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Abstract—Current large-scale green cloud data centers (GCDCs) tend to consume a huge amount of energy and generate enormous

carbon emissions. Existing studies have tried to solve this problem by either realizing prediction of green energy, or optimizing task

scheduling. In contrast, this work seamlessly combines green energy prediction and task scheduling to jointly optimize revenue and

energy cost of GCDCs. Specifically, this work designs a predictionmethod, named Savitzky-Golay and Long Short-TermMemory

network (SG-LSTM), to realize noise filtering and forecast green energy. Based on such prediction, a bi-objective optimizationmethod,

namedDecomposition-basedMulti-objective evolutionary algorithmwith Gaussianmutation and Crowding distance (DMGC), is

developed to optimize the revenue and energy cost of GCDCs. Its performance is demonstrated over real-life datasets including Google

cluster traces, wind speeds, solar irradiance and prices of electricity. Experimental results show that SG-LSTMoutperforms its two peers,

back propagation neural network and gated recurrent unit, in terms of root mean square errors andmean absolute errors. In addition,

DMGC surpasses its such peers as NSGA-II, SPEA2, andMOEA/D in terms of revenue, energy cost and average execution time.

Particularly, DMGC’s revenue is 18%, 20% and 13.1% higher, energy cost is 16%, 19.8% and 15.2% lower, and average execution time is

60.02%, 38.47%and 24.17% lower than those of NSGA-II, SPEA2, andMOEA/D, respectively.

Index Terms—Green clouds, intelligent optimization, machine learning, task scheduling, Savitzky-Golay filter, recurrent neural network, multi-

objective optimization algorithms

Ç

1 INTRODUCTION

IN recent years, various compute-intensive and data-inten-
sive applications produce, analyze, and store a great

amount of data in cloud data centers (CDCs) [1], [2]. The
data processing in CDCs thus requires tremendous energy.
If only thermal power is used to provide electricity, the
energy cost will be extremely high and CDCs will produce
a large amount of carbon dioxide to our environment. With
the growing number of large-scale CDCs being deployed
around the world, an imperative demand and challenge is
to reduce high energy cost and environmental pollution [3],
[4]. As an emerging solution, most CDCs gradually evolve
to green CDCs (GCDCs) by adopting renewable energy

facilities [5]. To reduce the energy cost of GCDCs, existing
studies mainly adopt high-accuracy green energy predic-
tion or energy-efficient task scheduling techniques.

Studies on the high-accuracy prediction methods of green
energy are becoming essential, because they help to realize
energy-efficient task scheduling for multiple GCDCs [6].
Various prediction models on green energy time series have
been proposed in the literature, including back propagation
neural network (BPNN) [7], artificial neural network (ANN)
[8], gated recurrent unit (GRU), and support-vector regres-
sion (SVR) [9]. Anamika et al. [10] predict the global monthly
average solar radiation with ANN. Jiang et al. [11] combine a
traditional BPNN with a representative unit approach to
forecast a short-term wind energy time series. Ahmed et al.
[9] design an SVR-based method for predicting wind speed.
However, these methods have limited feature learning abili-
ties and may be easily trapped into local minima. In recent
years, deep learning has been widely adopted in the green
energy prediction field. Many researchers adopt a long
short-term memory (LSTM) network, which is known for
realizing high-accuracy prediction of large-scale time series
[12]. For example, Dong et al. [13] design a predictionmethod
for wind power time series with the LSTM. Its feasibility and
effectiveness are verified, and the prediction accuracy of
wind power is significantly improved compared with tradi-
tional methods. Afrasiabi et al. [14] adopt a convolutional
neural network to increase spatial feature learning, and a
GRU to capture temporal features of wind speed.

In addition, there are many studies on energy-efficient
task scheduling for GCDCs. Similar to [15], [16], this work
focuses on delay sensitive applications, e.g., network I/O
apps, video conferences, and online games. In addition, in
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GCDCs, each application is usually deployed in separate
virtual machines, and the types of its tasks from users can
be identified from network packets. Thus, a task scheduler
can directly determine different applications in GCDCs,
and forward tasks to their corresponding virtual machines
for further processing. The work in [15] proposes a profit
maximization approach to well balance energy cost and rev-
enue of a single GCDC. Specifically, a convex optimization
problem is formulated for one GCDC, and solved by convex
programming techniques, e.g., interior point methods. Shao
et al. [16] consider load distribution for CDCs to minimize
the total energy cost for multiple distributed CDCs in a mar-
ket, where their electricity prices vary from location to loca-
tion. It is shown that the total amount of available green
energy in GCDCs is often insufficient, and it is highly
affected by weather conditions. As a result, current GCDCs
still mainly rely on power grid [17]. Therefore, this work
adopts three types of energy sources, i.e., wind energy, solar
energy, and power grid, to power GCDCs.

To date, there have been several studies focusing on
either energy prediction [6], [9], [10], [11], [13] or resource
optimization [15], [16], [17] in GCDCs. Our hypothesis is
that, considering these two objectives together may lead to
better results for both aspects simultaneously. This idea
directly motivates this work, and our proposed methods
well demonstrate the importance of prediction accuracy of
green energy on the scheduling of tasks in GCDCs. Trying
to tackle the two issues simultaneously can jointly increase
the revenue of GCDCs and reduce their energy cost in
much lower execution time. The combination of a time
series prediction method and a bi-objective task scheduling
one should help GCDC providers achieve more intelligent
and energy-efficient task scheduling than those without
such combination. Our work aims to fill the gap between
energy prediction and resource optimization for better per-
formance, which has not been done in existing studies of
GCDC operations. It reveals the impact of prediction quality
of green energy on bi-objective GCDC task scheduling
performance.

The contributions of this work are summarized in four-
fold:

1) A deep neural network called Savitzky-Golay (SG)-
LSTM is designed to predict green energy in distrib-
uted GCDCs. It provides fundamental data support
for intelligent task scheduling.

2) A comprehensive set of factors (including service
level agreements (SLAs) [2] of tasks, task arriving
rates, service ones and loss probability of tasks) are
simulated to make our designed model close to real-
life GCDCs powered by different energy sources,
which yields realistic experimental results.

3) An improved bi-objective optimization algorithm is
developed to make a good trade-off between reve-
nue gain and energy cost of GCDCs. It is named
Decomposition-based Multi-objective evolutionary
method with Gaussian mutation and Crowding dis-
tance (DMGC).

4) This work seamlessly combines the power of the pre-
diction and scheduling technologies to achieve the bet-
ter results than other widely-known methods. An

Savitzky-Golay LSGM (SG-LSTM)model is developed
to predict the available renewable energy in each
GCDC, while DMGC simultaneously optimizes the
energy cost and revenue formultiple GCDCs.

The remainder of the article is organized as follows.
Section 2 discusses the related work. Section 3 presents the
motivation, and an overall architecture of GCDCs and for-
mulates a bi-objective optimization problem. SG-LSTM and
DMGC are described in Section 4. Section 5 presents the
results of performance evaluation of designed methods
over real-life traces and green energy data. Finally, Section 6
concludes the work.

2 RELATED WORK

In this section, we compare our work with the literature in
the aspects of task scheduling, green energy management in
data centers, and green energy prediction.

2.1 Task Scheduling

Recently, scheduling of tasks in data centers has received an
increasing amount of attention [4], [5], [19], [20], [21], [22].
Hu et al. [4] design an algorithm of task scheduling to
reduce both cost of network, and total time of data-parallel
applications across multiple data centers located in different
sites. An integer linear program is formulated, and its solu-
tion achieves the improvement of both job completion and
cost efficiency. Yuan et al. [5] design a spatio-temporal
scheduling method to manage tasks within their response
time limits in a cost-effective way. It considers temporal
and spatial variations for energy cost minimization, which
is achieved by combing particle swarm optimization, simu-
lated annealing and genetic algorithm. Kanemitsu et al. [19]
present a clustering-based algorithm to schedule tasks for
the schedule length minimization in heterogeneous process-
ors. It gives the lower limit of the whole running time in
each single processor, by considering applications and char-
acteristics of a system. Task assignment and clustering are
realized to minimize the length of schedule. Varshney and
Simmhan [20] propose several scheduling approaches
for many tasks with delay bound limits on virtual machines
in clouds to decrease the cost. The timely completion is
guaranteed by determining price, the number of virtual
machines, task placement, migration and checkpointing.
Mashayekhy et al. [21] design a method for improving the
energy efficiency of MapReduce applications, while meet-
ing SLA. The energy-aware job scheduling is modeled as an
integer program for minimizing the consumption of energy.
Zhang et al. [22] present a two-stage approach to classify
and match tasks with virtual machines, thereby balancing
workload among cloud resources and minimizing user cost.

Different from all of the aforementioned methods, this
work adopts an improved algorithm of bi-objective optimi-
zation to simultaneously reduce energy cost and increase
revenue of GCDCs. To the best of our knowledge, we are
the first one to form such a problem and provide a solution.
Our approach jointly optimizes the energy cost and revenue
of GCDCs for a good trade-off between them, by consider-
ing a holistic collection of parameters common to distrib-
uted GCDCs.
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2.2 Green Energy Management in Data Centers

More emerging studies have been conducted to achieve
energy optimizationwith green energy in distributedGCDCs
[23], [24], [25], [26], [27]. The work in [23] proposes a game-
thoretic method to minimize the elasticity cost, by provision-
ing resources in a green mobile cloud environment. They
present the modeling of overhead, processing time, and
energy in opportunistic offloading for the mobile cloud. A
utility-based elasticity cost and profit calculation method is
also given for resource utilization maximization. Nan et al.
[24] adopt hybrid renewable energy sources to support fog
nodes that use solar power and grid power as primary and
backup supplies. They propose an online algorithm by using
Lyapunov optimization, to gain a trade-off between average
cost and average response time. Pan and Chen [25] propose a
transmission rate scheduling scheme for energy conservation
in mobile cloud computing, through a Lyapunov optimiza-
tion approach. A closed-form formula for the transmission
rate is given. Chou et al. [26] propose an energy-saving
resource allocation approach with an algorithm of particle
swarm optimization. It considers the energy efficiency ratio
of air conditioners, and energy consumption of virtual and
physical machines. Higuera et al. [27] design a power model
for time-limited servers in data centers, by considering the
temperature dependency and static energy consumption. It
is used to optimize workload assignment, and dynamic volt-
age and frequency scaling.

In contrast to the aforementioned work, we propose an
LSTM-based time series approach to realize the prediction
of solar irradiance and wind speed in multiple GCDCs in
future time slots. We then integrate the prediction of green
energy with the improved bi-objective task scheduling to
better manage GCDCs.

2.3 Green Energy Prediction

Many studies have been conducted to predict green energy
in GCDCs in recent years [28], [29], [30], [31], [32]. Park and
Hur [28] design a spatial prediction method for green energy
in power grids. Kriging methods and optimal spatial model-
ing are adopted to estimate wind and solar energy for long-

term capacity planning of power grid. Li et al. [29] propose
an algorithm based on multi-verse optimizer to realize the
optimization of a support vector machine for predicting the
amount of generated photovoltaic power. The chaotic
sequences are adopted to realize the initialization of popula-
tion and improve the algorithm convergence. Li et al. [30]
propose a fuzzy approach for the prediction of wind speeds
sampled in each hour. A structure of neural network is
designed to integrate the advantages of both a fuzzy infer-
ence system and a neural network. A least square approach
with optimized parameter learning is developed tominimize
training errors. Zhang et al. [31] construct the fractional grey
models with varying orders to analyze the uncertainty in
wind speed. Then, a hybrid model of prediction designed
with a neural network is proposed, and a method of support
vector regression is designed to realize the scatter operation
for wind speeds. Huang et al. [32] design a method for pre-
dicting combination probability of wind power with the cor-
relation decision of area gray. The data of wind power is
processedwith energy-efficient decomposition of variational
mode to decrease the data randomness. Then, ten covariance
functions are used to establish several Gaussian process
regression predictionmodels.

Different from those approaches, this work adopts a deep
learning method to realize the prediction of time series of
wind speed and solar radiation. It applies an SG filter
method to the time series before LSTM-based prediction is
conducted. It verifies the importance of prediction accuracy
of green energy on the optimized scheduling of tasks in
GCDCs, and combines data prediction and task scheduling
optimization for energy-efficient and environment-friendly
GCDCs. For clarity, Table 1 compares our work and its state-
of-the-art studies in green energy, distributed CDCs, bi-
objective optimization, revenue modeling, long-term depen-
dence, and data filtering.

2.4 Comparison With Our Earlier Work

Compared with our prior work reported in [18], this arti-
cle proposes an improved bi-objective optimization algo-
rithm, DMGC, to realize high-performance task scheduling.

TABLE 1
Comparison of Our Work and its Related Studies (✓Means Considered While �Means Not)

Study/Parameter Green energy Distributed CDCs Bi-objective optimization Revenue modeling Long-term dependence Data filtering

[4] � ✓ ✓ � � �
[5] ✓ ✓ � � � �
[13] ✓ � � � ✓ �
[19] � ✓ � � � �
[20] � ✓ � � � �
[21] � ✓ � � � �
[22] � ✓ � � � �
[23] ✓ � ✓ � � �
[24] ✓ ✓ ✓ � � �
[25] ✓ ✓ � � � �
[26] � ✓ ✓ � � �
[27] ✓ � ✓ � � �
[28] ✓ � � � � �
[29] ✓ � � � � �
[30] ✓ � � � ✓ ✓

[31] ✓ � � � � �
[32] ✓ � � � � ✓

Our work ✓ ✓ ✓ ✓ ✓ ✓
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Specifically, dynamic crossover mutation parameters, Gauss-
ian mutation and crowding distance operations are newly
introduced. Among them, dynamic parameters can overcome
shortcomings of premature convergence and poor stability. In
addition, the Gaussian mutation can introduce new genes into
the population if individuals are trapped into local optima.
Furthermore, the method of crowding degree evaluation
based on crowding distance can make the distribution of the
results more uniform, so as to obtain better solutions. By inte-
grating the aforementioned new operations, our extensive
experiments have demonstrated that a good trade-off between
revenue and energy cost of GCDCs is achieved in thiswork.

3 MOTIVATION AND PROBLEM FORMULATION

In this section, we will first illustrate a motivating example,
then propose an overall architecture of GCDCs, and then
introduce preliminaries, and finally formulate the problem.
To reduce the emission of environment-polluting gas and
the energy cost, present GCDCs usually consider the usage
of green energy. In other words, a GCDC is typically sup-
ported by three types of supplies of power, i.e., solar, wind
and grid power. To reduce the energy cost for the GCDC as
much as possible, green renewable energy has the priority
to be used.

Let us imagine one scenario in the context of simplified
federated GCDCs, whose architecture is illustrated in Fig. 1.
As shown in Fig. 1, three GCDCs are federated, and the con-
figuration settings of the servers in each single GCDC fol-
low those in [15]. Assume that based on some green energy
prediction, at a certain time point t0, the green power-based
processing capacity of each GCDC is 3,000 due to limits of
resources including wind and solar energy in each GCDC.

Assume that 9,000 tasks all arrive at t0, closest to GCDC 1.
If we only considerminimum communication delay, all tasks
are sent to GCDC 1 for processing. Note that althoughGCDC
1 only possesses 3,000 processing capacity upon green
power, the federation does carry a processing capacity to
cover all 9,000 tasks using green power. Thus, an intelligent
scheduler will choose to dispatch the incoming 9,000 tasks to

three GCDCs, as shown in Fig. 1, in order for all available
renewable energy in all three GCDCs to be fully utilized.

Meanwhile, how to dispatch the 9,000 over the three
GCDCs require careful task scheduling. Tasks may feature
different types and may require to be processed within cer-
tain time limits, i.e., Service Level Agreement (SLA). Note
that each GCDC may have different computing power at
the time. Therefore, optimized task scheduling may not
only reduce delay and loss possibility of tasks, but also
reduce cost and increase revenue of every GCDC.

This motivating example explains the necessity of green
energy prediction and task scheduling. Fig. 1 also illustrates
the overall system architecture of our proposed framework.
To intelligently dispatch different types of tasks to GCDCs,
this work first builds a prediction model based on deep neu-
ral networks by using historical data of solar radiation and
wind speed at each GCDC. The purpose of this step aims to
more accurately predict solar radiation and wind speed in
future time slots; and green renewable energy in each
GCDC is calculated. A centralized task scheduler of the fed-
eration can quickly and intelligently dispatch tasks based
on the predicted green renewable energy data. The task
scheduler is supported by a proposed algorithm, aiming to
achieve both energy cost saving and gas emission reduction
by efficiently and rationally using the renewable energy at
each federated GCDC.

Next, we will start to introduce preliminaries in six
aspects: SLAs, forecasting model, service rate, loss probabil-
ity of tasks, solar and wind energy models, and objective
functions. For clarity, all notations used throughout this
article are summarized in Tables I and II in the Supplemen-
tary File, which can be found on the Computer Society Digi-
tal Library at http://doi.ieeecomputersociety.org/10.1109/
TSUSC.2021.3124893.

3.1 SLAs

Thiswork assumes that servers in each single GCDC are iden-
tical, i.e., they possess the same processing capacity for the
same type of applications. In addition, we assume that the
amount of renewable energy does not incur the cost after

Fig. 1. System architecture of GCDCs.
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facilities of green energy have been deployed and successfully
run. Naturally, different GCDCs have different processing
capabilities, and different loss probabilities of tasks for differ-
ent applications, thereby leading to different ways to calculate
penalties and revenues for GCDCs.Without losing generality,
we consider three SLAs that are standard service protocols
and are specified in terms of three parameters, i.e., ai, bi and
Di. Here,Di is the specified delay bound of type i tasks, ai is
the fee paid by users if a task is finished within Di, and bi

is the penalty fee paid by a GCDC provider if the completion
time of a task is beyond Di. Three types of SLAs are
illustrated in Fig. 2: Gold whereD1 =300 ms, a1 =7�10�3 and
b1 =3.5�10�3; Silver where D2 =400 ms, a2 =5�10�3
and b2 =2�10�3; and Bronze whereD3= 500 ms, a3= 3�10�3,
and b3 =1�10�3.

3.2 Forecasting Model

This work builds on top of units of LSTM to investigate
long-term dependencies of data. As a variant of Recurrent
Neural Networks (RNNs), LSTM adopts a block of memory
to replace neurons in the hidden layer. Each memory block
includes memory cells and three types of gates, i.e., input,
forget and output ones, respectively. They are either closed
or opened, to specify whether the memory state in the layer
of output leads to a threshold value that is used in the cur-
rent layer. The model of the memory cells in an SG-LSTM is
shown in Fig. 3.

A forget gate is adopted to produce the output vectors of
the input and the hidden layer in the last time slot. The out-
put value of forget gate in current time slot t, ft, is obtained as:

ft ¼ sðWf ½ht�1; xt� þ bfÞ; (1)

where s is a sigmoid activation function, ht�1 denotes an
output of hidden state in time slot t�1, xt denotes an input
vector in time slot t, Wf denotes a weight vector for forget
gate f , and bf denotes a bias vector for forget gate f .

After input and forget gates, the state of current unit of
time memory is delivered to the next time slot, i.e.,

at ¼ sðWa½ht�1; xt� þ baÞ (2)

ct ¼ tanhðWc½ht�1; xt� þ bcÞ (3)

ct ¼ ft � ct�1 þ at � ct; (4)

where at is the output result of the input gate in time slot t,
Wa and Wc denote weight vectors for input gate a and cell
state c, tanh denotes the tangent function, ct denotes the cell

state in time slot t, ct�1 denotes the cell state in time slot
t�1, and ba and bc denote bias vectors for input gate a and
cell state c.

The third component is the output gate. Its input and
updated state of memory units are synthetically used to
produce the output, i.e.,

ot ¼ sðWo½ht�1; xt� þ boÞ (5)

ht ¼ ot � tanhðctÞ; (6)

where ot is the value of the output gate in time slot t, ht is the
output of hidden state in time slot t, Wo denotes a weight
vector and bo is a vector of bias for output gate o.

3.3 Service Rate

Let J denote the total number of GCDCs. Let I denote the
number of task types. $i;j

t is the number of switched-on
servers of type i (1�i�I) in GCDC j (1�j�J) in time slot t,
and $i;j

t is an integer, i.e., $i;j
t 2 Nþ. ki is the number of type

i tasks that each single server can process per second. mi;j
t

denotes the task service rate of type i in GCDC j in time slot
t. Then, i.e., mi;j

t ¼ ki$
i;j
t . �j is the total number of servers in

GCDC j:

XI
i¼1

$i;j
t � �j: (7)

3.4 Loss Probability of Tasks

Qi is the queue capacity of type i tasks. Similar to [5], we
adopt an M=M=1=Qi=1 queueing system to model servers
of type i in each GCDC. qð$i;j

t Þ is the task loss probability of
type i in GCDC j in time slot t. If$i;j

t ¼ 0, all tasks have to be
rejected, i.e., qð$i;j

t Þ ¼1. If �i;j
t ¼ m

i;j
t , according to [33],

qð$i;j
t Þ ¼ 1

Qiþ1 . If �i;j
t <m

i;j
t , the queueing system of each

GCDC can achieve a steady state, and qð$i;j
t Þ is obtained in

(8) following [5]. Thus, qð$i;j
t Þ is obtained as:

qð$i;j
t Þ ¼

1; $i;j
t ¼ 0

1
Qiþ1 ; �

i;j
t ¼ m

i;j
t 6¼ 0

1� �
i;j
t

ki$
i;j
t

1� �
i;j
t

ki$
i;j
t

� �Qiþ1
�
i;j
t

ki$
i;j
t

� �Qi

; �i;j
t <m

i;j
t

8>>>>>>><>>>>>>>:
(8)

According to the M=M=1=Qi=1 queueing system, the
average response time of each task of type i in GCDC j is

1

ki$
i;j
t ��

i;j
t

, and it needs to be less than or equal toDi, i.e.,

1

ki$
i;j
t ��i;j

t

�Di (9)

Fig. 2. Three types of SLAs.

Fig. 3. Structure of memory cells in SG-LSTM.
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In addition, �i;j
t is the number of type i tasks scheduled to

GCDC j, and �i
t is the arriving rate of type i tasks in time

slot t. Thus, we have:

�i
t ¼

XJ
j¼1

�i;j
t : (10)

3.5 Solar and Wind Energy Models

3.5.1 Solar Energy Model

Ej;⊛
t is GCDC j’s current available solar energy in time slot t

[34], [35].

Ej;⊛
t ¼ ’jcjy

j
tL; (11)

where ’j denotes the converting rate of the solar irradiance
to the electricity in GCDC j, cj denotes the area of active
solar irradiance in GCDC j, yjt denotes the current solar irra-
diance in GCDC j in time slot t, andL is length of a time slot.

3.5.2 Wind Energy Model

Ej;�
t denotes GCDC j’s current available wind energy in

time slot t [34], [35].

Ej;�
t ¼ 1

2
hj�jzjðnjtÞ3L; (12)

where hj is the wind to electricity converting rate in GCDC
j, �j denotes the local air density in GCDC j, zj denotes the
wind turbine rotor area, and n

j
t is GCDC j’s wind speed in t.

3.6 Objective Functions

Two objective functions are designed in this work: energy
cost modeling and revenue modeling.

3.6.1 Energy Cost

Within each time slot t, the number of type i tasks handled

by each switched-on server in GCDC j is
Lð1�qð$i;j

t ÞÞ�
i;j
t

$
i;j
t

. Thus,

the CPU busy time of each switched-on server of type i in

GCDC j is
Lð1�qð$i;j

t ÞÞ�
i;j
t

ki$
i;j
t

minutes. The CPU utilization for

each switched-on server of type i in GCDC j in time slot t is
denoted by Ui;j

t . By dividing the busy time of CPU by L, Ui;j
t

is obtained as
ð1�qð$i;j

t ÞÞ�
i;j
t

ki$
i;j
t

.

In addition, let Pi;j
t denote the total power consumed by

type i tasks in GCDC j in time slot t. Following [35], Pi;j
t is

obtained as:

Pi;j
t ¼ $i;j

t
�P þ ð�� 1ÞP̂ þ ðP̂ � �P ÞUi;j

t

h i
; (13)

where �P (P̂ ) is the power consumed by each idle (active)
server, and � is the value of power usage effectiveness for
each GCDC.

By replacing Ui;j
t in (13), Pi;j

t is obtained as:

Pi;j
t ¼

ℷ1ki$
i;j
t þ ℷ2�

i;j
t ð1� qð$i;j

t ÞÞ
ki

(14)

where

ℷ1 ¼ �P þ ð�� 1ÞP̂ (15)

ℷ2 ¼ P̂ � �P (16)

½	�þ ¼ maxf	; 0g; (17)

Ct is the cost of energy consumed by multiple GCDCs in
time slot t. Similar to [15], it is also assumed that the green
energy is free if the renewable facilities have been installed.
Then, Ct is obtained as:

Ct ¼
XJ
j¼1

Cj
t

XI
i¼1

Pi;j
t L� Ej;⊛

t � Ej;�
t

" #þ !
; (18)

whereCj
t is the price of electricity in GCDC j in time slot t.

3.6.2 Revenue Modeling

The revenue brought tomultiple GCDCs in time slot t [35] is:

Rt ¼
XJ
j¼1

XI
i¼1
ðð1� qð$i;j

t ÞÞai�
i;j
t L� qð$i;j

t Þbi�i;j
t LÞ; (19)

where ai denotes the fee withinDi of each task of type i, and
bi is the penalty corresponding to each task of type i fin-
ished beyondDi.

3.7 Problem Definition

With all the preliminaries prepared, we are ready to formu-
late the problem into solving a bi-objective optimization
problem to evaluate the prediction accuracy of renewable
energy. According to the objective functions established in
Section 3.6, a problem of bi-objective optimization is formu-
lated to optimize F1 and F2, i.e.,

F1 : Max
dd

RtðddÞ (20)

F2 : Min
dd

CtðddÞ (21)

subject to

XI
i¼1

$i;j
t � �j (22)

1

ki$
i;j
t ��i;j

t

�Di (23)

�i
t ¼

XJ
j¼1

�i;j
t (24)

$i;j
t 2 Nþ; �i;j

t 
0: (25)

It is worth noting that (20) and (21) are conflicting with
each other. For example, the minimization of F2 requires
that the fewest servers are switched-on, i.e., $i;j

t ¼ 0. How-
ever, this means that no tasks are executed, which brings no
revenue to GCDCs, thereby failing to maximize F2.

Here, dd is a vector of decision variables, i.e., �i;j
t and $i;j

t

(i=1, 2, . . . , I, j=1, 2, . . . , J). Thus, dd=½�1;1
t , �1;2

t , 	 	 	 , �I;J
t , $1;1

t ,
$1;2

t , 	 	 	 , $I;J
t �. dd can be regarded as an encoding operation,

which is composed of �i;j
t and $i;j

t . Its dimension is 2IJ . Its
first IJ dimensions represent the number of tasks of three
different types assigned to three GCDCs; while its last IJ
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dimensions represent the number of switched-on servers in
GCDCs for processing the tasks.

To evaluate the objective functions in the proposed
model, we need to calculate them through dd. In this work,
the transformation from dd to objective functions Rt and Ct

can be regarded as a decoding operation. A method of pen-
alty function is adopted to transform a bi-objective con-
strained optimization problem into an unconstrained one
given as:

eF1 : Min
dd

�RtðddÞþ"ûðddÞf g (26)

eF2 : Min
dd

CtðddÞþ"ûðddÞf g (27)

ûðddÞ ¼
Xt

r¼1
½maxf0;�DrðddÞg�2þ

Xu

x¼1
jnxðddÞj2; (28)

where nxðddÞ denotes an equality constraint x, and DrðddÞ
denotes an inequality constraint r. t is the total number of
all inequality constraints, u is the total number of all equal-
ity constraints, and " is a large positive constant.

Therefore, the unconstrained problem represents a con-
strained mixed integer non-linear programming problem
(MINLP), and its solution complexity is NP-hard [37]. It is
also demonstrated that MINLP has a problem of exponen-
tial explosion, and there are no polynomial-time approaches
[38]. Thus, we developed an improved bi-objective meta-
heuristic optimization algorithm named DMGC to solve it.

4 SG-LSTM PLUS DMGC

In this section, we present our proposed solution, an SG-
LSTM network to realize noise filtering and forecast green
energy, and DMGC to realize the optimization of the reve-
nue and energy cost of GCDCs.

4.1 SG-LSTM Network

Based on our earlier work [36], we design a network of
Savitzky Golay and Long Short Term Memory (SG-LSTM)
for predicting solar irradiance and wind speed in GCDCs.
Savitzky Golay filter is adopted to remove interference of
noise, and extreme points in the data. The network com-
prises four layers, as shown in Fig. 4: input, hidden, fully
connected (FC) and output layers, respectively. The neuron
numbers in the input layer and the hidden layer are 30 and
128, respectively. The neuron numbers in the fully con-
nected layer and the output one are 64 and 1, respectively.
The neurons in the input layer mean the input values, and
all the other neurons are functional ones with activation
functions. x ¼ ðx1; x2; 	 	 	; xvÞ is the input data, and v repre-
sents its size.

4.2 Decomposition-Based Multi-Objective
Evolutionary Algorithm With Gaussian Mutation
and Crowding Distance (DMGC)

Based on our green energy prediction model, we further
design an improved bi-objective optimization algorithm to
jointly optimizeF1 andF2 in the formulated problemdefined
in Section 3.7. The proposed algorithm named DMGC is
derived by following a multiobjective evolutionary algo-
rithm based on decomposition (MOEA/D) algorithm. It

includes crossover, mutation and selection operations. Dif-
ferent from MOEA/D, our proposed DMGC is novel in the
following three aspects. First, DMGC adopts dynamic cross-
over/mutation parameters for tackling the shortcomings of
premature convergence and poor stability of MOEA/D. Sec-
ond, DMGC exploits the Gaussianmutation to strengthen the
efficiency of global search. It can keep better genes, and intro-
duce high-quality ones into the population when they are
trapped into local optima. Third, DMGC adopts a crowding
degree evaluation approach based on crowding distance. In
each iteration of DMGC, individuals with smaller crowding
distances are removed from the external population.

4.2.1 Dynamic Crossover/Mutation Parameters

At the initial stage, DMGCadopts larger crossover/mutation
parameters, which strengthen the ability of global search,
and speed up the convergence speed. In the later stage, cross-
over/mutation parameters are smaller for preventing excel-
lent genes from being destroyed than those in the initial
stage. In addition, new genes can be introduced into the pop-
ulation for avoiding trapping into local optima.

pn ¼ p̂n � ðp̂n � �pnÞ � atanð =GÞ; (29)

pi ¼ p̂i � ðp̂i � �piÞ � atanð =GÞ (30)

where p̂n (�pn) is the maximum (minimum) possibility of
crossover, p̂i (�pi) is the maximum (minimum) possibility of
mutation, atan denotes an arctan function, is the iteration
count, and G is the total number of iterations in DMGC.

4.2.2 Gaussian Mutation

The Gaussian mutation adopts a random vector that con-
forms to a Gaussian distribution for updating a new indi-
vidual (Xnew ) produced after the crossover operation. In
this way, it helps DMGC to escape from local optima and
converge to global ones in a faster manner. k denotes a vec-
tor of variance, which is obtained as:

k ¼ #̂� �#

j#j ; (31)

where #̂ ( �#) is a vector of lower (higher) bounds of all deci-
sion variables, and j#j is the dimension of each individual.
V denotes a vector of randomvalues, which is obtained as:

V ¼ MinðMaxðN ðXnew; kÞ; �#Þ; #̂Þ; (32)

whereNð	Þ denotes a Gaussian distribution function.

Fig. 4. Structure of SG-LSTM.
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Then, for each dimension d of Xnew, if randðÞ<pi, X
d
new =

Vd, i.e.,
Xdnew ¼ Vd; if randðÞ<pi; (33)

where randðÞ is a standard function that returns a random
number in (0,1) in Matlab.

4.2.3 Crowding Distance

LetLð#Þ denote the crowding distance of each individual # in
the external elite solution setV.Lð#Þ is obtained as follows.

Lð#Þ ¼
1; eFþ% � eF�% ¼ 0 or # ¼ 1 or # ¼ jVjPg

%¼1
ðnext%

#
�pre%

#
Þ

ðeFþ% �eF�% Þ; otherwise
8<: ; (34)

where jVj denotes the number of individuals in V, eFþ% andeF�% denote maximum and minimum values of objective
function % in V, respectively. next%# (pre%#) denotes the func-
tion value of the next (previous) individual adjacent to indi-
vidual # sorted by values of each objective function %.

Algorithm 1 shows the pseudo code of DMGC. Line 1
specifies the population size ( ~N), the number of vectors of
weight (T ), the set of vectors of weight (~�) and the maximum
number of iterations (G). Line 2 updates the Euclidean dis-
tance between any two vectors of weight, and changes Bð#Þ
for each solution #. Line 4 initializes Z that includes currently
best values for two objectives. Line 5 chooses non-dominated
solutions from X, and keeps them into V. Line 8 changes the
probability of crossover, pn, and the probability of mutation,
pi, by using (29) and (30). Line 11 selects two random solutions
k and l fromBð#Þ. Line 12 shows that if a random number r is
within the range of the generated crossover parameters, two
selected individuals are crossed to produce a new solution.
Otherwise, a random individual is selected as a new one. Sim-
ilar toMOEA/D,Xnew is updated as:

Xnew ¼ rXðkÞ þ ð1� rÞXðlÞ; r < pn
XðmÞ; otherwise

�
; (35)

where r (r 2 (0,1) is a random number and XðmÞ denotes an
individual randomly selected from populationX.

Line 13 performs Gaussian mutation on individual Xnew

with probability pi, and checks the boundary value. Line 16

updates Z. For each %2{1,. . . ; gg, if Z% < eF%ðXnew), Z% =eF%ðXnew). Line 19 updatesBð#Þ for each individual #. Similar
to operations of MOEA/D, for each #

02Bð#Þ, if
gteðXnewj ~�%; ZÞ �gteðXð#0 Þj ~�%; Z),Xð#0 Þ=Xnew. g

teðXð#0 Þj ~�%; Z)
is obtained as follows.

gteðXð#0 Þj~�%; ZÞ ¼ Max
%2f1;			;gg

f~�%j eF%ðXð#0 ÞÞ � Z%jg; (36)

where Xð#0 Þ denotes individual #
0
in Bð#Þ, and g denotes

the number of objective functions.
Line 20 updates V according to the crowding distance

method. This step removes all the vectors dominated by
Xnew from V. If the size of V is less than jVj,Xnew is immedi-
ately added to V if Xnew is not dominated by any vectors in
V. If the current size of V exceeds jVj, the method of crowd-
ing degree evaluation based on crowding distance Lð#Þ of
individual # is performed with (34). An individual with the

smallest crowding distance in V is replaced. Finally, Line 12
outputsV.

Algorithm 1. DMGC

1: Initialize the size of population ( eN), the number of vectors
of weight (T ), the set of weight vectors (~�), and the total
number of iterations (G)

2: Update Euclidean distances between any two vectors of
weight, and change Bð#Þ for each solution #

3: Initialize X and V
4: Initialize Z that includes currently best values for two

objectives
5: Keep non-dominated solutions inX into V
6:  1
7: while �G do
8: Change the probability of crossover, pn, and the

probability of mutation, pi, by using (29) and (30)
9: # 1
10: while #� eN do
11: Choose two random solutions k and l from Bð#Þ
12: UpdateXnew with (35)
13: Perform Gaussian mutation onXnew with the

probability of pi, and check the boundary value
14: for % 1 to g do
15: if Z% < eF%ðXnew) then
16: Z%= eF%ðXnew)
17: end if
18: end for
19: Update Bð#Þ for each solution #
20: Update Vwith (34)
21: end while
22: end while
23: return V

We further analyze the computing complexity of Algo-
rithm 1. In Algorithm 1, the computing overhead is mainly
caused by the while loop, which terminates after G itera-
tions. In each iteration of DMGC, the complexity of Lines
14–18 is OðgÞ. The complexity of Line 19 is Oðg2Þ. Line 20
includes the sorting of individuals based on the crowding
distance, and the update of V. The time complexity of the
former is OðjVjlogjVj) while that of the latter is OðjVj).
Thus, the time complexity of Line 20 is OðjVjlogjVj).
In other words, the accumulated complexity of each itera-
tion is Oð eN g2þjVjlogjVjÞð Þ. Finally, the complexity of

Algorithm 1 becomes OðG eN g2þjVjlogjVjÞð Þ.

5 PERFORMANCE EVALUATION

We adopted real-life data to evaluate the performance of
our proposed algorithms. DMGC was coded with MATLAB
r2017b, and executed on a server with an Intel (R) core (TM)
i7-6700hq CPU at 2.59 GHz and 8GB memory. Three types
of tasks were collected from the trace of Google cluster.1

Each type of task was split into 96 time slots, each of which
lasting for 15 minutes. In addition, three GCDCs were con-
sidered, and their prices of electricity,2 wind speeds and
solar irradiance3 on the same day were collected.

1. https://github.com/google/cluster-data
2. https://www.nyiso.com/
3. https://midcdmz.nrel.gov/
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5.1 Prediction of Solar and Wind Energy

We compared our proposed SG-LSTM against GRU, BPNN
and Bi-LSTM on their performance of predicting wind
speeds and solar irradiance. The parameters of SG-LSTM,
GRU, BPNN and Bi-LSTM are listed as follows. The data
sample count is 12,480; the input data size is 30; the percent-
age of the training set is 0.9; and the input feature and the
output result are both one-dimensional. The neuron count
in the hidden layer in SG-LSTM, GRU, BPNN and Bi-LSTM
is 128, and that in their fully connected layer is 64.

Different sizes of window were considered and three
types of methods of data smoothing, i.e., SG filter [39],
median filter [40], and average filter [41] were adopted in
SG-LSTM. The best one with the smallest error was selected
to determine the optimal size of window. In this experi-
ment, MAE and RMSE were used to measure the accuracy
of prediction[42], i.e.,

MAE ¼ 1

N

XN
�h¼1
jy�h � by�hj (37)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

�h¼1ðy�h � by�hÞ2
N

s
; (38)

where N is the data sample number, y�h and by�h are the origi-
nal and the predicted data.

The experimental results are summarized in Table 2. As
shown in Table 2, when window size is set to 5, the least
mean absolute errors (MAEs) and root mean square errors
(RMSEs) are achieved. The SG filter’s window size is 5 and
the order is 3.

RMSEs and MAEs of the four methods in a day are
shown in Table 3. In other words, Table 3 shows the predic-
tion errors of different algorithms for different energy. It
can be seen from the results of RMSE that, the RMSE of SG-
LSTM is significantly better than that of GRU, BPNN and
Bi-LSTM methods in y1t , y

2
t and y3t , and slightly better than

that of GRU, BPNN and Bi-LSTM methods in n1t , n
2
t and n3t .

The results of MAE prove that SG-LSTM’s MAE is much
better than GRU, BPNN and Bi-LSTM methods in y1t , y

2
t and

y3t , and slightly better than GRU, BPNN and Bi-LSTMmeth-
ods in n1t , n

2
t and n3t . It can be concluded that SG-LSTM out-

performs its three peers in terms of prediction accuracy.
The reason may be that SG-LSTM adopts an SG filter to
remove the interference of outliers and noises in the large-
scale time series data of wind speeds and solar irradiance.
Thus, highly fluctuating and non-linear problems of the
data are well addressed.

5.2 Results of Bi-Objective Task Scheduling

To demonstrate the effect of the energy prediction accuracy
on the bi-objective task scheduling, tasks of three types were
scheduled to three GCDCs by using DMGC. The parameters
of energy sources were set in Table 4; while ki and Qi were
given in Table 5. The number of servers in three GCDCs was
all set to 2,000, i.e.,�1=�2=�3=2000. The power consumption
of each idle server was 500 (W), i.e., �P ¼500 (W), the power
consumption of each active server was 2,000 (W), i.e.,
P̂ ¼2000 (W), the power usage effectiveness value was 1.2,
i.e., � ¼1.2.

To evaluate the performance of DMGC, we selected
the Multi-Objective Evolutionary Algorithm based on

TABLE 2
MAEs and RMSEs With Varying Sizes of Window and Three Methods of Smoothing

Smoothing methods RMSE MAE

v= 3 v= 5 v= 7 v= 9 v= 11 v= 3 v= 5 v=7 v= 9 v= 11

Average filter (y1t ) 99.82 111.69 131.93 152.75 174.20 48.32 64.08 82.12 99.93 117.59
Median filter (y1t ) 76.89 76.87 78.86 80.92 84.00 33.98 33.03 33.27 34.27 36.04
SG filter (y1t ) 99.79 47.73 51.62 54.22 56.22 45.71 21.24 24.46 24.17 23.76
Average filter (y2t ) 97.69 109.14 129.12 150.49 170.67 47.57 62.80 80.17 98.08 114.62
Median filter (y2t ) 73.43 73.48 79.43 75.37 80.51 32.05 31.03 32.52 31.10 33.16
SG filter (y2t ) 106.54 47.26 52.34 52.01 55.47 47.01 21.62 23.46 22.97 23.69
Average filter (y3t ) 20.33 24.88 29.95 33.99 37.38 11.15 14.07 17.81 20.99 23.63
Median filter (y3t ) 19.02 17.23 17.16 17.10 17.59 10.12 9.26 9.51 9.49 9.44
SG filter (y3t ) 21.11 9.30 13.23 9.99 10.21 11.85 5.15 7.08 5.59 5.39
Average filter (n1t ) 0.75 0.83 0.90 0.96 1.02 0.54 0.61 0.68 0.73 0.78
Median filter (n1t ) 0.55 0.54 0.58 0.63 0.68 0.38 0.36 0.39 0.43 0.48
SG filter (n1t ) 0.75 0.29 0.38 0.39 0.42 0.55 0.22 0.28 0.29 0.31
Average filter (n2t ) 0.96 1.07 1.16 1.23 1.31 0.66 0.76 0.83 0.88 0.94
Median filter (n2t ) 0.77 0.72 0.73 0.81 0.87 0.48 0.46 0.49 0.54 0.58
SG filter (n2t ) 1.02 0.40 0.52 0.51 0.54 0.72 0.28 0.36 0.37 0.38
Average filter (n3t ) 1.15 1.29 1.41 1.51 1.60 0.83 0.96 1.05 1.13 1.20
Median filter (n3t ) 0.89 0.85 0.89 0.99 1.04 0.59 0.56 0.61 0.67 0.71
SG filter (n3t ) 1.14 0.49 0.66 0.62 0.66 0.82 0.36 0.49 0.45 0.48

TABLE 3
RMSEs and MAEs of SG-LSTM, GRU, BPNN and Bi-LSTM

Criteria Methods y1t y2t y3t n1t n2t n3t

RMSE

SG-LSTM 23.24 21.88 3.48 0.31 0.49 0.50
GRU 29.75 24.74 3.64 0.32 0.55 0.54
BPNN 30.50 31.94 4.78 0.35 0.59 0.62
Bi-LSTM 25.40 21.10 3.10 0.33 0.53 0.52

MAE

SG-LSTM 11.03 10.75 2.39 0.22 0.36 0.38
GRU 14.09 11.89 2.45 0.24 0.40 0.40
BPNN 16.04 17.91 3.37 0.25 0.41 0.48
Bi-LSTM 11.80 10.10 2.43 0.24 0.38 0.41
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Decomposition (MOEA/D) [18], the Strength Pareto Evolu-
tionary Algorithm II (SPEA2) [43], and the Non-dominated
Sorting Genetic Algorithm II (NSGA-II) [44] for perfor-
mance comparison. The reasons why we selected them as
state-of-the-art algorithms for comparison are three-fold.
First, over the years, those algorithms have been improved
in efficiency and accuracy, and they have been widely
adopted in many different real-world areas. Second, there
are some similarities between DMGC and those three algo-
rithms. They all have operations of initialization, mutation
and crossover to obtain new solutions. Third, they all have
external elite solution sets. In our experiments, the main
parameters of all algorithms under study were set as fol-
lows: the population size eN ¼ 100, and the total number of
iterations G ¼ 500.

Figs. 5 and 6 illustrate task arriving rates of three types
and prices of electricity in different GCDCs. Table 6 shows
the comparison of revenue, profit and cost with different
algorithms. Specifically, the revenue with SG-LSTM, GRU,
Bi-LSTM, and BPNN-based predicted data reduces by

0.0001%, 0.0038%, 0.0020%, and 0.0015% over that with the
ideal case, respectively. The cost with SG-LSTM, GRU, Bi-
LSTM, and BPNN-based predicted data increases by 2.04%,
4.50%, 4.13%, and 5.74% over that with the ideal case, respec-
tively. The profit with SG-LSTM, GRU, Bi-LSTM, and
BPNN-based predicted data reduces by 0.24%, 0.55%,
0.243%, and 0.71% over that with the ideal case, respectively.

Moreover, in Table 6, the optimization results with help
of the SG-LSTM prediction algorithm are the closest to the
ideal case’, and the profit of DMGC is 1.20% and 1.93%
higher than those of NSGA-II and SPEA2, respectively. The
average execution time of DMGC is 59.36% and 36.27%
lower than those of SPEA2 and NSGA-II, respectively. This
means that DMGC achieves better performance with respect

TABLE 5
Setting of Parameters of Three GCDCs

GCDCj
ki (tasks/sec.) Bi

i¼1 i¼2 i¼3 i¼1 i¼2 i¼3
j¼1 0.01 0.03 0.05 50 55 60
j¼2 0.01 0.03 0.05 50 55 60
j¼3 0.01 0.03 0.05 50 55 60

Fig. 5. Arriving rates of tasks of three applications.

TABLE 4
Setting of Parameters of Wind and Solar Energy

GCDCj
Wind energy Solar energy

hj &j(m2) �j(kg/m3) ’j(m2) cj

j=1 0.3 2000 1.0 0.2 1400
j=2 0.35 2500 1.25 0.25 1600
j=3 0.4 3000 1.5 0.3 1800

Fig. 6. Prices of electricity of three GCDCs.

TABLE 6
Optimization Results of Algorithms

Algorithms Predicted data Revenue ($) Energy cost ($) Profit ($) Average execution time (Sec.)

DMGC

Ideal Case 26319.04 2743.95 23575.09 0.3556
SG-LSTM 26319.01 2801.19 23517.82 0.3560
GRU 26318.05 2873.35 23444.70 0.3603
BPNN 26318.64 2910.92 23407.72 0.3986
Bi-LSTM 26318.50 2862.25 23456.25 0.3590

NSGA-II

Ideal Case 26317.15 3035.64 23281.51 0.8747
SG-LSTM 26316.81 3081.63 23235.18 0.8760
GRU 26314.84 3091.16 23223.68 0.8870
BPNN 26314.49 3124.13 23190.36 0.8987
Bi-LSTM 26315.60 3086.45 23229.15 0.8812

SPEA2

Ideal Case 26316.01 3218.51 23097.50 0.5570
SG-LSTM 26315.74 3244.73 23071.01 0.5586
GRU 26314.73 3319.66 22995.07 0.5720
BPNN 26314.57 3397.13 22917.44 0.5770
Bi-LSTM 26315.10 3280.70 23034.40 0.5685
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to the profit and execution time. The experimental data also
shows that green energy forecast accuracy has significant
influence on the task scheduling in GCDCs. The reason is
that our proposed method solves the challenge of how to
combine the green energy prediction and bi-objective opti-
mization for high-performance GCDC operation. In addi-
tion, the improved DMGC integrates Gaussian mutation
and crowding distance to achieve a good trade-off between
energy cost and revenue of GCDCs.

Table 7 further shows the comparison of NSGA-II, SPEA2,
MOEA/D and DMGC in terms of revenue, energy cost and
execution time by using predicted data with SG-LSTM. In
Table 7, we double ai and bi in Fig. 2. Table 7 shows that com-
pared with NSGA-II, SPEA2, and MOEA/D, DMGC
increases the revenue by 18%, 20% and 13.1%, reduces the
energy cost by 16%, 19.8% and 15.2%, and lowers execution
time by 60.02%, 38.47% and 24.17%, respectively. The reason
is that DMGC adopts dynamic crossover/mutation parame-
ters and the Gaussian mutation to escape from local optima.
In addition, DMGC adopts the crowding distance to make
the distribution of solutions more uniform, thereby achiev-
ing a good trade-off between revenue and energy cost of
GCDCs.

6 CONCLUSION

Increasingly more enterprises migrate their business appli-
cations in cloud data centers, whose operations cause
increasingly high energy consumption and large amount of
carbon emission. To well address such concerns, renewable
energy is increasingly used to create green cloud data cen-
ters (GCDCs). Nevertheless, it is often challenging to realize
high-accuracy prediction of wind and solar energy, which
plays a crucial role in optimal task scheduling. This work
designs an intelligent task scheduling approach that inte-
grates a hybrid green energy prediction method with an
improved intelligent optimization algorithm. The prediction
is realized by designing Savitzky-Golay filter and Long
Short-Term Memory (SG-LSTM). The bi-objective optimiza-
tion of the revenue and energy cost of GCDCs is achieved
by proposing Decomposition-based Multi-objective evolu-
tionary algorithm with Gaussian mutation and Crowding
distance (DMGC). This work has verified the importance of
renewable energy prediction accuracy in achieving a
desired intelligent schedule. Experimental results over real-
world data have proven that SG-LSTM achieves higher pre-
diction accuracy for wind speed and solar irradiance, and
increases the bi-objective scheduling of tasks in GCDCs.
The experiments have demonstrated the importance of
high-accuracy prediction of green energy on scheduling of
tasks of different types in GCDCs, which was not reported
in previous studies to our best knowledge.

In this work, we adopt a centralized task scheduler to
schedule tasks to multiple GCDCs, and it might suffer from
a single point of failure/bottleneck and some communica-
tion delays. Our future work aims to design federated task
schedulers to perform distributed optimization and handle
a great number of tasks in parallel. Besides, we also plan to
consider capacity management in the combination of work-
load prediction and the task scheduling.
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