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Abstract—Driven by proliferation of the Service-Oriented
Architecture (SOA), the quantity of published software services
and their users keeps increasing rapidly in the service ecosys-
tem; thus, personalized service selection and recommendation
has remained a hot topic. Recent studies have revealed that
users’ social connections may help better model their poten-
tial behaviors. Therefore, in this paper, we study how users’
high-order social networks may help improve service recom-
mendation as well as its explainability. Two observations are
set forth. First, a user’s service preference may be influenced
by his trusted users, whom in turn influenced by their social
connections. Second, such chained influences will not remain
static and equally-weighted, as a user’s confidence over his social
relations may vary confronted with different targeted services.
We thus introduce a novel High-order Social Graph Neural
Network (HSGNN) to support social-aware service recommen-
dation. The key idea of the model is a graph convolution-based,
multi-hop propagation module devised to extract the high-order
social similarity signals from users’ local social networks, and
encode them into the users’ general representations. Afterwards,
a neighbor-level attention module is constructed to adaptively
select informative neighbors to model the users’ specific pref-
erence. Extensive experiments in a real-world service dataset
show that our HSGNN makes service recommendation more
accurately, i.e., by 4.71% in terms of normalized discounted
cumulative gain (NDCG), than state-of-the-art baseline methods.

Index Terms—Web services, service recommendation, social
network, high-order connectivity.

I. INTRODUCTION

W ITH the wide application of the Web services and
Cloud Computing techniques, a burgeoning number

of software services have been developed and published into
the service ecosystem. Users can remotely leverage reusable
services as components to quickly create their value-added
new products and fulfill their demands, instead of building
everything from scratch. Under such context, service recom-
mendation technique remains to be a key instrument to help
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users select optimal software services among vast amounts of
candidates.

Recent trends in social media and communication tech-
nologies have motivated a number of systems to synergisti-
cally integrate social features [1], [2]. Representative exam-
ples include Epinions, Yelp, Steam and Amazon. Inspired
by their success, many traditional service repositories, e.g.,
ProgrammableWeb.com, also allow users to form and join var-
ious communities and establish friendships with others. Users
on these service platforms usually spread their preference over
services to their social connections. Thus, a user’s preference
can not only be inferred from his historical usage records,
but also can be further deduced from his social connections.
For instance, on the largest game service platform Steam, a
user may post comments about some game services on their
profile pages, or share game experiences with their friends
through instant messages. Such social actions may cause
potential effects on the game service selection of their friends.
These observations imply that the pervasive use of the social
media provides extra information about users, which may be
leveraged to support interpretability and predictability of user
behaviors [3], while alleviating the data sparsity issue that is
a common critical challenge on service recommendation [4].

However, it is not a trivial task to effectively integrate social
information to support service recommendation, especially if
we want to consider the high-order influence from a user’s
indirect social neighbors. According to the social correlation
theory [5], users’ preference may not only be influenced by
their first-order local neighbors (direct friends), but also result
from their direct friends’ social networks (indirect friends). In
this article, the term high-order social relation refers to such
a common phenomenon in most service systems, that is for
a user in the social network, besides the preference propaga-
tion from the user’s first-order neighbors to this user at one
hop, the high-order social information propagates recursively
to influence the user’s behaviors (embedding). Figure 1 shows
an example to illustrate how two aspects of the high-order
social relation may influence a user’s preference:
• High-order social similarity (general preference):

Throughout this article, the term high-order social
similarity refers to a common case that a user and
the friends of his friends tend to share similar general
preference. As illustrated in the left part of Figure 1, user
A joins a group favoring sharing and discussing tourism
videos on a service platform, which makes him become
a social friend of two vloggers B and C. Intuitively users
B and C may share some common characters both being
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Fig. 1. Users’ high-order social relation. In a service platform, the left
part shows the high-order social similarity among users, in which users B and
C show similar general preference between them. The right part describes
the high-order social difference. When interacting with Map service, user
B’s specific preference receives influences of different intensities from his
neighbors.

A’s friends, which means they may have similar general
preference, e.g., both users like to use map service when
travelling. Such a preference correlation between users
B and C cannot be fully reflected by only considering
their first-order social relation. This example implies that
when learning a user’s representation (i.e., preference or
embedding), the presence of the similarity between the
user and his high-order neighbors (like the similarity
between B and C) should be studied to help improve the
accuracy of the user’s representation construction.

• High-order social difference (specific preference):
Throughout this article, the term high-order social
difference reflects that a user’s specific preference
over a target service may receive different levels of
influences from different users in his social networks.
For a specific requirement, different neighbors in the
user’s social network may contribute different influence
intensities. This can be illustrated briefly in the right
part of Figure 1, where different neighbors’ influence
levels on user B are quantified by different grey scales,
some stronger while others weaker. If the target is to
select a map service, user B tends to act more like those
neighbors who love traveling like user C, i.e., influenced
more by them. In general, this means that when modeling
a user’s preference towards some particular service, it
is necessary to treat the influence from his neighbors
differently, which will help to distill useful preference
signals among all the user’s neighbors.

These motivating examples reveal that high-order social
relations among users may be beneficial to improve the quality
of service recommendation. To date, however, earlier studies
of service recommendation approaches have not dealt with the
high-order social relations. In some advanced machine learn-
ing fields, several studies have partially investigated the social
relations for general recommendation. For example, SocialRec
and SocialMF [6], [7] both utilize users’ direct social con-
nections to improve the recommendation accuracy. However,

they take neither the similarity nor the difference of the high-
order social relations into consideration, which may cause
the incompleteness of user’s representation. Other studies like
Deepinf [8] explicitly encode the high-order social similar-
ity, but with the high-order neighbors’ weights set equal or
relied on predefined static functions, which fail to account
for the high-order social difference. Some recent studies like
SAMN [9] consider the social difference of direct social
friends; however, they do not exploit the high-order neigh-
bors and integrate their features. In short, existing studies of
social recommendation have not dealt with both the high-order
similarity and the high-order difference simultaneously.

In this article, we propose a novel High-order Social
Graph Neural Network (HSGNN) for service recommen-
dation. Utilizing the recent advances in graph convolution
networks [10], [11] and neural attention mechanisms [9], [12],
[13], HSGNN simultaneously models both the general pref-
erence of a user and his specific preference over a given
service, by considering the user’s high-order social relations.
Our prerequisites are that, a user’s social network has been
constructed over a service ecosystem, and the user-service
interaction history has been recorded. HSGNN contains two
major components: a social embedding propagation module
and a neighbor-level attention module. To our best knowl-
edge, this is the first attempt to study how to exploit deep
learning techniques to leverage high-order social similarity
and difference synergistically to enhance service recommen-
dation. Meanwhile, our HSGNN model can be applied to other
social-aware recommendation applications beyond service rec-
ommendation.

Applying Graph Neural Network (GNN), we first build a
social embedding propagation layer, which refines a user’s
representation by aggregating the embeddings of his directly
connected friends. Then we create the social embedding
propagation module by stacking multiple propagation layers,
which enables us to extract the high-order similarity signals
from the user’s social network and encode them explicitly
into the user’s general preference representation. Afterwards,
a neighbor-level attention module is employed to obtain
the user’s specific preference on a particular service. Higher
weights are placed on his neighbors who share similar pref-
erence on that kind of services, and then the weighted sum
is used as the specific preference representation for the user.
Finally, a service ranking module is adopted to apply linear
interactions with the service embeddings on both the user’s
general and specific representations, to derive a ranking score
for each service candidate. Over the real-world Steam game
service dataset, a series of experiment results showed that our
HSGNN model consistently outperforms the state-of-the-art
methods in terms of prediction accuracy, and also verified
the effectiveness of our designed propagation module and
attention module.

Our main contributions are three-fold:
1) We investigate the effect and highlight the notewor-

thy significance of the high-order social relations in
common service ecosystems, and classify them into
high-order social similarity and high-order social dif-
ference. We expose that the two relations types will
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affect a user’s general preference and specific prefer-
ence, respectively.

2) To distill the preference information hidden in the high-
order social relations, we propose HSGNN, a novel ser-
vice recommendation framework, which highlights two
core modules: a multi-hop propagation module and a
neighbor-level attention module. The former module
explicitly aggregates the high-order social similarity into
a user’s representation, which enhances the capability of
encoding his general preference. The latter module adap-
tively measures the dynamic social influence strengths in
the context of different services, which enriches a user’s
representation with specific preferences.

3) Through extensive experiments conducted on the real-
life Steam game service dataset, we show that HSGNN
consistently outperforms the state-of-the-art models and
justify the effectiveness of our proposed framework in
capturing users’ general and specific preferences.

II. PRELIMINARIES

In this section, we will first formally define our problem,
then describe how to construct social sub-graphs, followed by
depicting a graph batching strategy.

A. Notations and Problem Definitions

We first stretch necessary definitions.
Definition 1 (Service Ecosystem): In a service system, we

use U = {u1, u2, . . . , uM } and S = {s1, s2, . . . , sN } to denote
its comprising set of users and the set of services, respectively.
Recent literature has focused more on optimizing service ranks
from implicit data than on predicting explicit service QoS [12],
[14], [15], [16]. Most such methods assume that unobserved
services are of less interest to users; thus, they are designed
to discriminate observed services from unobserved services. In
this work, we will follow this trend to record service usage his-
tory, yet to predict future service usage probabilities. Formally,
we use matrix T = [Tu,s ]M×N ∈ {0, 1} to indicate the
interaction records in the service ecosystem, each cell indicat-
ing whether the user u ∈ U used the service s ∈ S (recorded
as 1) or not (as 0).

Definition 2 (Social Graph): Let G = (U,E) represents a
static social graph, where E ⊆ (U,U) is the edge set in the
graph that denotes the social interactions between the compris-
ing users. Note that we do not differentiate between directed
graphs and undirected graphs in this work.

Definition 3 (r-Order Neighbors and Social Sub-Graph):
For a user vertex v ∈ U, its r-order neighbors are defined
as Nr

v = {u : d(u, v) = r} where d(u, v) is the num-
ber of edges in a shortest path connecting vertex u and v in
the social graph G. As an illustration, z denotes the directly
connected social friends of user v on the service platform,
i.e., 1-order neighbors. The social sub-graph of user vertex
v denoted by Gv is the sub-graph induced by the neighbor
set Srv = {u : u ∈ N s

v ∪ v , 0 < s ≤ r}. Similar to the
social graph, the social sub-graph can also be represented as
Gv = (Srv ,AGv

), where AGv
denotes the adjacency matrix

of Gv .

TABLE I
NOTATIONS AND EXPLANATIONS

Problem Formulation: The social relation-based service rec-
ommendation problem (interest of user u against service s)
can be defined as: given observed interaction records in T

and social graph G, we aim to estimate the score Ŷu,s of
the unobserved interaction Tu,s in T, which is used to rank
services.

The notations that we will use throughout the article are
summarized in Table I. Next, we will explain how to construct
a social sub-graph for each user.

B. Construction of Social Sub-Graph

For a specific user v, to represent his social features, one
intuitive way is to extract his social sub-graph Gv . However,
for different users, the sizes of their social sub-graphs may
vary significantly from each other, which makes it unsuited to
the learning process of traditional deep learning methods. A
straightforward solution is to perform the Breadth-First-Search
(BFS) strategy, starting from the user v to sample a fixed num-
ber of neighbors as in our previous work [17]. However, the
BFS strategy may lead to an unbalanced distribution of neigh-
bors from different orders in our sampled sub-graphs. In some
case, if a user has a lot of directly connected social friends
(1-order neighbors), few high-order neighbors will be included
in his sampled social sub-graph. In another case, if a user has
few close social friends, most vertices in his sampled social
sub-graph will be high-order neighbors. To prevent such an
imbalance of different order neighbors, some methods like
GraphSAGE [10] proposed to sample uniform neighbors of
each nodes at different order recursively to form a fixed-size
sub-graph. However, since the numbers of neighbors at each
iteration grow exponentially, we may not reach the neighbors
far from the target user vertex within limited iterations.

To remedy the above issues, we combine the merits of
the above methods and perform a random walk with restart
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Fig. 2. Model Framework. Prior to the calculation part, our model firstly performs random walk with restart (RWR) to sample neighbors from the social
network G to form a social sub-graph for every target user in the batch. After the graph batching operation, we feed the large social graph to the main part
comprising two main components: (1) a multi-hop propagation module to enforce the sampled users’ embeddings to capture the high-order social similarity;
and (2) a neighbor-level attention module to assign non-uniform weights to the users in the social sub-graph.

(RWR) [18] to derive representative sub-graph. We start a ran-
dom walk on the social graph G from the user vertex v. The
walk iteratively travels to its neighborhood and with a pos-
itive probability, the walk returns to the starting vertex v at
each step. The RWR runs until it successfully collects a fixed
number of vertices denoted by Ŝrv with |Ŝrv | = L + 1, where
L is the number of vertices to collect except the target user.
The resulted sub-graph Ĝv = (Ŝrv ,AĜv

) induced by Ŝrv can
be regarded as an approximation of user v’s social sub-graph
Gv = (Srv ,AGv

).
The way how we construct users’ social sub-graphs matches

their learning patterns from neighbors. Intuitively, a user typ-
ically will not check and learn from every of his neighbors,
even for his directly connected ones. Meanwhile, social friends
may be associated from various types of social relations,
and not always share the same preference over objects (i.e.,
services in our study). Therefore, we do not have to exhaust
all neighbors in each hop, like in GraphSAGE [10], not
only to control performance but also to avoid from over-
fitting. Meanwhile, adopting the RWR strategy will favor
learning from closer neighbors, which aligns with common
practice. Furthermore, applying RWR will allow navigation
to high-order neighbors, which aligns with the social correla-
tion theory [5] and the purpose of this study. For each user,
after his social sub-graph is constructed, we will build a neural
network on top of each such graph and use it for later train-
ing and prediction tasks. Therefore, throughout the rest of the
article, we will use Ŝrv and Srv , Ĝv and Gv , interchangeably.

By implementing the RWR-based sampling strategy, we can
easily handle large-scale social graph with millions of users in
real world. Wang et al. [19] proposed a matrix-form method,
without sampling to simultaneously update the representations
of all the nodes in a graph. However, it will consume consider-
able computing resources, since the scale of the social graph
increases with a quadratic function of the number of users.
Therefore, in this work, we adopt the RWR-based sampling
strategy to make our framework runnable and cost-saving on
real-world service platforms.

C. Graph Batching

Since our framework needs to sample a social sub-graph for
each user to make recommendation, to train neural networks
efficiently, a common practice is to batch multiple sam-
ples together to form a mini-batch. Thus, how to batch
multiple sub-graphs to apply our embedding propagation pro-
cess is a key issue to accelerate the calculation. Applying
the idea from [20], we view a batch of graphs as a
larger graph with a collection of disjointed components.
The social interaction matrix in Figure 2 shows an exam-
ple of such a graph batching concept. For a batch of users
{a, b, c . . .}, after we obtain their social sub-graphs {Ĝa =
(Ŝra ,AĜa

), Ĝb = (Ŝrb ,AĜb
), Ĝc = (Ŝrc ,AĜc

), . . .}, we align
their adjacency matrices {A

Ĝa
,A

Ĝb
,A

Ĝc
. . .} along the diag-

onal of a new adjacency matrix (i.e., social-interaction matrix),
which enables us to treat it as a mini-batch and perform our
method simultaneously.

III. HSGNN MODEL FRAMEWORK

In this section, we will first introduce our HSGNN frame-
work, then analyze its learning process including the design of
the loss function, followed by discussing the complexity and
the generalization of HSGNN.

Figure 2 illustrates the overall architecture of HSGNN that
contains two core consecutive modules: a social embedding
propagation module, and a neighbor-level attention module.
For the input of the HSGNN, we use RWR-based sam-
pling to construct his social sub-graph (See Section II-B) and
batch multiple samples together to form a mini-batch (See
Section II-C). The social embedding propagation module ini-
tializes the user representation and stacks multiple propagation
layers to learn the user’s general preference encoding the
high-order social similarity (See Section III-A). The attention
module assigns different weights to the user’s high-order social
neighbors to learn user’s specific preference w.r.t. a particu-
lar service (See Section III-B). The output layer of HSGNN
fuses the user-service interactions of both general and specific

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 15:18:12 UTC from IEEE Xplore.  Restrictions apply. 



WEI et al.: HIGH-ORDER SOCIAL GRAPH NEURAL NETWORK FOR SERVICE RECOMMENDATION 4619

Fig. 3. Illustration of Embedding Propagation. Here we show a two-
hop propagation process of the social subgraph A in Figure 2. Each node
denotes the embedding of the corresponding user. A square node represents
its embedding has integrated some of u0’s 2nd-order neighbor signals (u3
and u4). After the 1st-hop propagation layer, u0 and its direct neighbors
(u1 and u2) all integrate the embeddings of their own 1st-order neighbors
into their representations. Consequently after the 2nd-hop propagation layer,
u0 integrates its neighbors’ new embeddings and thus indirectly encodes the
social similarity from his high-order neighbors (u3 and u4). By propagating
recurrently, the 1st and the 2nd order social similarity information diffuses to

u0 in e
(2)
0 .

preference to obtain a final matching score for the user-service
pair (See Section III-C).

A. Social Embedding Propagation Module

Distributed representation techniques [21] have exhibited
great potential in many fields. We encode a user v into a low-
dimension latent space with an embedding vector ev ∈ R

d0 ,
where d0 is the initial embedding size. Initial user features to
be encoded may come from the user’s carried on features such
as his descriptions or characteristics. Besides v, the embedding
layer learns the embedding of the service s and we denote
it as es . For convenience, we use the matrix E ∈ R

|Srv |×d0
to denote the overall initial embeddings of the users in the
sampled neighbor set Srv :

E =
[
eui0 , eui1 , eui2 , . . . , eui(|Srv |−1)

]
, (1)

where euik represents the embedding of the user uik ∈ Srv and
specially ui0 denotes user v himself.

According to the social correlation theory [5], a user’s gen-
eral preference is not only influenced by his direct friends,
but also affected by his high-order neighbors. We thus
devise a multi-hop propagation module to simulate the social
information message flow. In the module, a propagation layer
simulates how we get social influence from our direct friends,
which aggregates the 1-order neighbors’ information to update
the user’s embedding. As this process iterates, the user vertex
incrementally gains more and more information from further
reaches of the high-order neighbors. Figure 3 shows a two-hop
propagation process.

In the following sub-sections, we will first formulate the
information propagation of one single user in his social sub-
graph. Then we will extend the single-user propagation to a
matrix-form, which can operate layer-wise propagation on all
users simultaneously over the entire social sub-graph. Finally,
the layer-wise propagation will be generalized to multiple
stacked layers.

1) Propagation Process of a Single User: For a user ui
and one of his connected friends uk , we define the social
information flow from uk to ui as:

mui←uk = f (euk , eui , pik ), (2)

where pik is the decay factor of the propagation. Intuitively,
the more direct friends ui or uk has, the smaller pik should be.
The rationale is that, if ui has more friends, uk will have less
influence on ui because ui will receive more information thus
making uk less important; similarly, if uk has more friends, uk
may not have much time with ui thus will have less influence
on ui as well. Note that such a social influence propagation
is dependent on both senders and recipients, opposite to the
Web page impact propagation in PageRank [22] dependent on
senders only. Leveraging the idea of neural graph collaborative
filtering [19], we set f (·) as:

mui←uk =
1√∣∣N1
i

∣∣∣∣N1
k

∣∣
(
Wself euk +Winter (eui � euk )

)
,

(3)

where Wself ,Winter ∈ R
d0×d1 are independent weight matri-

ces of this propagation layer, d1 is the transformation size,
and 1√

|N1
i ||N1

k |
is the coefficient pik . |N1

i | and |N1
k | denote the

numbers of the first-order neighbors or their "degrees" in the
social sub-graphs in other words. We use eui�euk to represent
the interaction between both ui and uk , where � denotes the
element-wise product. This ensures that the connected friends
with higher similarity to user ui will pass more information
to ui .

Aggregating the social information flows from user ui ’s all
connected friends, we can update the representation of ui after
one round of propagation as:

e
(1)
ui = ReLU

⎛
⎝mui←ui +

∑

uk∈N1
i

mui←uk

⎞
⎠, (4)

where e
(1)
ui denotes the representation of user ui after the first

embedding propagation layer and ReLU is a common nonlin-
ear activation function. Note that in order to keep the original
information of ui , we insert the term mui←ui in the function,
which can be represented as:

mui←ui = Wself eui . (5)

Here Wself ∈ R
d0×d1 shares the same values as the weight

matrix in Equation (3).
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2) Matrix Form of the Propagation Process: To carry out
the propagation process for all users in the same social sub-
graph, we transform Equations (3), (4), and (5) into a matrix
form as:

E(1) = ReLU
(
(L+ I)EW

(0)
self + LE� EW

(0)
inter

)
(6)

where E(1) is the new embedding matrix after the first prop-
agation, and L is the Laplacian matrix of the sub-graph Gv .
Formally, suppose Gv has adjacency matrix A and diagonal
degree matrix D, the Laplacian matrix L can be calculated as
follows:

L = D−
1
2AD−

1
2 . (7)

Each of D’s diagonal elements Dii = |N1
i | represents the

degree of the user vertex ui in the social sub-graph. We can
deduce that the diagonal element Lii = 0 and the off-diagonal
element Lik = 1√

|N1
i ||N1

k|
.

The matrix form of the propagation process helps us not
only update all the user representations in the same sub-
graph simultaneously, but also facilitate the batch calculation.
Furthermore, the matrix form makes it easy to stack multiple
propagation processes as a united module to extract the high-
order social signals in the user’s social sub-graph, which will
be discussed in the next section.

3) Multi-Hop Propagation: Stacking multiple propagation
layers can explore the high-order social similarity information.
In the l-th step of propagation, Equation (6) can be reformu-
lated as:

E(l) = ReLU
(
(L+ I)E(l−1)W

(l)
self + LE(l−1) � E(l−1)W

(l)
inter

)
,

(8)

where E(l) ∈ R
(L+1)×dl is the representation of the users in

Sri after l times of propagation steps, and E(l−1) is the repre-

sentation from the previous step. W(l)
self ,W

(l)
inter ∈ R

dl−1×dl
are the transformation matrices for the l-th step of propagation.
Different weight matrices are assigned for the transformation
in each step, so that the size of E(l) is updated after every
propagation. E(0) is set as E in Equation (1).

After iterating l times, each user vertex v in the social sub-
graph aggregates information from its neighbor set Slv with
the farthest reach of his l-order neighbors Nl

v . Hence, the
user’s final embedding (zv ) explicitly encodes the high-order
social information, which can be treated as the representation
of the user’s general preference towards services. In a matrix
form, the general preference of all the users in Srv can be
represented as:

Z = [zui0 , zui1 , zui2 , . . . , zuiL ] = E(l). (9)

The pseudo algorithm framework of our social embedding
propagation module is shown in Algorithm 1.

Figure 3 shows a portion of a computation graph constructed
for one user (u0) based on his social sub-graph, showing only
two hops for the interest of space. For each user, such a neural
network will be constructed. All such small neural networks
will be trained simultaneously, instead of training a huge social
network. Note that Wl

self and Wl
inter in each layer of the

Algorithm 1 Social Embedding Propagation Module

Input: social sub-graph Gv (S
r
v ,AGv

);
Initial Embedding matrix E(0); hop time l;
self-weight matrices Wk

self , ∀k ∈ {1, . . . l}; inter-weight

matrices Wk
inter , ∀k ∈ {1, . . . l}.

Output: General preference representation Z = {zv , ∀v ∈
Srv}.

1: D← Calculate_degree_matrix (AGv
);

2: L ← D−
1
2AGv

D−
1
2 ;

3: for k = 1, . . . l do
4: E(k) ← ReLU ((L + I)E(k−1)W(k)

self + LE(k−1) �
E(k−1)W(k)

inter );
5: end for
6: [e

(l)
v , . . . ]← E(l), ∀v ∈ Srv ;

7: zv ← e
(l)
v , ∀v ∈ Srv ;

8: Return Z

constructed computation graph will be shared by all neural
networks for all nodes.

B. Neighbor-Level Attention Mechanism

As illustrated in the right part of Figure 1, if one of user
v’s friends has more expertise or experience over a service
or similar services, his opinions will be more convincing thus
may have higher influence on the user v’s choice on the ser-
vice. The main purpose of neighbor-level attention is to assign
different importance to a user v’s sampled neighbors Srv , when
the user is considering a specific service s and thus help model
the user’s specific preference over the service. In order to
simulate such interactions among the user (zv ), his neighbor
(zj ) and the service (es ), we first project all of their embed-
dings into a shared latent space. Note that the embeddings of
the user and his neighbors result from multi-hop propagation
layers as described in earlier sections. The embedding of a
service can be calculated from its inherent features, such as
the methods leveraging its functionality [23], non-functional
features (i.e., QoS) [24], and service descriptions [25] etc.
Then a fully-connected layer is applied to compute an attention
score α∗(j ).

α∗(j ) = hTReLU
(
Wdstzv +Wses +Wsrczj

)
, (10)

where Wdst ∈ R
dl×dk , Ws ∈ R

dl×dk , Wsrc ∈ R
dl×dk , h ∈

R
dk are parameters. dl represents the final embedding size of

both users and services, and k denotes the dimensions of the
attention network.

Afterwards, we normalize the neighbor-level attention
scores with a softmax function, which can make the attention
network a probabilistic interpretation:

α(j ) =
exp

(
α∗(j )

)

∑
i∈{Srv\v} exp

(
α∗
(i)

) . (11)

After we obtain the attention weight of each neighbor, the
final representation of the user’s specific preference towards
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Algorithm 2 Neighbor-Level Attention Mechanism
Input: General preference set Z;

service embedding es , ∀s ∈ S;
weight matrices Wdst , Ws , Wsrc ; parameter h;

Output: Specific preference representation yv
1: for neighbor j in {Srv\v} do
2: α∗(j ) ← hTReLU (W1zv +W2es +W3zj )

3: α(j ) ← Softmax (α∗(j ))
4: end for
5: yv ←

∑
i∈{Srv\v} α(i)zi

6: Return yv

the specific service is as follows:

yv =
∑

k∈{Srv\v}
α(k)zk , (12)

which is the weighted sum of the general preference of the
user’s neighbors in the social sub-graph.

The pseudo code of the neighbor-level attention mechanism
is shown in Algorithm 2.

C. Service Prediction

After obtaining the representation of user v’s general pref-
erence zv and specific preference yv , one question arises: how
can we fuse both of them under our HSGNN framework, so
that they can mutually reinforce each other to better model the
user’s preference influenced by his high-order social relations?

We first apply element-wise product to calculate the
interaction feedback of the above two preferences over the
target service s, following [26], [27]:

φz = zv � es , φy = yv � es . (13)

Then we combine their concatenating vectors to the output
layer, as shown in Figure 2:

Ŷv ,s = hTout

[
φz
φy

]
, (14)

where hout is the edge weights of the output layer and Ŷv ,s is
the predicted score for the unused service s. We will calculate
such predicted scores for all unused services, which will then
be ranked in descending order to provide a Top-K service
recommendation list.

D. Parameter Learning

In this section, we will carefully analyze the parameter train-
ing aspects regarding the optimization and training efficiency
of HSGNN.

1) Optimization: The core of the optimization process is to
learn the relevance-based ranking position of services. To this
end, we optimize the pairwise Bayesian Personalized Ranking
(BPR) loss [28], which has been extensively used in most
implicit recommendation processes. BPR assumes that con-
sumed services should be assigned higher prediction values
than unobserved ones, since they are more reflective of a user’s
preference. For each positive user-service pair < ui , sj >, we

Algorithm 3 The Overall Learning Algorithm of HSGNN
Input: Interaction matrix R; social graph G; hop time l;
Output: Parameter set Θ;

1: Initialize model parameter set Θ with small random
values;

2: while not converged do
3: for < ui , sj , sk > in the pairwise training set D do
4: Compute general preference Z; (Algorithm 1)
5: Compute specific preference yui0 ; (Algorithm 2)

6:
φzj ← zui � esj ;φyj ← yui � esj

φzk ← zui � esk ;φyk ← yui � esk

7: Ŷui ,sj ← hTout

[
φzj

φyj

]
; Ŷui ,sk ← hTout

[
φzk
φyk

]

8: end for
9: Calculate BPR loss L; (Equation. 15)

10: for Each parameter θ in Θ do
11: Update θ = θ − η ∂L

∂θ
12: end for
13: end while
14: Return parameter set Θ

randomly sample multiple negative services from the unob-
served services of the user, which is denoted as sk . The BPR
pairwise ranking loss is defined as follows:

LBPR =
∑

(ui ,sj ,sk )∈D
−lnσ

(
Ŷui ,sj − Ŷui ,sk

)
+ λ||Θ||22 (15)

where σ(x ) = 1
1+exp (−x) is the logistic sigmoid function and

D represents the set of pairwise training instances. The second
term of equation (15) is a regularization term, which is a L2

norm to prevent overfitting. The pseudo code of the whole
algorithm framework is shown in Algorithm 3.

2) Complexity: For our proposed learning algorithm, we
consider its space complexity and time complexity.

Space Complexity: As shown in Algorithm 3, our HSGNN
framework contains two sets of parameters: the initial
embeddings of both users and services Θ1 = [E, S]
and the parameter set Θ2 = [Wk

self ,W
k
inter (∀k ∈

{1, . . . , l}),Wdst ,Ws ,Wsrc , h]. Since Θ1 is mainly based on
user and service embeddings, which all need space to store the
representation of users and services, the space complexity of
parameter Θ1 is the same as that of most baseline models and
it grows linearly with the numbers of users and services. As for
the parameters in Θ2, they are shared among all the users and
services with very low dimensions compared with the embed-
ding matrices in Θ1. Thus the space complexity of Θ2 can be
treated as a constant and neglected, which makes the space
cost of our framework nearly as much as the classical embed-
ding models (e.g., BPR [28], NCF [29]) and significantly lower
than some memory-based methods (e.g., SAMN [9]).

Time Complexity: Since the BPR loss function for implicit
feedback has been adopted by most of the baseline methods,
we only need to compare the time cost of the social embedding
propagation module and the neighbor-level attention mecha-
nism in our framework. The embedding propagation process
costs O(Mln), where M is the number of users, l represents
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TABLE II
STATISTICS OF STEAM DATASETS

the propagation layers and n denotes the fixed sample neigh-
bor numbers. Actually, in Section IV, our experimental results
show that with l = 3, our model consistently shows better
performance than other cases. Furthermore, the sample neigh-
bor numbers per user n 	 M is relatively small. Thus, the
time complexity O(Mln) of propagation module is acceptable.
From Algorithm 2, we know that the time complexity of the
attention mechanism is O(Mn). Therefore, the overall time
complexity is O(Mln), which is computationally feasible in
practice and thus able to support real-time query in real-world
service recommendation systems.

IV. EXPERIMENTS

A. Experimental Settings

1) Dataset Description: Steam is a platform providing
game and software services, which includes services from
over 1,200 publishers and over 75 million active users. In
addition to its service providing function, Steam provides
numerous social networking features such as profile pages,
friends, groups, instant messaging, voice chat, and news feeds.
According to [30] and [31], the game services show a high
level of similarity to Web services with three unique features:
• The friendship connections are sparse compared to other

social networks;
• There exist long tail behaviors in their distributions;
• Both game services and Web services are massive and

heterogeneous.
Based on their common characteristics, it is reasonable to use
the Steam platform to test and verify our proposed HSGNN
framework on service recommendation.

To test and verify our HSGNN, we randomly crawled 9,392
Steam user accounts, along with their friends lists and 341,594
service usage records, as well as a total of 2,368 game services
to construct a real-world dataset. The associated social network
is built according to the method described in Section II-B.
Table II summarizes the numerical properties of the dataset.

For each user in the dataset, we left his latest two invoca-
tions for validation and test, and utilized the remaining data
for training. To evaluate the results more efficiently, we ran-
domly sampled 99 services that have no interaction with the
target user as hard negative samples, and ranked the valida-
tion and test services with respect to these 99 services. For
each observed user-service interaction in the training set, we
conducted the negative sampling strategy to pair it with 19
negative services that the user did not consume before. Such

an evaluation scheme has been widely used in many other
works on recommendation evaluation [9], [19], [32].

2) Evaluation Metrics: To evaluate the performance of
all algorithms, we adopted two popular metrics, namely
Normalized Discounted Cumulative Gain (NDCG) and Hit
Ratio (HR). The NDCG@K metric accounts for the position
of the hits by assigning higher scores to hits at top ranks and
thus is position-aware. The HR@K metric measures whether
the test item is present on the recommendation list or not. Both
of the adopted metrics can be formulated as follows:

NDCG@K =
1

RN

N∑
i=1

2reli−1
log2(1 + i)

(16)

HR@K =

∑K
i=1 reli
|y testu | (17)

where K is the size of the recommendation list, reli = 0 or 1
denotes whether the service at the rank i is in the test set or
not, and the RN term indicates the maximum possible cumu-
lative component through ideal ranking. |y testu | is the number
of services used by the user u in the test set.

3) Baselines: To evaluate the performance of the Top-K
recommendation, we compared our HSGNN with the fol-
lowing five baseline methods. All models are learned by
optimizing the same pairwise ranking loss of BPR defined
in Equation (15) for a fair comparison, which means some
methods are adjusted to evaluate on implicit feedback.
• BPR [28]: This method optimizes the matrix factorization

(MF) model with the BPR objective function for implicit
feedback-based service recommendation.

• Sorec [6]: This is a social recommendation method per-
forming co-factorization on the user-item rating matrix
and user-user social relations matrix.

• SocialMF [7]: This is a classical model considering the
trust information and its propagation into the matrix
factorization model for recommender systems.

• NCF [29]: This method is a state-of-the-art deep learning
based framework combining matrix factorization (MF)
with a multilayer perceptron model.

• SAMN [9]: This is a state-of-the-art deep learning
method, which unifies the strengths of memory networks
and attention mechanisms to address the problems in
social-aware recommendations.

Our method aims to model the social relationship in the
service recommendation. However, few research has explored
the effect of the social influence in service recommendation.
Thus we adjusted the above general social recommendation
methods to compare with our HSGNN on the Steam game
service dataset.

4) Experiment Implementation: We implemented HSGNN
on the basis of Pytorch [33], a widely used Python library
for neural networks. During the tuning process, we found that
0.005 can be a good initial learning rate with an embedding
size of 64, respectively. Borrowing the idea of autoencoder,
the transformation size sequence should be non-increasing. By
shrinking the transformation size, each propagation process
can learn more abstract features. Empirically, we halved the
transformation size for each successive propagation layer.

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 15:18:12 UTC from IEEE Xplore.  Restrictions apply. 



WEI et al.: HIGH-ORDER SOCIAL GRAPH NEURAL NETWORK FOR SERVICE RECOMMENDATION 4623

TABLE III
OVERALL PERFORMANCE COMPARISON

To maintain the space consistency of the representations of
both users and services, we also project a service s into a low
dimension latent space with an embedding vector es , which
makes it easy to calculate the interaction between users and
services. There are many embedding methods that can be uti-
lized for the service representation learning in our work. For
example, some methods learn service embeddings based on
their functionality [23] or their non-functional features (i.e.,
QoS) [24]. Other methods like [25] analyze service descrip-
tions (i.e., WSDL file) to obtain the service embeddings. Since
the service embedding methods are not the focus of this arti-
cle, we only use the ID embedding of the services in our
experiments to illustrate the effectiveness of our approach.

B. Comparative Analysis on Overall Performance

The empirical results of our HSGNN and the baselines on
the Steam game service dataset are summarized in Table III,
which shows the NDCG@K and HR@K with recommenda-
tion size K = 10, 20. We conducted one-sample t-tests and
p-value < 0.05 indicates that the improvements of HSGNN
over the strongest baseline are statistically significant. From
the results, we drew three conclusions:

First, the methods leveraging social network information
perform better than the ones without it. For example,
in Table III for most metrics, SocialRec shows a better
performance than BPR, while the state-of-the-art SAMN,
SocialMF and our HSGNN all outperform BPR and NCF. The
experiment results provide trustworthy evidence for introduc-
ing the social information into service recommendation.

Second, we noticed that the methods assigning different
weights to different neighbors bear better performances than
those do not. Compared to SocialRec and SocialMF, the
performance of SAMN and our HSGNN proves that the
attention mechanisms on the friend level improve the user rep-
resentation learning. It might because the influence strengths
of a user’s friends are actually different and dynamic when
interacting with different services.

Third, our HSGNN consistently yields the best performance
on the Steam dataset, which improves over the strongest base-
line SAMN by 4.71% with respect to NDCG@10 and 1.74%
to HR@20, respectively. In our model, we stack multiple prop-
agation layers to extract the high-order social similarity in
an explicit way, while the state-of-the-art SAMN only con-
siders directed friends. This result strongly supports that the
high-order social similarity among users can improve the user
representation learning in service ecosystems.

Fig. 4. Performance comparison on test set w.r.t embedding sizes.

C. Study of Embedding Propagation

As the embedding propagation module plays a pivotal
role in our HSGNN, we specially investigated its impact on
the recommendation performance. We started by exploring
the influence of different embedding sizes. We then studied
how the size of a social sub-graph affects the performance.
Furthermore, we analyzed the influence of the hop time (i.e.,
the number of the propagation layers).

1) Effect of Embedding Size: We conducted experiments
to test the influence of the latent factor size d. The results
are shown in Figure 4, which contains the results on HR@10
and NDCG@10 metrics, respectively. The result of HR@10 is
similar to that of NDCG@10, which shows our method outper-
forms all the other models under different values of embedding
size. Moreover, the performance of all the models increase,
when the embedding size d increases. This means that a
larger dimension of the latent factors can encompass more
information about both users and services and thus increase
the model capability.

2) Effect of Sub-Graph Size: Since we perform the ran-
dom walk with restart (RWR) strategy to construct a social
sub-graph, the sampled neighbor number n can not only con-
trol the size of the sample sub-graph, but also can directly
determine the range of the social influence of each order
(|Nr

v |, r = 1, 2, . . . ). Figure 5 shows the performance (in terms
of NDCG and HR) by varying the sampled neighbor number
from 10 to 100. We can observe a slow increase of prediction
performance when we sample more close-by neighbors. This
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Fig. 5. Sub-graph size sensitivity of HSGNN.

Fig. 6. Performance of HSGNN under different hop time l.

is not surprising, because we catch more information as the
size of the sampled network increases.

3) Effect of Hop Time: The multi-hop propagation mod-
ule is one of the centrepieces in our HSGNN, so we varied
the model depth l (i.e., hop time) to examine how HSGNN
may benefit from multiple propagation layers. The experiment
results are shown in Figure 6 and next we will use a term
HSGNN-# to indicate the HSGNN method with # propaga-
tion layers. From Figure 6, we can have the following two
observations:

First, the general trend shows that the increase of the hop
time can improve the service recommendation performance.
From Figure 6, we can see that our HSGNN with more
than one single propagation layer consistently exhibits better
performance than HSGNN-1. Combining the aforementioned
analysis in Section IV-B, we attribute this improvement to the
increased level of the ability to extract the high-order social
similarity.

Second, when we added more propagation layers on
HSGNN-3, the NDCG@10 of the model started to decrease,
which might be caused in two aspects. On the one hand, too
deep architecture introduces noises into the learning process.
On the other hand, the neighbors far away from the user have
little influence on the user. Thus the marginal improvement
brought by the far neighbors is insufficient to offset the noises.

Based on the above observation, we try two techniques
commonly used in the deep learning to enable a deeper archi-
tecture and stabilize the training process, which can help the

TABLE IV
NDCG@10 OF HSGNN WITH DIFFERENT TRICKS

TABLE V
COMPARISON OF THE VARIANT MODELS OF HSGNN

model to extract more information from further reaches of the
neighbors. They are as follows:

1) HSGNN-Dropoup: We randomly dropout 50% of the
neighbors in the user’s social sub-graph at each propa-
gation layer.

2) HSGNN-Skip: we use skip connections to add the initial
E and the E(l) from the last layer together as the output
Z, that is Z = E+ E(l).

3) HSGNN-Dropout&Skip: We train HSGNN with both
Dropoup and skip connections.

We show the performance of HSGNN and the above vari-
ants in Table IV. Both the dropout and the skip connection
can stabilize the training process and improve the performance
when we stacking more than 3 layers. Specifically, when we
adopt both tricks simultaneously, the model achieves the best
performance and the shows the best robustness. In our game
service dataset, three or four hops provide sufficient capacity
to model the complex general preference of users and fur-
ther neighbors have very weak influence to the target user.
However, we believe in other service scenarios like video
streaming or mobile app stores, the information from higher-
order neighbors may be valuable and these techniques provide
our model with more scalability.

D. Study of Neighbor-Level Attention

One of the key components in the proposed HSGNN is
the neighbor-level attention module. Thus, we also conducted
experiments to analyze its performance.

1) Effect of the Neighbor-Level Attention: To evaluate the
overall effect of our neighbor-level attention mechanism, we
compared our model with the following variants of HSGNN:

1) HSGNN-S: A variant model of HSGNN without con-
sidering the specific preference of the user himself.

2) HSGNN-A: A variant model of HSGNN in which the
weights of the neighbors in Equation 12 are set equal.

The characteristics of the variant models are listed in
Table V. The main difference of them is about the repre-
sentation of the user’s specific representation yui .

1
|Srui |−1

is

the number of user ui ’s social neighbors, zv is the general
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Fig. 7. Performance of variants of HSGNN.

preference vector generated by the social embedding propaga-
tion module (cf. Section III-A3) and α(v) is the neighbor-level
attention score (cf. Equation 11).

Figure 7 shows the results of HSGNN and its two variants.
For the interest of space, here we show only the results of the
NDCG@10 and HR@10 on the Steam dataset. From Figure 7,
two observations can be made.

First, when the neighbor-level attention mechanism is
applied, the performance achieves significant improvement
compared to HSGNN-S and the constant-weight method
HSGNN-A. This may because the user representation from the
propagation module only explicitly encodes the user’s general
preference without considering the user’s specific preference
towards the target service. The result also shows that the atten-
tion mechanism can learn adaptive weights to make sure that
when interacting with different services, the neighbors who
share common preference can be more prominent in the user’s
final representation.

Second, HSGNN-A performs the worst among the variant
models since it does not consider the high-order social differ-
ence. Even worse, by setting all weights equal fails to get the
correct representation of the user’s specific preference, which
disturbs the calculation of the user’s final score towards a given
service.

2) Visualization on Attention Mechanism: The attention
weights of the neighbors in the social sub-graph reflect how
our proposed model learns and recommends according to the
user’s specific preference. We conducted a visualization exper-
iment to verify the effectiveness of the attention module. We
randomly chose a user along with his social sub-graph con-
taining 29 neighbors to see their contributions in the user’s
specific preference, when the user is interacting with two ran-
dom services (#50 and #380). Then we visualized the attention
weights of different neighbors over these two services, which
are shown in Figure 8, respectively.

We can have the following three observations. First, the
attention weights of a user’s high-order neighbors are dynamic
when interacting with different services. For example, when
we learn the user representation over service #50, we find the
intensity of neighbor #4 in Figure 8(a) is relatively higher
compared with that over service #380 in Figure 8(b). Second,
the attention weights of neighbors may vary significantly.
For example, when interacting with service #50 as shown in

Fig. 8. Neighbor-level Attention distributions of a social sub-graph. The
color scale indicates the intensities of the influence weights, where a lighter
color means higher score and a darker color means a lower score. Note that
Vertex 0 is the target user. (a) Some user interacting with service #50. (b) Some
User interacting with service #380.

Figure 8(a), the user gives more attention to neighbor #4. The
reason of both of the observations may be that when a neigh-
bor has consumed some service, he will have a larger influence
strength for the user over this service. Third, the neighbors
with more invocation histories tend to have higher attention
weights. For example, when interacting with service #50 as
shown in Figure 8(a), both neighbors #4 and #9 have con-
sumed service #50, but the attention weight of neighbor #4 is
much higher than that of neighbor #9. This may be because
the attention weight reflects the richness of a neighbor’s feed-
back information, that is his experience level. In other words,
neighbor #9 consumed much fewer services than neighbor #4
and thus cannot provide significant influence. This experiment
shows that our attention mechanism may help to explain a
recommendation result.

V. RELATED WORK

Our study is closely related to literature on service recom-
mendation and graph representation learning.

A. Service Recommendation

With the explosive development of service ecosystems, ser-
vice recommendation utilizing Big Data technologies remains
to be one of the key research topics in the field of Services
Management, since Big data are widely recognized as being
one of the most powerful drivers to promote productivity,
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improve efficiency, and support innovation [34], [35]. Here we
review the related work on service recommendation in terms
of the following three categories.

Semantics-Aware Recommendation: Semantics-aware meth-
ods mainly focus on information retrieval and similarity calcu-
lation. Existing methods usually extract semantic information,
e.g., keywords and labels, and calculate relevance scores repre-
sented by semantic distance. Dong et al. [36] represented users
and services as vectors of words and calculated the cosine
similarity between corresponding vectors. Meng et al. [37]
represented a user’s preference by keywords and proposed a
user-based collaborative filtering (CF) algorithm for service
recommendation. To alleviate the dependence on the quality of
domain thesaurus, Li et al. [38] revealed a correlation between
services and words extracted from related WSDL documents
based on latent dirichlet allocation (LDA). Chen et al. [39]
integrated both the WSDL documents of services and tagging
data and proposed a user tagging augmented LDA (TA-LDA)
model. In contrast to their semantics-based service recommen-
dation methods, our work complements their work and focuses
on leveraging social relations among users to enhance service
recommendation performance.

QoS-Aware Recommendation: Quality-of-Service (QoS) is
widely employed to represent the nonfunctional performance
of Web services and has been adopted as a key factor
in service selection. Zheng et al. [24] proposed a user-
collaborative mechanism for collecting historical QoS data of
Web services from different service users. Hu et al. [40] inte-
grated time information into both similarity measurement and
QoS prediction for high-quality Web service recommendation.
Liu et al. [41] proposed an enhanced measurement for com-
puting QoS similarity and a location-aware CF-based Web
service QoS prediction method for service recommendation.
Ahmed et al. [26] proposed a model predicting a Web ser-
vice’s behaviors, by predicting the status of underlying hidden
states in terms of response time. Some researchers refer to the
context feature of services [42], or utilize hybrid factorization
machine models to capture the non-linear and complex feature
interactions [43]. In contrast to their QoS-based service rec-
ommendation methods, our work complements their work and
focuses on leveraging social relations among users to enhance
service recommendation performance.

Social Relation-Based Recommendation: The aforemen-
tioned works on service recommendation assume that all the
service users are independent. They mainly focus on modeling
the feedback order by using users’ positive and negative feed-
back, but do not investigate how the feedback from users’
friends can be used to model users’ preference on services.
With the prevalence of social media, social influence is perva-
sive, not only in our daily physical life but also on the virtual
Web space. Some researchers proposed to enhance the relia-
bility of service recommendation by integrating users’ social
connections. Tang et al. [27] adapted the conventional CF tech-
nique by choosing to recommend users for the target user in
regard to both similarity and trust between them. Li et al. [44]
proposed to measure interest similarity between friends in
video service systems and to study friend recommendation.
Kalai et al. [45] proposed a Web service discovery process, by

TABLE VI
COMPARISON OF HSGNN AND ITS RELATED WORK

taking into account the best social friendships of the current
user and the past invocation histories with satisfactory Web
services of one’s friends. Zhang et al. [46] define a “social
plane” that relies on recommended measurements to enable
network performance expectation management. Lu et al. [47]
propose a service recommendation model based on data
compensation and dynamic user interest grouping in social
networks.

The characteristics of HSGNN and its related works are
listed in Table VI. We can observe that all of those previously
published studies, though inspiring, are limited to users’ direct
friends without considering the high-order connectivity from
user-user interactions. Moreover, the social influence strengths
in most of the works are usually set equal or relied on
a predefined static function, which should be dynamic and
learnable [9].

B. Graph Representation Learning

Research on graph representation learning has rapidly
gained significant attention in recent years, since many
real-world data can be represented by graphs conveniently.
Perozzi et al. [8] developed DeepWalk that learns social rep-
resentations of a graph’s vertices, by modeling a stream of
short random walks. Tang et al. [48] introduced a network
embedding method called LINE, which can be applied to arbi-
trary types of large-scale information networks. Grover and
Leskovec [49] proposed node2vec, which can learn represen-
tations that organize nodes based on their network roles and/or
communities to which they belong.

In the last a couple of years, graph convolution networks
(GCNs) [50] have shown strong capability of learning on
graph representations. GCMC [51] utilized GCN on a user-
item graph, with only one convolutional layer to extract the
direct relationships between users and items. Thus it failed to
encode the high-order signals of the graph. GraphSAGE [11]
applies GNNs to borrow signals from the neighbors of a
node to enrich the embedding of the node in a graph. In
contrast to its covering all neighbors nodes, we applied the
RWR strategy to select a fixed number of neighbor nodes to
ensure performance, while simulating real-world social rela-
tions. PinSAGE [52] applied GCN layers to learn embeddings
for nodes in item-item graphs, which does not take account of
users’ social relationships. Wang et al. [19] proposed NGCF
based on graph neural network, which explicitly encodes the
collaborative signals in the form of high-order connectivity
by performing embedding propagation. However, it simulta-
neously updates the presentations for all users and items in a
same graph, which fails to run on large-scale graph, due to its
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high space complexity. In contrast to existing work, we differ-
entiate the two aspects of social impacts from high-order social
relations, and applied to service recommendation. Despite the
inspiring success achieved by previous work, little attention
has been paid to social-based service recommendation with
GCNs. In this paper, we proposed a social attentional graph
convolutional network for the service recommendation to fill
this gap.

When GNNs aggregate signals from neighbors, there are
many aggregation operators proposed such as max pooling,
sum, and average operators. In this work, we adopted the neu-
ral graph collaborative filtering [19] that considers the degrees
of both message sender and recipient. However, their neural
networks share the same pair of weight matrices in all layers.
In contrast, we learn separate pairs of weight matrices at each
layer of neural networks.

The recent graph attention networks [11], [13] introduced
an attention mechanism to differentiate user-user impact in a
social network. In contrast, our attention mechanism adds in
the target service as the third item, aiming to study a finer-
grained, context-aware user-user impact.

VI. CONCLUSION

With the prevalence of online social networks, increasingly
more service platforms tend to leverage the social networks
among users to alleviate the data sparsity problem and to
enhance service recommendation quality. However, one main
deficiency affecting the accuracy of existing social relation-
based recommending approaches, is that high-order social
relations are not considered in a comprehensive manner.

In this article, we have introduced a novel model HSGNN
that unifies graph convolutional techniques and attention
mechanisms, to seamlessly integrate the high-order social
similarity and difference into user representations simultane-
ously, for more accurate service recommendation. On the one
hand, we have applied graph convolution to model the multi-
hop propagation process of social information. On the other
hand, we have developed a neighbor-level attention instru-
ment to learn context-aware (i.e., target service oriented) social
impact. Extensive experiments have proved that HSGNN out-
performs the baseline methods in the prediction accuracy on
the real-world game service dataset. The neighbor-level atten-
tion mechanism also enables certain explainability of service
recommendation results.

In this work, to focus on learning from social rela-
tions, we intentionally simplify the embedding initialization
step (i.e., using trivial identifiers). In our future work, we
plan to extend HSGNN to incorporate the content and con-
text information of services to deal with the service-side
cold-start problem. In addition, we plan to investigate and
improve the explainability of our model. This is feasible
since our social embedding propagation technique can help
to explain the influence diffusion process in social networks.
Furthermore, we plan to investigate parallel and efficient
techniques to handle training of many constructed graph neu-
ral networks when the social network becomes very large
scale.
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