
Goal-Driven Context-Aware Service
Recommendation for Mashup Development

Xihao Xie, Jia Zhang
Department of Computer Science

Southern Methodist University
Dallas, USA

{xihaox; jiazhang}@smu.edu

Rahul Ramachandran
Marshall Space Flight Center

NASA
Huntsville, USA

rahul.ramachandran@nasa.gov

Tsengdar J. Lee
Science Mission Directorate

NASA Headquarters
Washington, USA

tsengdar.j.lee@nasa.gov

Seungwon Lee
Jet Propulsion Laboratory

NASA
Pasadena, USA

seungwon.lee@jpl.nasa.gov

Abstract—As service-oriented architecture becoming one
prevalent technique to rapidly compose functionalities to cus-
tomers, increasingly more reusable software components have
been published online in the form of web services. To create a
mashup, however, it gets not only time-consuming but also error-
prone for developers to find suitable services components from
such a sea of services. Service discovery and recommendation
has thus attracted significant momentum in both academia and
industry. This paper proposes a novel incremental recommend-as-
you-go approach to recommending next potential service based
on the context of a mashup under construction, considering
services that have been selected up to the current step as well
as the mashup goal. The core technique is an algorithm of
learning the embedding of services, which learns their past goal-
driven context-aware decision making behaviors in addition to
their semantic descriptions and co-occurrence history. A goal
exclusionary negative sampling mechanism tailored for mashup
development is also developed to improve training performance.
Extensive experiments on a real-world dataset demonstrate the
effectiveness of this approach.

Index Terms—Service recommendation, Mashup creation, Ser-
vice embedding

I. INTRODUCTION

In the last two decades, a huge number of software com-
ponents have been published onto the Internet in the form
of software services (or so-called APIs or services in short).
Up to June 15th, 2022, ProgrammableWeb1, the largest online
repository of APIs, has accumulated 24,471 services. Such
remotely accessible services enable software developers to
compose existing services into mashups, easier and faster than
before. However, such a sea of services makes it not only time-
consuming but also error-prone for mashup developers to pick
up suitable service candidates. Thus, service recommendation-
powered mashup development has attracted significant mo-
mentum in recent years.

Fig. 1 illustrates a possible development process for a
mashup that we randomly selected from ProgrammableWeb
named Shared Count2. As shown in Fig. 1, a mashup creation
is an incremental process with multiple rounds of service
selection, e.g., Twitter is selected first followed by Facebook.
In each round, an instant recommender suggests the “next”
suitable services.

1https://www.programmableweb.com/
2https://www.programmableweb.com/mashup/shared-count
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Fig. 1. Incremental process of mashup creation.

In our position, an effective recommender shall guide a
mashup development process as a journey of exploration in
a forest (i.e., an embedding space), led by a light beam
(i.e., the mashup goal), as illustrated in the right-hand side
dotted box in Fig. 1. At a point of the decision making
process, e.g., the green dot, the services that have already
been selected (i.e., Twitter at step t1 and Facebook at step
t2) represent the position of the “traveler” at the time. The
problem thus becomes how to make the next step (i.e., select
the next service) toward the ultimate goal (i.e., the red star
representing the embedding of the textual mashup goal “shared
count is a small utility that will fetch social media shares for
a url”). We coin a term context to represent a decision making
point during a mashup development process, which comprises
selected services and the mashup goal each being denoted as
a contextual item throughout this paper.

To tackle this decision making problem, this paper proposes
a goal-driven, context-aware machine learning method capable
of recommending “next” suitable services in each step of the
incremental process of mashup creation. To the best of our
knowledge, we make the first effort to learning the embedding
of goal-driven mashup context. For each service, in addition to
learning its semantic descriptions and service co-occurrence,
we learn its decision making behaviors from past mashup
development provenance. Furthermore, our proposed learning
framework is extensible for considering other dimensions of
data such as user profile. The main contributions of our work
are three-fold. First, we propose a novel machine learning
algorithm that is capable of learning goal-driven context
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embedding during mashup development. Second, we propose
a goal-exclusionary negative sampling strategy tailored for
a rapid training process for mashup development. Third,
we demonstrate the effectiveness of our approach based on
extensive experiments on a real-world dataset.

The remainder of this paper is organized as follows. Section
II summaries the related work. Section III defines the problem
and presents our approach in detail. Section IV explains how
to train and learn relevant parameters. Section V presents
and analyzes experimental results. Finally, Section VI draws
conclusions.

II. RELATED WORK

In this section, we will discuss closely related work from
two aspects: service representation learning and next service
recommendation.

A. Service Representation Learning

In recent years, researchers have explored many ways to
represent services in a vector space to support downstream
service recommendation applications. Here are some exam-
ples. Gu et al. [2] propose an approach to recommending a
bundle of services by leveraging latent Dirichlet allocation
(LDA) to embed services and mashups in a topic space. Wang
et al. [3] propose Service2vec to learn service representations
based on a constructed service network. Zhang et al. [4]
incorporate service users’ perceptions into service profiles to
form more comprehensive service representations. Menzi et al.
[5] embed services into a low-dimensional vector space based
on a constructed context-aware service knowledge graph to
support service recommendation.

In contrast to their work, our approach learns service embed-
dings from past service selection decision making behaviors, in
addition to service and mashup descriptions and correlations.

B. Next Service Recommendation

Next service recommendation aims to recommend candidate
services for developers in each step of a multi-round process of
mashup creation. Cao et al. [1] design a collaborative-filtering
(CF)-based algorithm based on a two-level topic model to
recommend services. Zhang et al. [6] propose an approach
to extracting relationships of people, services and workflows
from historical usage data into a social network to proactively
recommend services in a workflow composition process. Liu
et al. [7] develop a generalized sequential pattern algorithm
to mine frequent composition patterns of mashups, and design
an interactive recommendation algorithm to assist mashup cre-
ation. By modeling the relations between services and service-
based systems (SBSs) into a heterogeneous information net-
work, Xie et al. [8] measure semantic similarities between
SBSs and use content filtering technique to recommend next
service. Kirubananthan et al. [14] propose a method to support
long-term service composition recommendation according to
user ratings.

Our work differs from the aforementioned studies in two
aspects. First, we introduce a model to embed the context

including not only existing services but also mashup goals.
In this way, our model can learn goal-driven next service
prediction behaviors from past experiences. Second, we model
different contributions of different contextual items with an
attention mechanism.

III. CONTEXT-AWARE NEXT SERVICE RECOMMENDATION

Fig. 2 depicts an overview of our goal-driven context-
aware service recommendation framework. Given a partial
mashup under construction, all services already selected and
the mashup goal form the context of the recommendation
problem.

As shown in Fig. 2, for each contextual service item, its
semantic embedding and auxiliary embedding (to be learned)
are fused into an intermediate vector. Based on the services
selected, an attention function (to be learned) will generate
attention coefficients for them. All weighted service embed-
dings will be fused and, then fused with the intermediate vector
from the semantic embedding and auxiliary embedding (to be
learned) of the mashup goal. A fully connected layer with
a weight matrix (to be learned) will compute the possibility
of each service becoming the next service, and make the
prediction via a softmax function.

Take the motivating mashup in Fig. 1 again as an example,
with m being its textually described goal. At its second
creation step, two services have been selected as contextual
services, si being Twitter and sk being Facebook. After
training, the framework in Fig. 2 will recommend a candidate
service, sn being LinkedIn, for the third step.

In this section, we first define the research problem and
introduce some preliminary, and then discuss in detail our
approach.

A. Research Problem Statement and Preliminary

Our study is based on a repository comprising all his-
torical mashups and their component services. Let M ={
m1,m2, ...,m|M|

}
be a set of mashups, each of which

is textually described in natural language as its goal, and
S =

{
s1, s2, ..., s|S|

}
be a set of services. Each mashup mi

contains a subset of services Smi =
{
si1, s

i
2, ..., s

i
|Smi |

}
⊆ S.

In an incremental process of creating mashup m′ /∈M, before
it is completed, given multiple services that have been selected
as contextual services Sm′

t =
{
sm

′
1 , sm

′
2 , ..., sm

′
t

}
⊆ S, where

sm
′

j ∈ S, j ∈ [1, t] is the service selected at the jth step, our
goal is to calculate the probability for each service s ∈ S\Sm′

t

and recommend top K candidate services at the next step
t + 1. Further, let Cm′

t = Sm′
t ∪ {m′} denote the whole

context at the tth step of creating mashup m′. In this way, the
recommendation problem can be formulated to a problem of
probabilistic classification by learning to predict a conditional
probability:

p(sm
′

t+1 = s|Cm′
t ) = p(s|Cm′

t ) (1)

To solve the research problem, we first introduce some
preliminary.
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Fig. 2. Blueprint of proposed approach.

a) Semantic Embedding Matrix: Let matrix ES ∈
R(|S|+1)×d be a semantic vector space for services and mashup
goal. The jth row of the matrix ES

j , j ∈ [1, |S|], is a d-
dimension vector semantically representing the jth service
sj ∈ S . The last row of ES , i.e., ES

|S|+1, is the semantic
embedding for mashup goal. This matrix aims to learn from
textual descriptions of all services and mashups from the
repository.

b) Auxiliary Embedding Matrix: Let matrix EX ∈
R(|S|+1)×d denote an auxiliary vector space for services and
mashup goal. The jth row of the matrix EX

j , j ∈ [1, |S|], is a
d-dimension vector representation for the jth service sj ∈ S .
The last row of EX , i.e., EX

|S|+1 is the auxiliary embedding
for mashup goal. This matrix aims to learn from past service
occurrence and decision making behaviors.

c) Attention Vector: Let A ∈ Rd be a global d-dimension
vector that is shared by all services. It is used to model the
contribution scales of contextual services based on an attention
mechanism.

d) Weight Matrix: Let EW ∈ Rd×|S| be a weight matrix
of the fully connected layer, as shown in Fig. 2. It is used to
help predict the conditional probability defined in Eq. (1).

In our framework, Θ = {EX , A, EW } will be learned
through back-propagation, which will be discussed in detail
in the following sections.

B. Context Embedding

The semantic embedding matrix ES is learned through NLP
machine learning methods such as the Doc2Vec [13] model.
Each textual description of mashup goal or service is regarded
as a document. The corpus of all documents is fed into the
Doc2Vec model to receive a vectorized representation of each
mashup goal or service. Specially, we adopt the distributed
memory model of paragraph vectors (PV-DM) as it performs
better than the distributed bag of words of paragraph vector
(PV-DBOW) [13]. The trained ES will also be used for goal
exclusionary negative sampling, which will be discussed later
in Section 4. The auxiliary embedding matrix EX carries
non-semantic information, e.g., co-occurrence information and
decision-making strategies, of services and mashup. For any

two services items for example, the closer they are in EX ,
the more likely they are to co-occur in the same context. Note
that EX

|S|+1, the last row of the matrix, is an in-situ vector
that will be shared by all mashups. The vector will be trained
as an offset vector to adjust the semantic representation of a
mashup goal in a decision making process.

Given a partial mashup Cm′
t , the input units in the input

layer of Fig. 2 constitute a one-hot encoding vector where
only the unit at position i (si ∈ Cm′

t ) is set to 1. Thus,
for each contextual service si ∈ Cm′

t , the corresponding ith

rows of the trained ES and EX , i ∈ [1, |S|], are fed into
the fusion layer. For the mashup goal, its semantic embedding
ES

|S|+1 will be obtained in an ad hoc manner from the trained
Doc2Vec model, and its auxiliary embedding will be obtained
from the trained EX

|S|+1.
As shown in Fig. 2, for each ith contextual item, its

semantic embedding and auxiliary embedding are fused into
a fused vector in the fusion layer: EF

i = f(ES
i ,E

X
i ), where

i ∈ [1, |S|+ 1], and f : Rd × Rd 7→ Rd is a fusion function.

C. Attention-based Context Embedding

Considering that different contextual services may weight
differently in representing the whole context, we model the
contribution scale of every contextual service with an at-
tention mechanism. Specifically, for each contextual service
sm

′
t,k ∈ Cm′

t , its contribution scale is denoted as the weight of
wm′

t,k , where k ∈ [1, |S|]. It can be calculated with a softmax
transformation which is widely used in neural networks:

wm′
t,k =

exp(Λ(k))∑
sm

′
t,h∈Cm′

t
exp(Λ(h))

(2)

Λ(k) = EF
k ·A = f

(
ES

k ,E
X
k

)
·A (3)

where Λ(k) is an attention function shown in Fig. 2. It is a
dot product of the fused vector EF

k with an attention vector A
to be learned, which is used to model the contribution scales
of contextual services.

The resulted integration weight wm′
t,k acts as the attention

scale of contextual service sm
′

t,k. The higher wm′
t,k is, the more

we should pay attention to the contextual service sm
′

t,k than
other services sm

′
t,l ∈ Cm′

t \ {sm′
t,k} at the tth step of creating

mashup m′.
As shown in Fig. 2, we integrate the representations of all

contextual services and that of mashup goal to represent the
whole context Cm′

t as follows:

ECm′
t = EF

|S|+1+
∑

sm
′

t,k∈Cm′
t

wm′
t,k×EF

k , s.t.
∑

sm
′

t,k∈Cm′
t

wm′
t,k = 1

(4)

D. Prediction & Recommendation

Since the context Cm′
t has been represented as Eq. 4, the

conditional probability of Eq. 1 becomes:

p(sm
′

t+1 = s|Cm′
t ) = p(s|ECm′

t ) (5)
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As shown in Fig. 2, in the fully connected layer, the jth

column of the weight matrix (to be learned) EW
j is used

to calculate a scalar value to help obtain the conditional
probability. Specifically, for every service sn ∈ S, the scalar
value can be calculated as a dot production of the context
embedding ECm′

t and EW
n :

v(n) = ECm′
t ·EW

n (6)

Here v(n) can be seen as a scoring function qualifying the
relevance of a service sn with respect to the given context
Cm′

t . For a service sn, the higher the score is, the more
relevant it is to the context, and the more likely it should
be recommended. Thereafter, for any service sn ∈ S , the
likelihood of it to be selected at the next step defined in
Eq. 5 can be further normalized as a result of the softmax
transformation:

pΘ(s
m′
t+1 = sn|ECm′

t ) =
exp(v(n))∑

sm
′

t,h∈S exp(v(h))
(7)

Now that the probability of a service to be selected at the
next step has been calculated, for all of the services in S \Sm′

t

that have not been selected, we rank them according to their
probabilities in descending order, and recommend the top K
services.

In practice, at the beginning of creating a mashup, only the
mashup goal will be used as the input of our model. That
is, according to Eq. (4), the embedding of context becomes:
ECm′

0 = EF
|S|+1 = f(ES

|S|+1,E
X
|S|+1).

IV. MODEL LEARNING

In this section, we explain how to train our model, i.e., Θ =
{EX , A,EW }. The matrices are learned throughout creation
steps of mashups from historical data offline.

A. Objective Function

Let D =
{
Di
}

denote a training data set, where Di =⋃
0≤t<|Smi |

{Di
t}; Di

t =
〈
Ci

t , G
i
t

〉
is a training instance from

mashup mi at the tth step of creating it; Ci
t = {mi} ∪ Smi

t is
the given context, and Gi

t ⊆ S \Smi
t is the set of the observed

ground truth services that co-occur with Smi
t in the mashup at

step t. Given a training set D, the joint probability distribution
can be obtained as:

pΘ(D) ∝
∏

Di∈D

∏

Di
t∈Di

pΘ(G
i
t|ECi

t ) (8)

Thereafter, parameters Θ can be learned by maximizing the
following objective function over all training instances:

LΘ = log
∏

Di∈D

∏

Di
t∈Di

∑

sit,j∈Gi
t

pΘ(s
i
t,j |ECi

t )

= log
∏

Di∈D

∏

Di
t∈Di

∑
sit,j∈Gi

t
exp(v(j))

∑
sh∈S exp(v(h))

(9)

where pΘ(s
i
t,j |ECi

t ) is the conditional probability according
to Eq. 7.

B. Sampling Strategy
Optimizing the objective function in Eq. 9, however, is non-

trivial since each evaluation of the softmax function has to
traverse all services, which is extremely time-consuming. To
learn the aforementioned parameters efficiently, we employ the
idea of negative sampling [9] to approximate the conditional
probability. Considering that a service being negative to a
mashup mi tends to be less compatible to mi, we introduce a
goal exclusionary negative sampling strategy to obtain a set of
negative services. Specifically, based on the trained Doc2Vec
model, for all services in S \Smi , we rank them according to
their cosine-based semantic similarities with the mashup goal
in ascending order and choose the top r percent as negative
samples. In this way, let N i ⊆ S \ Smi denote the set of
negatively sampled services, each of which is not contained in
the mashup mi. Then, we redefine the conditional probability
as:

pΘ(G
i
t, N

i|ECi
t ) =

∏

sh∈Gi
t∪Ni

pΘ(sh|ECi
t ) (10)

pΘ(sh|ECi
t ) =

{
σ(vΘ(h)) sh ∈ Gi

t

1− σ(vΘ(h)) sh ∈ N i
(11)

where σ is the sigmoid function σ(x) = 1/(1 + exp(−x))
and vΘ(h) is the scoring function following the definition of
Eq. 6. In Eq. 11, σ(vΘ(h)) can be seen as the probability
of service sh being labeled as a ground truth service with a
score of vΘ(h) given context of Ci

t . Thus, the probability of
it being labeled as a negative service is 1− σ(vΘ(h)). In this
way, maximizing the conditional probability in Eq. 10 means
maximizing the probability of a service being a positive sample
and in the meantime minimizing the probability of it being a
negative sample. After that, the objective function becomes:

LΘ = log
∏

Di∈D

∏

Di
t∈Di

∏

sh∈Gi
t∪Ni

pΘ(sh|ECi
t )

=
∑

Di∈D

∑

Di
t∈Di





∑

sh∈Gi
t

log σ(vΘ(h)) +
∑

sh∈Ni

log[σ(−vΘ(h))]





(12)
Let Li,t

Θ denote the objective function for a training instance
Di

t as:

Li,t
Θ =

∑

sh∈Gi
t

log σ(vΘ(h)) +
∑

sh∈Ni

log[σ(−vΘ(h))] (13)

At last, according to Eq. 12, we utilize the stochastic
gradient ascent to learn the aforementioned parameters through
back-propagation.

The gradient and update rule of EW
h then can be represented

as:

∂Li,t
Θ

∂EW
h

= [l(h)−σ(vΘ(h))]·ECi
t ,EW

h ← EW
h +η · ∂L

i,t
Θ

∂EW
h

(14)

where l(h) is a label function whose value is 1 when sh ∈
Gi

t or 0 otherwise. The gradient and update rule of A for Di
t

can be represented as:
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∂Li,t
Θ

∂A
= [l(h)− σ(vΘ(h))] ·EW

h ·
∂ECi

t

∂A
,A← A+ η · ∂L

i,t
Θ

∂A
(15)

Similarly, the gradient and update rule of EX
k for sk ∈ Smi

t

and k = |S|+ 1 becomes:

∂Li,t
Θ

∂EX
k

= [l(h)−σ(vΘ(h))]·EW
h ·

∂ECi
t

∂EX
k

,EX
k ← EX

k +η · ∂L
i,t
Θ

∂EX
k

(16)
For the auxiliary embedding of mashup goal, ∂ECi

t

∂EX
|S|+1

= 1 ·
∂EF

|S|+1

∂EX
|S|+1

.

C. Model Training

Algorithm 1 Learning parameters EX , A and EW offline
Input: mashupsM, services S in training set, dimension size

d, learning rate η and negative sampling ratio r
Output: parameters EX , A and EW

1: Initialize EX ∈ R(|S|+1)×d, A ∈ Rd and EW ∈ Rd×|S|
2: ES

:|S| ← PV −DM(M,S, d)// obtain semantic embedding
of services from PV-DM

3: L← 0
4: while L not converged do
5: for each mashup mi ∈M do
6: ES

|S|+1 ← PV −DM(mi)
// obtain semantic embedding of mashup goal from PV-
DM

7: N i ← NegativeSampling(ES , r) // Sample top r
percent negative services

8: for each creation step t of mi do
9: Di

t ← GenerateInstances(mi,S) // generate Di
t as〈

Ci
t , G

i
t

〉

10: ECi
t ← EmbedContext(ES ,EX ,A, Ci

t)// context
embedding using Eq. (4)

11: Li,t ← ObjectiveFunctionV alue(EW ,ECi
t , Gi

t, N
i)

// Compute value of objective function using Eq. (13)
12: UpdateParameters(Gi

t, N
i,ECi

t , η)
// Update parameters according to the rules in Eq. (14),
(15) and (16)

13: L← L+ Li,t

14: end for
15: end for
16: end while
17: return EX , A, EW

Algorithm 1 lists the pseudo code of model training. The
first two steps are preprocessing: we first initialize parameters
(EX , A and EW ) randomly; and then feed the corpus of
textual descriptions of mashup goals and services into the PV-
DM model [13] to obtain semantic embedding of services,
i.e., ES

:|S|. Afterwards, for each mashup mi in the training
set (line 5), we obtain its semantic embedding (line 6),
i.e., ES

|S|+1, from the PV-DM model, and sample the top r
percent goal exclusionary negative services (line 7). After that,
incrementally, at every creation step t (line 8), we generate a
training instance Di

t (line 9), containing contextual services
Smi
t , mashup goal, and ground truth services Gi

t. Specifically,

Smi
t is augmented by randomly choosing one service from

Gi
t−1. Subsequently, Gi

t becomes Smi \ Smi
t . Afterwards, we

embed the context as a d-dimension vector according to Eq.
(4) (line 10). We then compute the objective function value
according to Eq. (13) (line 11), and update EX , A and EW

(line 12) according to Eqs. (14), (15) and (16) respectively.
Finally, we stop learning if the accumulated objective function
values converge.

Note that our offline training stage is goal driven in two
aspects. First, the auxiliary embedding of mashup goal and
contextual services, i.e., EX

|S|+1 and EX
:|S|, are jointly and

reciprocally learned based on the semantic embedding of
mashup goal, i.e., ES

|S|+1. Second, in the negative sampling
phase, mashup goal is leveraged to sample negative services
that are semantically exclusionary to it.

V. EXPERIMENTS

In this section, we explain experiments conducted and
analyze the results.

A. Experimental Setup

We designed two research questions to evaluate our ap-
proach from two angles:

• RQ1: How does our approach perform in terms of
recommendation metrics?

• RQ2: How does our approach perform throughout the
incremental process?

• RQ3: How does the attention mechanism affect the
performance?

We evaluated our approach on a real-world dataset that
was crawled from ProgrammableWeb up to December 2020.
The mashups containing only one service were removed.
Consequently, we obtained 1,553 mashups and 663 services
to form our testbed. Table I summarizes the overall statistics
of our dataset.

TABLE I
STATISTIC INFORMATION OF THE DATASET

Statistics Values
# of Mashups 1,553
# of Services 663
Avg. # of services per mashup 2.70
# of Training instances 3,310
# of Testing instances 883

During the training stage, we randomly chose 80% of
mashups as the training set and the rest 20% ones as the test
set. Without losing generality, we built training instances at
the last step of mashup construction. For each mashup mi in
the training set, we constructed |Smi | training instances. In
detail, for mashup mi, each service sik ∈ Smi was used as
ground truth to be recommended, and the rest services of Smi

were treated as the corresponding contextual services. That
is to say, Di was expanded as Di = ∪sik∈mi

{Di
k}, where

Di
k =

〈
Ci(k), sik, N

i
〉

and Ci(k) = {mi}∪Smi \ {sik} is the
corresponding context of sik.
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For textual descriptions of services and mashup goals, we
performed a series of pre-processing operations including
tokenization, stop-words removal and lemmatization with the
NLTK3 library. After that, we utilized the PV-DM model from
the doc2vec library of Gensim4 to obtain semantic vectorized
embeddings (i.e., ES). As for N i, we set the negative sampling
ratio (i.e., r) to be 20%.

We adopted the leave-last-out evaluation scheme in the
experiments, meaning that we evaluated recommendation per-
formance at the last step of constructing the testing mashups.
Similar to the expansion operation adopted for the training
set, for each mashup mj in the testing set, we expanded
it to |Smj | testing instances. For each sjk ∈ Smj , it was
used as the ground truth service and the remainder of Smj ,
Cj(k) = {mj} ∪ Smj \ {sjk}, was used as corresponding
context.

Four competitive methods were used as the baselines:

• MatchUp [10]: A service recommender system which is
based on correlations of used services as the user context.

• SNRec [11]: An approach to recommending next service
according service similarities based on co-existence.

• WVSM [12]: A content-based method to recommend
services using textual content similarity.

• ISRec [8]: A clustering and classification-based service
recommendation approach with word embeddings.

Note that, in our test bed, services that are published after
the mashup were not available to be recommended. Thus, for
all methods, the services whose submission time is earlier
than that of the mashup were hold out for recommendation.
In addition, for simplicity, we used element-wise plus as the
fusion function: EF = f(ES ,EX) = ES ⊕ EX . Thus, in
Eq. (16), ∂ECi

t

∂EX
|S|+1

= 1.

B. Evaluation Metrics

We employed the following two commonly used accuracy
metrics for evaluation. For both metrics, the higher the value
is, the better the performance is.

1. REC@K: It measures the recall of the top K recom-
mended services over all testing set. We reported the
results with K ∈ {3, 5, 10, 20}.

REC@K =

∣∣RK ∩G
∣∣

|G| (17)

where RK and G are the recommended list of services
and the ground truth services, respectively.

2. MRR: It measures the reciprocal rank of the position of
the ground truth over all testing set.

MRR =
1

rank(RK , G)
(18)

where rank(RK , G) is the hit position of the ground
truth in the recommended result.

3http://www.nltk.org/
4https://radimrehurek.com/gensim/models/doc2vec.html

C. Performance Comparison

For MatchUp, we defined the importance of a service as
the number of mashups in which it is invoked [10]. The
importance of a mashup was defined as the mean importance
of its component services. For WVSM, being the same with
[12], we set the smooth efficient λ to 0.1. For ISRec, except
for the number of topics T , which was set to be 28, we set
other parameters the same with [8]. For our approach, the
dimension size d and learning rate η were set to be 100 and
0.001, respectively. Table II shows the results of mean metric
values of different methods over all testing instances. The
best is in bold and the second best is underlined. In terms
of all accuracy metrics, the experiment demonstrates that our
approach outperforms others, which answers the first research
question RQ1.

TABLE II
PERFORMANCE COMPARISON OF DIFFERENT APPROACHES

Methods REC@3 REC@5 REC@10 REC@20 MRR
MatchUp 0.2514 0.2899 0.3386 0.3613 0.2099
SNRec 0.2661 0.3205 0.3692 0.4145 0.1738
WVSM 0.2276 0.2820 0.3533 0.4723 0.1790
ISRec 0.3228 0.4009 0.4881 0.5946 0.2325
Ours 0.3579 0.4602 0.5277 0.6116 0.2872

Both MatchUp and SNRec take into account invocations
between mashups and services. However, they do not con-
sider mashup goal and the contribution scales of contextual
services. The reasons that our approach performs better than
WVSM are two-fold. First, our approach takes into account not
only textual semantic information, but also decision-making
information. Second, we take contributions of different con-
textual services into consideration. As for ISRec, our approach
performs better because it does not make use of the different
contribution scales of selected services.

Especially, in terms of MRR, the results of other approaches
are lower than 0.25. However, our approach reaches at 0.2872,
meaning that generally the hit service will be ranked at the
third or forth position of the recommended result, which is
quite useful to support mashup development.

D. Recommendation Performance in Mashup Creation Pro-
cess

Ideally, the recommendation of our approach shall help
mashup development incrementally approaching mashup goal.
In other words, as the creation step increases, the recommenda-
tion results of our approach should become increasingly better.
In our test bed, we noticed that the number of creation steps
(i.e., the number of composing services) differs in different
mashups. Thus, to make it easier to answer RQ2, we divided
the mashups into groups, each containing mashups with the
same number of creation steps. For example, g3 groups the
mashups comprising three services. For a mashup mj in group
gl, we measured the recommendation performance over the
number of creation step t ranging from 0 to l− 1. At creation
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Fig. 3. Recommendation result in terms of accuracy metrics in mashup creation process

step t, the contextual services Sj
t and ground truth services

Gj
t are generated as we described previously in Section IV-C.
Fig. 3 presents the average values of accuracy metrics over

each number of creation step t in different mashup groups
g3∼g17. For each sub-figure in Fig. 3, x-axis represents the
index of creation step (t). The left y-axis and right y-axis
are mean values of evaluation metrics of REC@K and MRR
defined in Eqs. (17) and (18), respectively. The black line
depicts the average values of MRR over all test cases (i.e.,
use the right y-axis). The other colored lines show the test
results of REC@K when K=3,5,10,20, respectively.

As shown in Fig. 3, for almost all testing groups, the rec-
ommendation performance goes up consistently as t increases.
In some groups, though, the accuracy metrics sometimes
go down. The reason we found is that some services are
only included in the mashups in the testing set. Thus, the
embeddings of those services are never learned in the training
phase. Examples are two out of eight services, 66,3665 and
148,1576, in the mashup 190,2807 in group 8.

Overall, considering the average ratio of such “long-tail”
services over all mashups is lower than 8.23%, the experi-
mental results align with our intuition: with the number of
steps t getting higher, the more information we could extract
from the context, the better the recommendation performance
could be, and the closer to mashup goal the recommended
result is.

5https://www.programmableweb.com/api/skimlinks-link-monetization
6https://www.programmableweb.com/api/parsebot
7https://www.programmableweb.com/mashup/christmas-list-app

E. Effect of Attention Mechanism

In this subsection, we will answer the third research ques-
tion RQ3 by investigating the effect of the attention mecha-
nism in our approach. Fig. 4 shows the effect of the attention
mechanism in terms of the accuracy metrics of REC@K and
MRR. In terms of REC@3, REC@5, REC@10 and REC@20,
the recommendation performance increases by 6.91%, 6.69%,
6.28% and 5.71%, respectively. In terms of MRR, we observe
a similar result, as the performance increases by 3.79%. The
results are in line with the empirical fact that adopting the
attention mechanism could enhance the expression ability of
the embeddings of services and finally improve the overall
performance.

Fig. 5 illustrates the visualization of attention weights on
six example mashups and the corresponding 20 services.
The horizontal and vertical coordinates are IDs of mashups
and services in ProgrammableWeb, respectively. In mashup
87,8108, two services contribute the most: a chrome extension
pulling social network sharing counts into the chrome browser,
and a service 68,2729 for accessing detailed user data on
Pinterest. This experiment shows that, given a set of selected
services in the incremental mashup creation process, the
attention mechanism is adaptive, expressive and context-aware
to represent the latent requirement of the unfinished mashup.

8https://www.programmableweb.com/mashup/sharemetric-chrome-
extension

9https://www.programmableweb.com/api/pinterest-domain
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Fig. 4. The effect of attention mechanism Fig. 5. Visualization of attention weights

VI. CONCLUSIONS

We regard mashup creation as an incremental process which
at each step, we can help developers speed up the mashup
development by recommending the next service. In this pa-
per, we have presented a novel machine learning method of
goal-driven context embedding, which learns decision making
strategies for service composition toward mashup goals in
addition to service co-occurrence and semantic descriptions.
To efficiently train parameters, we have introduced a goal ex-
clusionary negative sampling strategy. Note that our approach
is general and can be expanded to broader next candidate
recommendation scenarios that are goal oriented, such as next
product recommendation in e-shopping systems.

In the future, we plan to extend our research in three
directions. First, we argue that a developer’s preference plays
an important role in her mashup creation process, thus we
plan to take personalized information into account to further
enhance our approach. Second, our current work applies a
naı̈ve function, i.e., element-wise plus, for embedding fusion.
We plan to explore other fusion functions to make our model
more expressive. Third, we observed in the incremental pro-
cess of mashup creation, the order of contextual services is
an influencing factor for next service selection. We will take
the sequential creation behavior into consideration to further
consolidate our approach.
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