation, and large-scale data

analysis. Within delay constraints of the applications, several

factors in the GCDC and public clouds show the temporal

variation. Specifically, revenue, price of power grid, solar

irradiance, and wind speed in the GCDC all vary with time.

Besides, price of VMs in public clouds also varies with time.

Thus, the temporal variation in the factors makes it challenging

to maximize profit of the GCDC while strictly meeting delay

constraint of each task. What’s more, many studies selectively

admit some tasks to avoid overload of the GCDC [6]. However,

they fail to explicitly present a mathematical relation between

the number of tasks refused and task service rates of the

GCDC. Different from them, this work explicitly presents the

mathematical formulation of this relation. In addition, most of

existing task scheduling algorithms are proposed according to

the queueing theory. However, they can only meet the average

delay constraints of all tasks. There exists a long tail effect in

delay of tasks in clouds, and it leads to that delay constraints

of some tasks are not met [7]. To address such issues, this

work proposes a Temporal Task Scheduling (TTS) algorithm

in Geo-Distributed Cloud Data Centers (GDCDCs) to meet

delay constraints of all tasks.

In this work, the profit maximization problem of GDCDC

is formulated and solved with a hybrid optimization algo-

rithm that combines Genetic Algorithm (GA) [8], Simulated

138

2018 IEEE 11th International Conference on Cloud Computing

2159-6190/18/$31.00 ©2018 IEEE
DOI 10.1109/CLOUD.2018.00025

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 16:03:18 UTC from IEEE Xplore. Restrictions apply.

Annealing (SA) [9] and Particle Swarm Optimization (PSO)

[10]. The combination of PSO and GA improves global search

capacity by establishing superior particles for PSO because of

PSO’s social learning and GA’s global effectiveness. It consists

of two layers, the first for generation of superior particles

and the second for updating particles. By adopting superior

particles produced by GA and Metropolis acceptance rule

of SA, a novel hybrid algorithm named Genetic Simulated-

annealing-based PSO (GSPSO) is proposed. The Metropolis

acceptance rule of SA enables the updates that deteriorate

the quality of solutions and aims to find global optima by

escaping from local optima. The genetic operations of GA are

used to produce superior particles from which PSO’s particles

learn. In addition, historical search information of particles in

PSO directs the evolution of superior particles. Therefore, for

increasing both efficiency and global search accuracy, superior

particles are highly qualified to guide others particles.

To summarize, our contributions in this work are threefold.

1) We accurately compute a mathematical relation between

the number of tasks refusal and task service rates of the

GCDC;

2) We propose a novel TTS algorithm to consider the

temporal variation within tasks’ delay constraints , and

smartly execute it to the GCDC and public clouds; and

3) We formulate a profit maximization problem of GDCDC

as a constrained nonlinear optimization one and propose

a novel hybrid algorithm to solve it.

The remaining of this work is described as follows. A

motivation and GDCDC system architecture are presented in

Section II. The profit maximization problem of GDCDC is

formulated in Section III. The proposed solution algorithms

are presented in Section IV. The experimental results and their

analysis based on real-life data are shown in Section V. Section

VI concludes this paper.

II. MOTIVATION AND SYSTEM ARCHITECTURE

A data center provider usually owns GCDC and executes

some tasks to external public clouds when its local resources

are limited or the use of VMs in public clouds is more

economic and cheaper. The proposed GDCDC architecture is

presented in Fig. 1. Users’ tasks are sent to GDCDC through

multiple devices, e.g., computers, smart phones, laptops, and

servers. Then, Task Classifier classifies arriving tasks and

enqueues them into corresponding First-Come-First-Served

(FCFS) queues according to their application types. Then, task

arriving rates of all applications are further set. In Fig. 1, μn
τ

and Λna
τ denote task service rate and the cumulated task arriv-

ing rate of application n in interval τ , respectively. This work

focuses on Task Scheduler where TTS periodically executes

and schedules all tasks of each application to GDCDC within

their delay constraints.

GCDC mainly obtains electricity energy from three types

of sources: grid energy (�), solar energy (s), and wind energy

(w). The Task Scheduler periodically collects the information

of �, s, and w including the price of power grid, the idle (peak)

power of each server, the wind speed, the solar irradiance, and

Fig. 1. GDCDC system architecture.

on-site air density. Section III-D formulates the task scheduling

problem as a constrained Mixed Integer Non-Linear Program

(MINLP) [14]. Then, it is solved by GSPSO in each iteration

of TTS to obtain the scheduling strategy. Based on it, TTS is

proposed to achieve profit maximization for GDCDC while

strictly meeting delay constraints of all tasks of multiple

applications. Then, the task service rate for each application

in each interval is specified by Task Scheduler. Based on it,

Resource Allocator configures each server in GCDC. It is

assumed that servers for a same application are homogeneous

and servers for different applications are heterogeneous with

respect to in hardware setting [15]. Note that this work mainly

considers Task Scheduler and Resource Allocator.

III. PROBLEM FORMULATION

Based on the GDCDC system architecture, the profit maxi-

mization problem is formulated here. Similar to [13], GDCDC

is modeled as a discrete-time system that evolves with inter-

vals. An increasing number of high-performance servers are

deployed in GDCDC. Therefore, it is reasonable to assume

that each task can finish its execution in one single interval.

A. Delay Bound Constraint

Let Bn denote the delay constraint of tasks of application

n. This means that before τ passes, application n’s tasks that

arrive in interval τ−Bn or before are all scheduled to GDCDC.

The task arriving rate of application n in interval τ is denoted

by Λn
τ . Task service rates in τ and τ+b (1≤b≤Bn) are denoted

by μn
τ and μn

τ+b, respectively. The task service rate denotes

the rate at which tasks of application n are removed from

their FCFS queue and executed to GDCDC in τ . The number

of tasks of application n cumulated in τ intervals is denoted

by Δn
τ . The number of tasks of application n executed in τ

intervals is denoted by Ψn
τ . Besides, if application n’s tasks

are executed to public cloud c in τ , yncτ =1; otherwise, yncτ =0.

The number of tasks of application n executed to public cloud

c in τ is denoted by dncτ . L denotes the length of an interval.

Then, we can obtain Δn
τ and Ψn

τ :

Δn
τ=

τ∑
i=1

Λn
i L (1)

139

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 16:03:18 UTC from IEEE Xplore. Restrictions apply.

Ψn
τ=

τ∑
i=1

(
Λna
i (1− δ(Λna

i , μn
i))L+

C∑
c=1

xnci dnci

)
(2)

where in (2), Λna
τ denotes the cumulated arriving rate of appli-

cation n’s tasks in τ . The remaining arriving rate of application

n’s tasks in τ is denoted by Λnr
τ . Thus, all application n’s tasks

that arrive in τ−Bn or earlier are executed in GDCDC before

τ passes. Thus, Λnr
i =0 (i≤τ−Bn−1). We can obtain Λna

τ :

Λna
τ =Λn

τ+

τ−1∑
i=τ−Bn

Λnr
i . (3)

δ(Λna
τ , μn

τ) in (2) means the loss possibility of application

n’s tasks in τ . Similar to [16], all servers for application n
are modeled as an M/M/1/Cn/∞ system. The largest number

of tasks that application n’s servers can execute is denoted by

Cn. Then,

δ(Λna
τ , μn

τ)=

⎧⎪⎨⎪⎩
1−Λna

τ
μn
τ

1−
(

Λna
τ
μn
τ

)Cn+1

(
Λna

τ

μn
τ

)Cn

μn
τ>0,

1 μn
τ=0.

(4)

In addition, all application n’s tasks arriving in τ have to be

executed in slots τ to τ+Bn. It means that all application n’s

tasks in τ−Bn or earlier must be executed before τ passes.

Then,

Δn
τ−Bn−1+Λn

τ−Bn
L≤Φn

τ−1+

Λna
τ (1− δ(Λna

τ , μn
τ))L+

C∑
c=1

xncτ dncτ . (5)

Let Λ̃na
u denote the cumulated arriving rate of application

n’s tasks in u (τ+1≤u≤τ+Bn). Let μ̃n
u denote the task

service rate of application n in u (τ+1≤u≤τ+Bn). There

are several existing prediction algorithms, e.g., stacked auto-

encoder [17], and deep neural networks [18], to well predict

Λ̃na
u . Here we assume that Λ̃na

u is known in advance. Thus,

application n’s tasks in τ+b−Bn or earlier have to be executed

before τ+b passes. Then,

Δn
τ−Bn−1+

τ−Bn+b∑
u=τ−Bn

Λn
uL≤Φn

τ−1+Λna
τ (1− δ(Λna

τ , μn
τ))L+

C∑
c=1

xncτ dncτ +
τ+b∑

u=τ+1

(
Λ̃na
u (1− δ(Λ̃na

u , μ̃n
u))L+

C∑
c=1

ỹncu d̃ncu

)
.

(6)

In addition, at the start of τ , Δn
τ is obtained as:

Δn
τ=Δn

τ−Bn−1+
τ∑

u=τ−Bn

(Λn
uL) . (7)

At the beginning of τ , the number of tasks of application

n scheduled in τ is Λna
τ (1 − δ(Λna

τ , μn
τ))L. Besides, at the

beginning of τ , the expected number of tasks of application

n scheduled in τ+b (1≤b≤Bn) is
(
Λ̃na
u (1− δ(Λ̃na

u , μ̃n
u))L

)
.

Thus, in τ , the expected number of application n’s tasks

executed before τ+Bn passes is calculated as:

Ψn
τ+Bn

=Ψn
τ−1+Λna

τ (1− δ(Λna
τ , μn

τ))L+

C∑
c=1

xncτ dncτ +

τ+Bn∑
u=τ+1

(
Λ̃na
u (1− δ(Λ̃na

u , μ̃n
u))L+

C∑
c=1

ỹncu d̃ncu

)
.

(8)

Thus, the conservation of application n’s tasks requires that

Δn
τ should equal Φn

τ+Bn
, i.e., Δn

τ=Φn
τ+Bn

. Then,

Δn
τ−Bn−1+

τ∑
u=τ−Bn

Λn
uL=Φn

τ−1+Λna
τ (1− δ(Λna

τ , μn
τ))L+

C∑
c=1

xncτ dncτ +

τ+Bn∑
u=τ+1

(
Λ̃na
u (1− δ(Λ̃na

u , μ̃n
u))L+

C∑
c=1

ỹncu d̃ncu

)
.

(9)

Therefore, constraints (5), (6), and (9) ensure that delay

constraints of all tasks are strictly met.

B. Power Consumption Model

Next, we introduce a power consumption model adopted in

GDCDC. Similar to [15], we assume that servers for applica-

tion n are homogeneous in physical configuration. Therefore,

the energy consumed by each server for the same application is

identical. The number of application n’s tasks executed by its

switched-on server per minute is denoted by σn. In addition,

mn
τ denotes the number of such servers in τ . The service rate

of servers for application n in τ is denoted by μn
τ , which is

obtained application n.

μn
τ=σnm

n
τ . (10)

The total number of application n’s servers is denoted

by Ωn. Let �=maxn∈{1,2,···,N}Bn. mn
τ+b denotes the total

number of switched-on servers for application n in τ+b and

it cannot exceed Ωn,

mn
τ+b≤Ωn, 0≤b≤�. (11)

The total energy consumption of GDCDC is calculated by

summing up the energy consumed by servers and facilities

including lighting and cooling. Power Usage Effectiveness

(PUE) [19] is a critical metric to measure energy efficiency of

a data center and it is the ratio of the total energy consumption

of GDCDC to the total energy consumed by servers. PUE of

GCDC, denoted by γ, is 1.2–2.0 for many data centers [20].

Let P̄n and P̂n denote the average idle and peak power of

each server for application n, respectively. Besides, its CPU

utilization is denoted by unτ . Therefore, based on [20], the total

power consumed by GCDC in τ is obtained as:

Pτ=

N∑
n=1

(
mn

τ (P̄
n+(γ−1)P̂n+(P̂n−P̄n)unτ)

)
. (12)

140

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 16:03:18 UTC from IEEE Xplore. Restrictions apply.

The number of tasks that application n’s switched-on server

executes in τ is calculated as:

L
(
1−δ(Λna

τ , μn
τ)
)
Λna
τ

mn
τ

(13)

where δ(Λna
τ , μn

τ) denotes the task loss possibility.

The busy time of each switched-on server for application n

is
L(1−δ(Λna

τ ,μn
τ))Λ

na
τ

σnmn
τ

minutes. unτ is obtained as:

unτ=
(1−δ(Λna

τ , μn
τ))Λ

na
τ

σnmn
τ

. (14)

Let Eτ denote the total energy consumption of GCDC in

τ . Based on (10), (12), and (14), it is obtained as:

Eτ=
N∑

n=1

(
gnμ

n
τ+hnΛ

na
τ (1− δ(Λna

τ , μn
τ))

σn
L

)
(15)

where

gn � P̄n+(γ−1)P̂n (16)

hn � P̂n−P̄n. (17)

The available amount of energy in GCDC is denoted by �.

Therefore, the total energy consumed in τ or τ+b (1≤b≤�)

satisfies:

N∑
n=1

(
gnμ

n
τ+hnΛ

na
τ (1−δ(Λna

τ ,μn
τ))

σn
L
)
≤� (18)

N∑
n=1

(
gnμ̃

n
τ+b+hnΛ̃

na
τ+b(1−δ(Λ̃na

τ+b,μ̃
n
τ+b))

σn
L)≤�, 1≤b≤�. (19)

C. Green Energy Model

This work incorporates two types of green energy sources

including wind and solar. The use of green energy can decrease

the power grid energy consumption of GDCDC and further

alleviate its harmful effect to environment. Similar to [11], the

length of an interval is small enough and therefore we assume

that the wind and solar energy stay the same within each

interval and only vary from interval to interval. The amount

of energy produced by solar panels in τ is denoted by Es
τ .

The rate at which solar radiation is converted into electricity

is denoted by ψ. Besides, SIτ denotes the solar irradiance

in τ . Let κ denote the active irradiation area of solar panels.

Based on [21], we have:

Es
τ=κψ(SIτ)L. (20)

Let Ew
τ denote the amount of wind energy generated by

wind turbines in τ . The conversion rate of wind to electricity is

denoted by η. The on-site air density is denoted by ρ. Besides,

ζ and ντ denote the rotor area of wind turbines and the wind

speed. According to [22], we have:

Ew
τ =

1

2
ηρζ(ντ)

3
L. (21)

D. Constrained Optimization Problem

Typically, SLA is signed between GDCDC and cloud users,

and it guarantees the performance for each application’s tasks.

The revenue corresponding to the execution of application n’s

tasks in τ and τ+b are denoted by ðnτ and ð̃nτ+b, respectively.

Let θnτ denote the payment of each task of application n
executed in τ . Then, we have:

ð
n
τ=

(
(1−δ(Λna

τ , μn
τ))Λ

na
τ +

C∑
c=1

(xncτ dncτ)

)
θnτ . (22)

Let f1 denote the total revenue of GDCDC brought by tasks

of all applications executed in slots τ to τ+b. Then,

f1=
N∑

n=1

(
ð
n
τ+

Bn∑
b=1

ð̃
n
τ+b

)
. (23)

Besides, prices of power grid in τ and τ+b are denoted

by pτ and p̃τ+b, respectively. Let f2 denote the total cost

of GDCDC. f2 includes two parts that are the grid energy

cost of GCDC and the execution cost of VMs in public

clouds. Thus, the amount of grid energy of GDCDC in τ
is max(Eτ−Es

τ−Ew
τ , 0). In addition, the amount of grid

energy of GDCDC in τ+b is max
(
Ẽτ+b−Ẽs

τ+b−Ẽw
τ+b, 0

)
.

Besides, if application n’s tasks are executed in public cloud

c in τ+b, ỹncτ+b=1; otherwise, ỹncτ+b=0. The number of ap-

plication n’s tasks executed in public cloud c in τ + b is

denoted by d̃ncτ+b. The prices of VMs for application n in

public cloud c in τ and τ + b are denoted by rnτ and

p̃ncτ+b, respectively. The average execution time of tasks of

application n executed in public cloud c in τ and τ + b is

denoted by rncτ and r̃nτ+b, respectively. Hence, the execution

cost of VMs in public clouds in τ is
N∑

n=1

C∑
c=1

(xncτ pncτ rnτ d
nc
τ).

Similarly, the execution cost of VMs in public clouds in τ+b

is
N∑

n=1

Bn∑
b=1

(
C∑

c=1
(ỹncτ+bp̃

nc
τ+br̃

n
τ+bd̃

nc
τ+b)

)
. Then, we have:

f2=

(
pτ (max(Eτ−Es

τ−Ew
τ , 0))+

N∑
n=1

C∑
c=1

(xncτ pncτ rnτ d
nc
τ)

)

+

�∑
b=1

(
p̃τ+b

(
max

(
Ẽτ+b−Ẽs

τ+b−Ẽw
τ+b, 0

)))
+

N∑
n=1

Bn∑
b=1

(
C∑

c=1

(ỹncτ+bp̃
nc
τ+br̃

n
τ+bd̃

nc
τ+b)

)
.

(24)

Then, the GDCDC’s profit maximization problem, marked

as P1, is obtained as:

Max f1−f2

141

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 16:03:18 UTC from IEEE Xplore. Restrictions apply.

s.t.

C∑
c=1

xncτ ≤1,
C∑

c=1
ỹncτ+b≤1, 1≤b≤Bn (25)

xncτ , ỹncτ+b∈{0, 1}, 1≤b≤Bn (26)

μn
τ≥0, μ̃n

τ+b≥0, dncτ ≥0, d̃ncτ+b≥0, 1≤b≤Bn (27)

μ̃n
τ+b=0, d̃ncτ+b=0, ỹncτ+b=0, Bn<b≤� (28)

The P1 should be subjected to the above constraints, where

the ranges of delay constraints are given in (5), (6) and (9),

constraint (11) denotes the total number of switched-on servers

for application n in τ+b, constraints (18) and (19) ensure the

total energy consumed in τ or τ+b, and the ranges of decision

variables are given in constraints (25), (26), (27) and (28). It is

also assumed that time-related parameters, e.g., rnτ and pτ , can

be well obtained in advance with existing prediction methods

at the beginning of τ . The method to solve P1 is presented in

Section IV and its final solution determines an optimal task

schedule among GCDC and public clouds that maximizes the

profit of GDCDC such that delay constraints of all tasks are

strictly met.

IV. SOLUTION ALGORITHM

A. Temporal Task Scheduling (TTS)

In P1, the objective function is nonlinear with respect to

decision variables. Decision variables yncτ and ỹncτ+b are integer

variables while μn
τ , μ̃n

τ+b, dncτ , and d̃ncτ+b (1≤b≤�, 1≤n≤N ,

1≤c≤C) are continuous. Hence, P1 is a constrained MINLP.

This work adopts a penalty function method [14] to convert P1

into an unconstrained problem P2. The vector of all decision

variables is denoted by �� and it consists of μn
τ , μ̃n

τ+b, yncτ ,

ỹncτ+b, dncτ , d̃ncτ+b (1≤b≤�, 1≤n≤N , 1≤c≤C). Thus,

Min
��

{
f̂=ςε− (f1−f2)

}
. (29)

where f̂ denotes the augmented objective function, ς is a large

positive constant, and ε is the penalty of all constraints.

Algorithm 1 TTS

1: Set Λn
τ (�−Bn≤τ≤�−1), Δn

�−Bn−1 and Φn
�−1 to 0

2: Set Λna
τ and Λnr

τ (�≤τ≤NI) to Λn
τ

3: τ ← �

4: while τ≤� do
5: Update Λna

τ based on (3).

6: Solve P2 with GSPSO

7: Execute (Λna
τ (1− δ(Λna

τ , μn
τ))L) tasks in GCDC, and

schedule yncτ dncτ tasks to public cloud c
8: Update Λna

τ and Λnr
i (τ−Bn≤i≤τ)

9: Φn
τ ← Φn

τ−1+
C∑

c=1
xncτ dncτ +(Λna

τ (1− δ(Λna
τ , μn

τ))L)

10: Δn
τ−Bn

← Δn
τ−Bn−1+Λn

τ−Bn
L

11: τ ← τ + 1
12: end while

The pseudo code of TTS is shown and explained in Al-

gorithm 1. Line 1 initializes Λn
τ (�−Bn≤τ≤�−1), Φn

�−1

and Δn
�−Bn−1 with 0. Line 2 initializes Λnr

τ and Λna
τ

(�≤τ≤NI) with Λn
τ . Let � denote the total number of

intervals. Λna
τ is updated based on (3) in Line 5. Line 6 solves

P2 with GSPSO to determine μn
τ , yncτ and dncτ . Line 7 exe-

cutes (Λna
τ (1− δ(Λna

τ , μn
τ))L) tasks in GCDC, and schedules

yncτ dncτ tasks to public cloud c. Then, Lines 9–10 update Φn
τ

and Δn
τ−Bn

.

B. Genetic Simulated-annealing-based Particle Swarm Opti-
mization (GSPSO)

Note that P2 is an unconstrained MINLP. Its pseudos are

described in Algorithm 2. The lower and upper bounds of

inertia weight w are w and w, respectively. The temperature

cooling rate is denoted by �. t0 denotes the initial temperature.

The range of each particle’s velocity is limited to [−v, v]. The

number of iterations is denoted by I . �̄ denotes the predefined

percentage threshold. � denotes the percentage of particles

with identical fitness values in the swarm.

Algorithm 2 GSPSO

1: Initialize positions and velocities of PSO’s particles

2: Calculate fitness values of particles

3: Update g and li
4: i← 0
5: while �≤�̄ and i≤I do
6: Conduct GA’s crossover, mutation, and selection on g

and li
7: Update velocities and positions of particles based on

SA’s Metropolis acceptance rule

8: Update g and li
9: Decrease temperature by �

10: Decrease w linearly from w to w
11: Update �
12: i← i+ 1
13: end while
14: Return g

In Algorithm 2, positions and velocities of particles in PSO

are randomly initialized in Line 1. g and li are updated in

Line 3. The while loop ends if �≤�̄ and I is achieved. Line 6

conducts the crossover, mutation, and selection of GA on g and

li to generate superior particles. Line 7 updates positions and

velocities of particles based on SA’s Metropolis acceptance

rule. Line 8 updates g and li. Line 9 decreases the temperature

by �. Line 10 linearly decreases w from w to w. Line 11

updates �. At last, g is returned and transformed into decision

variables including μn
τ , μ̃n

τ+b, yncτ , ỹncτ+b, dncτ , d̃ncτ+b (1≤b≤�,

1≤n≤N , 1≤c≤C).

V. PERFORMANCE EVALUATION

This section evaluates TTS with real-life data, e.g., VM

prices, price of power grid, arriving tasks, and green energy

data. TTS is implemented with MATLAB 2017 and it is

executed on a server with an Intel Xeon CPU at 2.4 GHz

and a 32-GB DDR4 memory.

142

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 16:03:18 UTC from IEEE Xplore. Restrictions apply.

TABLE I
RANGES OF VM PRICES ($/HOUR)

Public clouds Small Large Xlarge

1 [0.07,0.08] [0.06,0.07] [0.18,0.20]
2 [0.14,0.16] [0.12,0.14] [0.10,0.12]
3 [0.22,0.24] [0.20,0.22] [0.05,0.06]

A. Parameter Setting

We choose realistic Google task data of three applications
1 in 24 hours on May 10, 2011. We set delay constraints to 3,

4, and 5 intervals, i.e., B1=3, B2=4, and B3=5. Besides, we

choose real-life price of power grid in 24 hours on the same

day in New York, U.S.2. According to [20], the parameters

in the power consumption model are set as: P̄ 1=200(W),

P̄ 2=100(W), P̄ 3=50(W), P̂ 1=400(W), P̂ 2=200(W),

P̂ 3=100(W), �=5(MWH), σ1=0.05 tasks/minute, σ2=0.1
tasks/minute, σ3=0.2 tasks/minute, and γ=1.2. Based on [3],

Ω1=3×106, Ω2=1.5×106, Ω3=3×106, C1=12, C2=25, and

C3=50.

We assume that a single task finishes its execution in

GDCDC in each interval. Thus, we randomly produce tasks’

execution time for each application based on the uniform

distribution in the range of (0, L). Based on [12], we randomly

produce the prices ($/hour) of tasks executed in GDCDC based

on the uniform distribution in the ranges of [0.24, 0.48],

[0.16, 0.32], and [0.08, 0.16], respectively. In this way, θnτ
is obtained. Besides, we adopt the data of wind speed3 and

solar irradiance4 in 24 hours on the same day. According

to [11], κ=1.5∗105(m2), ψ=0.2, η=0.3, ρ=1.225(kg/m3),

and ζ=2.5∗105(m2). The power ratings of wind and solar

energy are set to 9∗108 (W) and 1.65∗108 (W), respectively.

Based on [5], GSPSO’s parameters in Algorithm 2 are set

as: w=0.95, w=0.4, �̄=95%, ξ=100, ϕ=200, c1=c2=0.5,

�=0.975, t0=1030, ς=1020 and α=β=2.

Based on the pricing model in Amazon EC25, we adopt

three types of VM instances (Small, Large, and Xlarge) in

public clouds. This work chooses two most typical types of re-

sources including CPU and memory to describe VMs because

these are the most important configurations for selecting a VM

instance in public clouds. Table I presents the price ranges of

three VM instances in public clouds.

B. Experimental Results

To demonstrate the performance of GSPSO, GSPSO is

compared to PSO and SA. We first give the reasons of

choosing them for comparison. It is proven that SA can

finally find global optima in theory by carefully setting the

temperature cooling rate due to the fact that it can condition-

ally escape from local optima. Thus, the comparison between

them demonstrates the accuracy of GSPSO’s final solution.

1https://github.com/google/cluster-data
2http://www.nyiso.com/public/index.jsp
3http://www.nrel.gov/midc/nwtc m2/
4http://www.nrel.gov/midc/srrl bms/
5https://aws.amazon.com/cn/ec2/

In addition, it is shown that PSO’s convergence speed is

quick. The comparison between them demonstrates GSPSO’s

convergence speed.

0 50 100 150 200 250
Interval number

0

5

10

15

20

25

E
xe

cu
tio

n
tim

e
(S

ec
on

d)

PSO SA GSPSO

Fig. 2. Comparison of execution time.

The execution time comparison of GSPSO, PSO, and SA is

shown in Fig. 2. The average execution time of SA is 19.13s

and it is larger than that of PSO, 0.70s, and that of GSPSO,

5.91s. PSOs execution time the least because of its quick

trap into locally optimal solutions. The profit comparison of

GSPSO, PSO, and SA in each iteration of the 50th interval

is presented in Fig. 3. Here the iteration of GSPSO is shown

in Lines 6–12 in Algorithm 2. The meaning of iterations in

SA and PSO are similar to that of GSPSO. The evolutionary

curve of penalty calculated is shown in Fig. 4.

0 50 100 150 200
Iterations

0

0.5

1

1.5

2

P
ro

fit
 o

f H
G

C

104

GSPSO
PSO
SA

Fig. 3. Profit of each iteration in the 50th interval.

It is shown that PSO converges and loses its search ability

after the least number of iterations. However, it is shown in

Fig. 4 that the penalty of the final solution of PSO is large

(about 4×104). This shows that PSO’s final solution cannot

meet all constraints in P1. Therefore, the final solution of

PSO is the worst. Besides, SA converges to its final solution

after about 165 iterations. The profit of its final solution

is 11.11 times more than that of PSO but less than that

of GSPSO. GSPSO converges to its final solution after 41

iterations and its profit is 5941.06$. Therefore, GSPSO’s profit

is increased by 414.42$ in much fewer iterations and much

less time than SA. In addition, it is shown in Fig. 4 that

the penalty of the final solution of GSPSO is nearly 0. This

result demonstrates that GSPSO converges to a high-quality

solution satisfying all constraints in P1. Therefore, Figs. 2–4

show that the incorporation of superior particles produced by

143

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 16:03:18 UTC from IEEE Xplore. Restrictions apply.

0 50 100 150 200 250
Interval number

0

2000

4000

6000

8000

10000

12000

14000
N

um
be

r o
f t

as
ks

 (#
/m

in
ut

e) -3
1r

-2
1r

-1
1r 1a

(a) Type 1

0 50 100 150 200 250
Slot number

0

1

2

3

4

5

6

N
um

be
r o

f t
as

ks
 (#

/m
in

ut
e)

104

-4
2r

-3
2r

-2
2r

-1
2r 2a

(b) Type 2

0 50 100 150 200 250
Slot number

0

2

4

6

8

N
um

be
r o

f t
as

ks
 (#

/m
in

ut
e)

104

-5
3r

-4
3r

-3
3r

-2
3r

-1
3r 3a

(c) Type 3

Fig. 5. Cumulative and remaining tasks

SA’s Metropolis acceptance rule and GA’s genetic operations

in PSO increases the quality of GSPSO’s final solution and

leads to larger profit for GDCDC.

0 50 100 150 200
Iterations

0

1

2

3

4

5

6

P
en

al
ty

106

GSPSO
PSO
SA

Fig. 4. Penalty of each iteration.

Fig. 5 illustrates the cumulative arriving and remaining tasks

of three applications. For example, Fig. 5(b) presents them for

application 2 where Λ2a
τ =Λ2

τ + Λ2r
τ−1+Λ2r

τ−2+Λ2r
τ−3+Λ2r

τ−4.

It is observed that Λ2r
τ−4 is least among Λ2r

τ−4, Λ2r
τ−3, Λ2r

τ−2

and Λ2r
τ−1. The reason is that TTS puts all arriving tasks of

each application into its seperate FCFS queues, and prefers to

schedule earlier-arrived tasks. TTS aims to guarantee that by

interval τ , all tasks of application 2 in interval τ−4 or before

must have been scheduled to GCDC and public clouds before

interval τ passes. Tasks that arrive in intervals τ−3, τ−2 and

τ−1 can only be executed when Λ2r
τ−4=0. Similarly, tasks that

arrive in intervals τ−2 and τ−1 can only be executed when

Λ2r
τ−4=0 and Λ2r

τ−3=0. Tasks that arrive in interval τ−1 are

executed when all tasks that arrive before have been executed,

i.e., Λ2r
τ−4=0, Λ2r

τ−3=0 and Λ2r
τ−2=0. Therefore, it is observed

that Λ2r
τ−1 is larger than Λ2r

τ−4, Λ2r
τ−3 and Λ2r

τ−2 in each interval.

The Cumulative Scheduled Tasks (CSTs) and Cumulative

Arriving Tasks (CATs) for each application are shown in Fig.

6. It is shown that tasks of all applications are scheduled to

GCDC and public clouds within their delay constraints. For

example, the number of CATs of application 2 in interval

143 equals that of CSTs in interval 140. This means that

tasks of application 2 arriving in interval 140 or before are

all scheduled to GCDC and public clouds before interval

143 passes. Therefore, it demonstrates that TTS strictly meets

delay constraints of tasks of all applications.

Fig. 7 shows CSTs of each application in GCDC and

public clouds. It is shown that the number of tasks executed

in GCDC is much larger than that of any public cloud.

The reason is that GCDC aims to schedule all in the cost-

effective way. Therefore, TTS tries to execute tasks in GCDC,

thus maximizing its profit. In addition, the number of tasks

executed in different public clouds shows the difference of

prices of VMs. For example, it is shown in Fig. 7(b) that

the number of application 1 tasks executed in public cloud 1

is much larger than those of public clouds 2 and 3 in each

interval. The reason is that the prices of VMs in public cloud

1 is smaller than those of public clouds 2 and 3. As another

example, the number of application 3 tasks executed in public

cloud 3 is much larger than those of public clouds 1 and 2 in

each interval. The reason is that the prices of VMs in public

cloud 3 is smaller than those of public clouds 1 and 2 in each

interval. Thus, the numbers of tasks of each type executed in

three public clouds is the reflection of the variation in prices

of their VMs. It also demonstrates that GDCDC’s profit can

be maximized by smartly scheduling tasks among GCDC and

public clouds.

VI. CONCLUSION AND FUTURE WORK

An increasing number of companies deploy their delay-

constrained applications in Green Cloud Data Centers (GCD-

Cs). The unprecedented growth of tasks significantly increases

the energy consumption and therefore a hybrid cloud scheme

is growingly chosen to tackle aperiodicity and uncertainty in

tasks. The temporal variation in price of power grid, revenue,

solar irradiance, wind speed, and price of public clouds brings

a big challenge to cost-effectively execute all tasks among

the GCDC and public clouds while strictly satisfying all

tasks’ delay constraints. This work presents a Temporal Task

Scheduling (TTS) algorithm that investigates the temporal

variation. It can smartly schedule all tasks to the GCDC and

public clouds within delay constraints. Beside, the mathe-

matical relation between task refusal and service rates are

explicitly presented. Then, the profit maximization problem is

solved with a novel hybrid optimization algorithm. Extensive

simulation experiments demonstrate that TTS outperforms

several existing scheduling algorithms in terms of throughput

and profit. In the future, we plan to evaluate the indeterminacy

in green energy and to predict the arrivals of tasks with deep

neural network algorithms.

ACKNOWLEDGMENT

We thank all the reviewers for their insightful comments.

This work was supported in part by the National Natu-

144

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 16:03:18 UTC from IEEE Xplore. Restrictions apply.

0 50 100 150 200 250 288
Interval number

0

0.5

1

1.5

2

N
um

be
r o

f t
as

ks
106

CATs CSTs

130 135 140
1

1.02

1.04 106

(a) Type 1

0 50 100 150 200 250 288
Interval number

0

2

4

6

8

N
um

be
r o

f t
as

ks

106

CATs CSTs

145 150 155 160 165
3

3.5 106

(b) Type 2

0 50 100 150 200 250 288
Interval number

0

2

4

6

8

10

N
um

be
r o

f t
as

ks

106

CATs CSTs

130 140 150
3

3.2

3.4 106

(c) Type 3

Fig. 6. CATs and CSTs

0 50 100 150 200 250
Interval number

0

1

2

N
um

be
r o

f t
as

ks 106 CSTs in private GCDC

Private GCDC

0 50 100 150 200 250
Interval number

0

5

N
um

be
r o

f t
as

ks 103 CSTs in public clouds

Public cloud 1 Public cloud 2 Public cloud 3

(a) Type 1

0 50 100 150 200 250
Interval number

0

5

N
um

be
r o

f t
as

ks 106 CSTs in private GCDC

Private GCDC

0 50 100 150 200 250
Interval number

0

5

N
um

be
r o

f t
as

ks 104 CSTs in public clouds

Public cloud 1 Public cloud 2 Public cloud 3

(b) Type 2

0 50 100 150 200 250
Interval number

0

5

10

N
um

be
r o

f t
as

ks 106 CSTs in private GCDC

Private GCDC

0 50 100 150 200 250
Interval number

0

20

40

N
um

be
r o

f t
as

ks 103 CSTs in public clouds

Public cloud 1 Public cloud 2 Public cloud 3

(c) Type 3

Fig. 7. CSTs in GCDC and public clouds.

ral Science Foundation of China under Grant 61703011,

the National Science and Technology Major Project under

Grant 2018ZX07111005, and the National Defense Foundation

Research Common Project under Grants 41401020401 and

41401050102.

REFERENCES

[1] D. A. Chekired and L. Khoukhi, “Smart grid solution for charging
and discharging services based on cloud computing scheduling,” IEEE
Transactions on Industrial Informatics, vol. 13, no. 6, pp. 3312–3321,
Dec. 2017.

[2] F. Yao, J. Wu, S. Subramaniam, and G. Venkataramani, “WASP: Workload
adaptive energy-latency optimization in server farms using server low-
power states,” in Proc. 2017 IEEE 10th International Conference on
Cloud Computing, 2017, pp. 75–84.

[3] J. Bi, H. Yuan, W. Tan, and B. H. Li, “TRS: Temporal Request Scheduling
with bounded delay assurance in a green cloud data center,” Information
Sciences, vol. 360, no. 1, pp. 57–72, Sep. 2016.

[4] Y. Niu, F. Liu, X. Fei, and B. Li, “Handling flash deals with soft
guarantee in hybrid cloud,” in Proc. 2017 IEEE Conference on Computer
Communications, 2017, pp. 1–9.

[5] H. Yuan, J. Bi, W. Tan, M. Zhou, B. H. Li, and J. Li, “TTSA: An effective
scheduling approach for delay bounded tasks in hybrid clouds,” IEEE
Transactions on Cybernetics, vol. 47, no. 11, pp. 3658–3668, Nov. 2017.

[6] K. Konstanteli, T. Cucinotta, K. Psychas, and T. A. Varvarigou, “Elastic
admission control for federated cloud services,” IEEE Transactions on
Cloud Computing, vol. 2, no. 3, pp. 348–361, Jul. 2014.

[7] L. Suresh, M. Canini, S. Schmid, and A. Feldmann, “C3: Cutting tail
latency in cloud data stores via adaptive replica selection,” in Proc. 12th
USENIX Conference on Networked Systems Design and Implementation,
2015, pp. 513–527.

[8] S. B. Sulistyo, W. L. Woo, and S. S. Dlay, “Regularized neural networks
fusion and genetic algorithm based on-field nitrogen status estimation
of wheat plants,” IEEE Transactions on Industrial Informatics, vol. 13,
no. 1, pp. 103–114, Feb. 2017.

[9] S. Lyden and M. E. Haque, “A simulated annealing global maximum
power point tracking approach for pv modules under partial shading
conditions,” IEEE Transactions on Power Electronics, vol. 31, no. 6, pp.
4171–4181, Jun. 2016.

[10] M. Mahi, mer Kaan Baykan, and H. Kodaz, “A new hybrid method
based on particle swarm optimization, ant colony optimization and 3-
opt algorithms for traveling salesman problem,” Applied Soft Computing,
vol. 29, no. 4, pp. 484–490, Jun. 2015.

[11] X. Deng, D. Wu, J. Shen, and J. He, “Eco-aware online power man-
agement and load scheduling for green cloud datacenters,” IEEE Systems
Journal, vol. 10, no. 1, pp. 78–87, Mar. 2016.

[12] X. Zuo, G. Zhang, and W. Tan, “Self-adaptive learning PSO-based
deadline constrained task scheduling for hybrid IaaS cloud,” IEEE Trans-
actions on Automation Science and Engineering, vol. 11, no. 2, pp. 564–
573, Apr. 2014.

[13] J. Bi, H. Yuan, W. Tan, M. Zhou, Y. Fan, J. Zhang, and J. Li,
“Application-aware dynamic fine-grained resource provisioning in a vir-
tualized cloud data center,” IEEE Transactions on Automation Science
and Engineering, vol. 14, no. 2, pp. 1172–1184, Apr. 2017.

[14] M. Shokrian and K. A. High, “Application of a multi objective multi-
leader particle swarm optimization algorithm on NLP and MINLP prob-
lems,” Computers & Chemical Engineering, vol. 60, no. 1, pp. 57–75,
Jan. 2014.

[15] H. Yuan, J. Bi, W. Tan, and B. Li, “CAWSAC: Cost-aware workload
scheduling and admission control for distributed cloud data centers,” IEEE
Transactions on Automation Science and Engineering, vol. 13, no. 2, pp.
976–985, Apr. 2016.

[16] Z. Zhu, J. Bi, H. Yuan, and Y. Chen, “SLA based dynamic virtualized
resources provisioning for shared cloud data centers,” in Proc. 2011 IEEE
International Conference on Cloud Computing, 2011, pp. 630–637.

[17] B. Du, W. Xiong, J. Wu, L. Zhang, L. Zhang, and D. Tao, “Stacked
convolutional denoising auto-encoders for feature representation,” IEEE
Transactions on Cybernetics, vol. 47, no. 4, pp. 1017–1027, Apr. 2017.

[18] W. Samek, A. Binder, G. Montavon, S. Lapuschkin, and K. R. M’́uller,
“Evaluating the visualization of what a deep neural network has learned,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 28,
no. 11, pp. 2660–2673, Nov. 2017.

[19] A. N. Toosi, K. Vanmechelen, F. Khodadadi, and R. Buyya, “An auction
mechanism for cloud spot markets,” ACM Transactions on Autonomous
and Adaptive Systems, vol. 11, no. 1, pp. 1–33, Apr. 2016.

[20] M. Ghamkhari and H. Mohsenian-Rad, “Energy and performance man-
agement of green data centers: A profit maximization approach,” IEEE
Transactions on Smart Grid, vol. 4, no. 2, pp. 1017–1025, Jun. 2013.

[21] N. Mahdavi, J. H. Braslavsky, M. M. Seron, and S. R. West, “Model
predictive control of distributed air-conditioning loads to compensate
fluctuations in solar power,” IEEE Transactions on Smart Grid, vol. 8,
no. 6, pp. 3055–3065, Nov. 2017.

[22] H. M. K. Al-Masri, A. A. Almehizia, and M. Ehsani, “Accurate
wind turbine annual energy computation by advanced modeling,” IEEE
Transactions on Industry Applications, vol. 53, no. 3, pp. 1761–1768,
May 2017.

145

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 16:03:18 UTC from IEEE Xplore. Restrictions apply.

