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Abstract—Service recommendation for composition creation is
a widely applied technique, which expedites mashup development
by reusing existing services. The core of service recommendations
is to simultaneously understand user needs as well as the func-
tions of available services. However, the descriptions provided by
users and service providers may not always be accurate or up to
date, which poses significant challenges to composition creating.
To tackle this problem, in this paper we propose a deep learning-
based service recommendation framework named coACN, short
for Collaborative Attention Convolutional Network, which can
effectively learn the bilateral information toward service recom-
mendation. On the one hand, a domain-level attention module is
constructed to refine user needs embeddings by drawing messages
from related service domains. On the other hand, a graph
convolutional network is established to excavate the service-
composition graph and fuse structured information into service
embeddings. For a service node in the graph, the information
of its compositions as its first-order neighbor nodes is used to
supplement the latest functions and features of the service; and
the information of the services as its second-order neighbor nodes
may bring collaborative relationships into the service. Extensive
experiments on the real-world ProgrammableWeb dataset show
the significant improvement of our proposed coACN framework
over state-of-the-art methods.

Index Terms—Service Composition, Graph Convolution Neu-
ral Network, Attention Mechanism, Service Recommendation,
Collaborative Filtering

I. INTRODUCTION

Service recommendation for composition creation is a widely
recognized and applied technique to best meet the needs of
users, by integrating and reusing existing services [21] instead
of recreating the wheel. Nowadays, hundreds of thousands
of services are continuously published online. How to select
appropriate ones from the mass of services to generate service
compositions, so-called mashups or workflows, to expedite
mashup development has remained a hot research topic in both
academia and industry [1], [7], [17].

As illustrated in Fig 1, the service ecosystem contains a
wealth of services and service compositions, together with
the interactive relationships among them. Over time, services
gradually form various service domains in the process of
constant competition and collaboration. Each service domain
accumulates services with similar functions. In the scenario
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of service composition creation, both user needs and the
functions of services are typically given in form of description
sentences. Nevertheless, the descriptions provided by service
providers and users may be incomplete or inaccurate, which
makes it difficult to learn their proper representations. Here
we thoroughly introduce the problems of two descriptions:

Descriptions of User Needs: Users typically describe their
needs in natural language, which serve as the basis for many
existing recommendation methods. Due to the complexity of
user needs, however, simply relying on such descriptions may
not be sufficient to identify all aspects of user needs. Take the
mashup Vacationic in the ProgrammableWeb platform as an
example. It calls services from four service domains: travel,
mapping, photos, and video. However, the description of the
mashup says it “provides an overview of travel highlights
around the world using interactive maps with destinations
such as cities, beaches, national parks, and cultural sites.”
From this description, only mapping and travel domains can be
extracted apparently, but not the other two domains of photos
and video. Throughout this paper, we will use the phrase user
needs to represent the descriptions of both new user queries
(new mashup aims) and past mashups.

Descriptions of Services: The descriptions of services
become fixed once the services are published by service
providers on the Internet. However, the functional character-
istics of services may change during the process of collabo-
ration. Meanwhile, users may use services in a different way
from the service providers’ expectation. As a result, simply
considering the descriptions of services may not be accurate.

Existing methods mostly learn the embeddings of both user
needs (i.e., queries) and services, and then measure the sim-
ilarity between them to make a decision of recommendation.
For example, MF [9] projects user needs and services into a
shared latent space to study their match-making. With the rapid
advancement of deep learning in recent years, a number of
methods based on deep learning have been developed to tackle
the service recommendation problem. To improve the non-
linear representation ability of the model, NCF [5] explores
neural network architectures for collaborative filtering. Zheng
et al. [22] present the DeepCoNN to exploit the feedback
information existing in the sentences, by coupled deep neural
networks to further excavate content information. To deepen
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Fig. 1. Left: The diagram shows the service ecosystem which contains services and service compositions (mashups). The left-hand nodes represent services
and the right-hand nodes represent compositions. The edges between them represent their historical interaction records. Services in the same circle carry
similar functions and form corresponding service domains. Right: Take service node s1 as an example, the high-order connectivity for s1 is shown in a graph.

the use of graph structure with high-order neighbors, He et
al. [4] recently propose LightGCN to mine the higher-level
implicit information and achieves state-of-the-art performance.
However, few of existing approaches consider the fact that
the descriptions provided by service providers and users may
be incomplete or inaccurate, which makes it difficult to learn
their proper representations. In this work, we propose a
novel method named Collaborative Attention Convolutional
Network(coACN) to exhaustively understand the bilateral in-
formation for better service recommendations.

Because user needs aim to be fulfilled by services from
service domains, we decide to synergistically integrate service
domain information into the descriptions of user needs. To
achieve this goal, we learn the domain similarity with user
needs and assign a reasonable weight to add the service
domain embeddings to user needs embeddings. Inspired by
the attention mechanism [15], we have designed a domain-
level attention unit to learn the similarity between user needs
and each service domain. According to the similarity, related
service domain information is reasonably integrated into the
embeddings of user needs to enrich and refine the descriptions
of user needs.

To solve the problem on the other side of services, we
consider using past user needs information and the past
collaborative relationships among services to calculate service
embeddings. Since mashup compositions can reflect the latest
functions and features of services to a certain extent, the
mashup descriptions (i.e., descriptions of past user needs) can
be a supplement to services. We thus construct a service-
composition graph and use the graph convolutional network
to mine and aggregate implicit information. As illustrated in
Fig 1, the first-order neighbors of a service are the mashup
compositions invoking it. The compositions’ embeddings can
be transferred to the service to complement the latest functions
of the service. Meanwhile, the second-order neighbors of the
service are other services invoked in the same composition.
Through a high-order graph convolutional network, the col-
laborative relationships among services can be integrated into

the service embeddings. Combining these two components, we
devise a service recommendation framework for composition
creation, which revises descriptions on both sides of the
recommendation problem.

We have conducted extensive experiments on the real-
world dataset ProgrammableWeb to demonstrate our proposed
method, and the overall HR@20 of our coACN is 6.9% higher
compared with the state-of-the-art methods.

The main contributions of this paper can be summarized as
three-fold:
• We propose coACN, a service recommendation frame-

work for composition creation to exhaustively understand
the information on both sides of service recommendation.

• We design a domain-level attention unit to wove domain
information into the descriptions of user needs to help
identify potential services.

• We construct a graph network together with a graph
convolutional network to capture holistic information to
enrich and refine service descriptions.

The remainder of this paper is organized as follows. Section
II prepares audience with preliminary information. Section III
introduces our proposed coACN framework in detail. Section
IV describes the experiments. Section V compares our research
with related work. Section VI draws conclusions.

II. PRELIMINARIES

In this section, we will introduce the definitions and problem
of service recommendation for mashup creation, as well as the
symbols to be used in the algorithms.

Definition 1: Service ecosystem. A service ecosystem refers
to a complex ecosystem composed of massive services and
compositions (mashups). It is represented by a four-tuple
SE = {M,Dm, S,Ds}, in which M refers to mashups and S
refers to services, the total numbers of mashups and services
are I and J , respectively. The description of mashup mi ∈M
is expressed as Dm

i = {wm
i1 , w

m
i2 , . . . , w

m
in}, where wm

ik is the
k-th token and the description content consists of n words.
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Fig. 2. The structure of coACN, in the context of a prediction process of mashup i and service j. There are four components in total. Among them, Structured
Information Extraction and Service Domain Enhancement are core parts. Structured Information Extraction uses a graph convolution network to excavate
the service-composition graph to extract structured information and learn proper embeddings on the side of services. Service Domain Enhancement uses a
domain-level attention unit to enhance domain information on the side of user needs.

Similarly, Ds
j = {ws

j1, w
s
j2, . . . , w

s
jn} is the description of

service sj ∈ S comprising n words. It is worth noting that the
descriptions of mashups and services are unified into vectors
with a fixed length n. In the specific operation, if the length
of the mashup description is longer than n, we will truncate
it. If the length of the mashup description is shorter than n,
zero (0) will be used to complete the vector.

Definition 2: Service domain. Services bearing similar func-
tionalities form a service domain, i.e., service category [17].
The description of a service domain is generated by splicing
and integrating the descriptions of the services belonging to the
domain. Suppose there are Ks service domains in the service
ecosystem, the description of service domain k is represented
as Dd

k = {wd
k1, w

d
k2, . . . , w

d
knd
}, where wd

kl is the l-th token.
Similarly, the descriptions of service domains (that is, the
descriptions of categories) are processed into vectors with a
fixed length of nd.

Definition 3: Service-composition graph. The historical
interaction relationships between services and compositions
are constructed to become a service-composition graph. The
matrix of the graph is represented by Y ∈ RI×J , recording
the interaction network of services and mashups. If service sj
is invoked by mashup mi, yij = 1; otherwise, yij = 0.

Problem: Service recommendation for composition cre-
ation: Given the definitions described in section II.A, a
new mashup query Q carries query description Dq =
{wq

1, w
q
2, . . . , w

q
n}, where wq

i is the i-th token in Dq . The goal
is to recommend services to fulfill part or whole of query Q.
The recommended result is given as a ranked list RL, in which

a service with a higher rank has a higher probability to be
adopted by query Q.

III. FRAMEWORK COACN

To better perceive user needs and understand service functional
characteristics, we devise a new method named coACN. In this
section, we firstly provide an overview of coACN, and then
detail each of its comprising components separately.

A. Overview of coACN

The overall structure of coACN is illustrated in Fig 2. Its
structure consists of the following four components:

• Look-up Layer: This layer transforms the input token
vectors of descriptions into embeddings with semantic
information through a look-up table.

• Service Domain Enhancement: A domain-level atten-
tion unit is established to enhance service domain infor-
mation in the descriptions of user needs.

• Structured Information Extraction: A graph convolu-
tion network is built to extract the structured information
carried in service-composition graph, to better understand
functional descriptions of services.

• Prediction Layer: An inner-product model is utilized to
predict the possibility for a mashup query to invoke a
service.

Among the four components, two components Service Do-
main Enhancement and Structured Information Extraction are
essential, which are designed to perceive user needs and to
understand service functional characteristics.
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B. Look-up Layer

To exploit the semantics of descriptions, we adopt an approach
that is widely used in many Natural Language Processing
(NLP) applications [3], [22], which inquires each word em-
bedding representation from a look-up table. As the same
process is applied to mashup descriptions, service descriptions,
and service domain descriptions, we take mashup descriptions
as an example. Given the mashup mi’s description Dm

i =
{wm

i1 , w
m
i2 , . . . , w

m
in}, we project each word to its embedding

representation: Emi
= [ei1, ei2, . . . , ein], eik ∈ Rd, where n

is the length of the description and d is the word embedding
dimension.

C. Service Domain Enhancement

The key objective of embedding-based service recommenda-
tion is to capture the relations between mashups and services
in the latent space. Due to the domain complexity of user
needs (mashup queries), simply relying on the descriptions of
mashups is insufficient to identify all aspects of user needs.
Therefore, we decide to take into account service domain
information for the sake of better perceiving user needs. We
first use several fully connected networks to increase the
nonlinear abilities of our model, and then build a domain-
level attention unit to enhance the service domain information
in mashup queries.

Fully Connected Network. A fully connection network aims
to transform mashup mi’s representation matrix Emi

received
by the look-up layer into a one-dimension vector vmi

∈ RL,
where L = n × d . Put vmi into a fully connected network
unit:

Vmi = σ(WT
mvmi + bm), (1)

where Wm ∈ Rdim×L, bm ∈ Rdim and σ are weight matrix,
bias vector and activation function respectively; and dim
represents the embedding dimension. In this paper, ReLU is
selected as the activation function.

In order to further enhance service domain information
into mashup embeddings, we first transform service domain
embeddings into key embeddings and value embeddings.
Key embeddings are used to measure the similarity between
mashups and service domains, and value embeddings are used
to generate the final additional mashup embedding sm, which
will be introduced in a later section. We thus obtain the
representations of value and key respectively:

Vvalue,k = σ(WvalueVCk
+ bvalue), (2)

Vkey,k = σ(WkeyVCk
+ bkey), (3)

where Wvalue,Wkey ∈ Rdim×Lc and bvalue, bkey ∈ Rdim

denote the weight matrices and bias vectors of fully connected
networks, respectively. Here, Lc = nc × d. The outcome of
this process are the preliminary results of mashup embeddings
and service domain embeddings Vmi , Vvalue,k, and Vkey,k.

Domain-level Attention Unit. In order to encode the mem-
bership degree of mashups in service domains to promote the
mashup representations, we fuse service domain embeddings
into an additional mashup embedding sm. To calculate sm
through a non-uniform coefficient, we adopt the following
formula:

sm =

Ks∑
k=0

αmkVvalue,k. (4)

We apply the attention mechanism, a popular mechanism
widely used in many recommender approaches [2], [18], to
model the various service domain importance in a mashup-
sensitive fashion. Specifically, the domain-level attention unit
learns a specific weight αmk for every service domain embed-
ding Vvalue,k:

αmk =
exp

(
V T
mi
Vkey,k

)∑K
j=0 exp(V T

mi
Vkey,j)

. (5)

The inputs of the domain-level attention unit are mashup
embeddings and service domain embeddings, toward making
the learned attention score sensitive to the domain membership
degree of mashup.

Afterwards, we exploit the two resulting mashup embed-
dings (mashup embedding Vmi

through the fully connected
network and additional mashup embedding sm), and fuse them
into a unified embedding. It has been proven effective to fuse
embedding vectors learned from multi-modal data to combine
signals from the available recommendation models [2], [19].
The unified embedding via fusion can be given as follows:

zmi
= (1− β)sm + βVmi

, (6)

where β is a hyper-parameter to control the proportion of
service domain information. The aim of β is to balance the
information from the service domain and mashup mi itself.

D. Structured Information Extraction

To understand the functional characteristics of services ac-
curately and completely, we take structured information into
consideration. Be more specific, we construct a service-
composition graph which is a bipartite graph composed of
services and mashups, and build a graph convolution network
to excavate it. Through the graph network, the content of
user needs can be transferred from the compositions, which
are the first-order neighbors of a service, to help improve
service perception. Meanwhile, the collaborative relationships
between services can be integrated by using the second-order
graph convolution.

Fully Connected Network. Similar to the part in Service
Domain Enhancement, we can adopt fully connection network
to obtain the representation of a service description as follows:

Vsj = σ(WT
s vsj + bs). (7)
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Graph Convolution. Our objective is to leverage the content
of past user needs to improve the service embeddings and cap-
ture the collaborative relationships among services. We thus
design a graph convolution network to excavate the service-
composition graph. Inspired by LightGCN [4], we utilize light
graph convolution and layer combination to achieve our goal.

Refer to the definitions given in section II, the matrix
of a service-composition graph is denoted as Y ∈ RI×J ,
where I and J indicate the numbers of mashups and services,
respectively. We thus obtain its adjacency matrix as:

A =

(
0 Y
Y T 0

)
, (8)

where A ∈ R(I+J)×(I+J). The embedding matrix of
graph convolution at the 0-th layer is defined as X(0) =
concat(Vm0

, . . . , VmI
, Vs0 , . . . , VsJ ) ∈ R(I+J)×dim. Vsj is

service sj embedding received by fully connected network,
and Vmi

is mashup mi embedding. The matrix equivalent form
of light graph convolution can be written as:

X(k+1) = (D−
1
2AD−

1
2 )X(k), (9)

where D ∈ R(I+J)×(I+J) refers to a diagonal matrix, in which
each entry Dii represents the number of non-zero entries in
the i-th row vector of the adjacency matrix A (also named
as degree matrix). Finally, we get the final service embedding
matrix:

X =

Ls∑
l=0

alX
(l) =

Ls∑
i=0

alÂ
lX(0), (10)

where ak ≥ 0 indicates the importance of the k-th layer
embeddings in the final embeddings. It can be regarded as
a hyper-parameter that needs to be tuned manually. Â =
D−

1
2AD−

1
2 is the symmetrically normalized matrix. We ex-

tract the last J rows from the result, which is the service part,
and express them as O ∈ RJ×dim. The embedding of service
sj is represented as Oj .

E. Prediction Layer

After the operations conducted in the aforementioned layers,
we are ready to predict whether a service may be invoked
in a mashup query or not. We use zmi

and Oj to estimate
yij , which is the probability of mashup query mi invokes
service si. Since our work majorly focuses on the framework
for service composition recommendation, we decide to apply
a simple yet widely-used inner product model:

ŷt
ij = σ

(
zTmi

Oj

)
, (11)

where σ is the sigmoid function. Note that the predictive
function can be expanded to more complex models at will.

Through the above four components, we will finally obtain
the desired recommendation results.

F. Optimization Strategy

For model training, we utilize the mashups created in the his-
tory as ground truths for parameter optimization. We employ
the Bayesian Personalized Ranking (BPR) loss [11], which is
a pairwise loss that prefers the prediction of invoked services
to be higher than services not invoked. Let B be a batch
of the compose of mashup, service included in this mashup
and service not included. The loss function can be defined as
follows:

LBPR = − 1

|B|
∑

(i,j,j′)∈B

lnσ (ŷij − ŷij′) + λ‖Θ‖, (12)

where λ is a hyper-parameter for regularization coefficient.
Service sj is included in mashup mi and service sj′ is not
included. We adopt Adam as the optimizer to update the
parameters.

IV. EXPERIMENTS

In this section, we first introduce the dataset used to verify
model effects, then present the evaluation metrics and baseline
methods. Afterwards, we report the experimental results.

A. Experimental Settings

1) Dataset: We chose a dataset widely used in the field
of service recommendation for composition creation, Pro-
grammableWeb, to verify our proposed method. This dataset
is the world-largest portal of Web API service and mashup
market place. Up to April 2021, it has accumulated 24,034
web APIs and 7,974 mashups (service compositions of Web
APIs). The dataset provides the content information of services
and mashups, including text descriptions, tags, and category
information. The names of some popular services include
Google maps, Twitter, Last.FM, Youtube, etc. In the process
of model testing, the descriptions of the mashups in the test
dataset are used as mashup queries, and the APIs invoked
by those mashups are regarded as the correct results of
service recommendation. We crawled the data of APIs and
mashups from September 2005 to November 2020 from Pro-
grammableWeb.com. Information on the dataset is summarized
in Table I. To evaluate the effect of compositions, the mashups
we tested containing at least two services. At the same time,
APIs that have never been used were removed when testing.

TABLE I
DATASET DETAILS

Item Value
Number of mashups 7,974

Number of mashups invoking at least two services 3,194
Number of services 24,034

Number of services used in at least one mashup 1,154
Average number of services in one mashup 3.16

Sparsity of mashup-service matrix 0.274%
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2) Evaluation Metrics: For the sake of simulating the
service recommendation for composition creation in the real
scene, in the evaluation, similar to work [1], the data before
a certain time was selected as the training set, and the part
of the data after that time was used as the test set. In our
experiment, we set the test set size to 100, that is, each
time 100 consecutive mashups were selected to form a test
set. The performance of each algorithm from July 2010 to
September 2020 was evaluated. To evaluate the performance
of our recommendation technique, we adopted two widely
accepted metrics, namely Hit Ratio (HR) and Normalized
Discounted Cumulative Gain (NDCG). The former HR@K
metric measures whether the test item is contained in the top-
K recommendation ranking list. The latter NDCG@K metric
extends HR by assigning higher scores to the hits at higher
ranks. The adopted metrics are formulated as follows:

NDCG@K =
1

RN

N∑
i=1

2reli−1

log2(1 + i)
,

HR@K =

∑K
i=1 reli
|ytestu |

,

(13)

where K is the size of the recommendation list, reli = 0 or
1 denotes whether the service at the rank i is in the test set,
and the RN term indicates the maximum possible cumulative
component through ideal ranking. |ytestu | is the number of
services used by user u in the test set.

3) Baselines: To evaluate the performance of the Top-K
service recommendation for composition creation, we com-
pared our coACN with the following four baseline methods:
• MF [12]: This method optimizes the matrix factorization

by the Bayesian personalized ranking (BPR) loss, which
exploits the mashup-service invoking interactions for ser-
vice recommendation.

• NeurMF [5]: The method is a state-of-the-art neural
Collaborative Filtering (CF) model, which uses multiple
hidden layers above the element-wise and concatenation
of user and item embeddings to capture their nonlinear
feature interactions. Especially, we employed two-layered
plain architecture, where the dimensions of each hidden
layer remain the same.

• DeepCoNN [22]: This method models mashups and ser-
vices via excavating the descriptions by a convolutional
neural network.

• LightGCN [4]: This method consists of light graph con-
volution and layer combination to complicate the design
of GCNs, for collaborative filtering service recommenda-
tion.

4) Experiment Setup: We preprocessed the descriptions of
both mashups and services, firstly removing stop words, and
then truncating (or completing) the long (or short) descrip-
tions at the same length of 80 words. During the training
phase, we set the negative sampling proportion as 4 and the

default mini-batch size of 256. The embedding size was set
to 64 for both coACN and baselines. We used the model
parameters trained by coACN-A and coACN-co (variants of
our coACN for comparison) to initialize the corresponding
model parameters in coACN, so that the model can learn
in the right direction. We employed the Adam [8] optimizer
and used the default learning rate of 0.0001, the default L2
regularization parameter of 0.0005. Same as in LightGCN [4],
the layer combination coefficient ak was uniformly set to 1

1+K
where K is the number of layers. We tested K in the range
of 1 to 4, and finally, chose 2. We investigated the top-K
recommendation performance with K setting to 10, 20 both
in our method and baseline methods. As aforementioned, we
tested the performance of all services that exist in systems. We
implemented coACN based on Pytorch, a widely-used open-
source machine learning framework.

TABLE II
PERFORMANCE COMPARISON

HR@10 NDCG@10 HR@20 NDCG@20
MF 0.3721 0.4797 0.4686 0.5238

NCF 0.4129 0.5141 0.4878 0.5511
DeepCoNN 0.4023 0.5120 0.5096 0.5689
LightGCN 0.4396 0.5396 0.5006 0.5792
coACN-N 0.3996 0.5096 0.4806 0.5492
coACN-co 0.4481 0.5326 0.5050 0.5660
coACN-A 0.4627 0.5797 0.5328 0.6118

coACN 0.4828 0.6050 0.5447 0.6368

B. Performance Comparison

Table II summarizes the experimental results of our coACN
and baseline methods on the ProgrammableWeb dataset. From
the results, we can draw the following four conclusions:

First, increasing the nonlinearity and complexity of the
model could improve the recommendation effect of service
composition. As shown in Table II, NCF is better than MF
in each metric. Among them, there is an 11% improvement
in HR@10 but only 4.2% in HR@20. Through the analysis
of the ProgrammableWeb dataset, we guess that since the
record number of popular services is much larger than that
of long-tail services, the popular services are more likely
to be accurately recommended, ranking at the top of the
recommendation sequence. The length of 20 is sufficient for
finding popular services, but not enough for finding long-tail
services. Even if the length of the prediction list is increased
from 10 to 20, it is difficult to cover the long-tail services.
Thus, the improvement of HR@10 is more obvious than that
of HR@20.

Second, extracting structured information of graph can
improve the effectiveness of service composition. In most
indicators of Table II, LightGCN performs better than MF and
NCF. LightGCN can transfer the high-order collaborative re-
lationships of services through the service-composition graph
network.

Third, enhancing the understanding of descriptive content
information will improve the effectiveness of service composi-
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tion recommendations. On the basis of using the trained look-
up table to construct word embeddings, DeepCoNN adds a
convolution network to capture more detailed text information.
It can also be seen from Table II that this method shows a
better service composition recommendation effect than MF
and NCF in various metrics. At the same time, LightGCN
and DeepCoNN have similar performance on HR@20 and
NDCG@20, while LightGCN is better than DeepCoNN on
HR@10 and NDCG@10. We guess that the method with a
relational network could better recommend popular services.

Fourth, introducing domain information into service com-
position can significantly improve the recommendation effect
of service composition. We notice that our coACN method
has a significant improvement in HR and NDCG, compared
with other baseline methods. In the HR@20 index, coACN is
6.9% higher than the best baseline method. In the NDCG@20
index, coACN is 9.9% higher than the best baseline method.

C. Effect of Components

After quantitative analysis, we examined the role of model
components, the domain-level attention unit in Service Domain
Enhancement and the service-composition graph in Structured
Information Extraction. To be persuasive, we explored the
effects of coACN and its three variants:
• coACN-N: a variant of coACN, which contains nei-

ther service-composition graph nor domain-level attention
unit.

• coACN-co: a variant of coACN, which only contains
service-composition graph, but not the domain-level at-
tention unit.

• coACN-A: a variant of coACN, which only contains
the domain-level attention unit, but not the service-
composition graph.

Fig. 3. Performance of variants of coACN

Table II and Figure 3 show the effect of the coACN and
its three variants. From them, we can draw the following
conclusions:

The coACN-N removes two key components and basically
degenerates into the MF model with fully connected networks
added, which is the worst compared with the other three

models. Compared with the results in Table II, the coACN-N
is slightly better than the MF but still worse than the NCF.

The coACN-co adds the service-composition graph on the
basis of the coACN-N. By using a graph convolution network
on this graph, both the latest functions of services and the
collaborative relationships of services can be mined to sup-
plement the service embeddings. It is 12% higher than the
coACN-N in HR@10.

The coACN-A adds a domain-level attention unit on the
basis of the coACN-N. Based on the description of the mashup
query, the coACN-A enhances more domain information ac-
cording to the domain similarity of mashup. Compared with
the coACN-N, it has been improved greatly.

D. Impact of Hyper-parameters

We further investigated the impact of four hyper-parameters
in the coACN thoroughly. When we studied the impact of
one hyper-parameter, the other three were set with the default
values. Fig 4 shows the effects of the four hyper-parameters
used in our coACN.

Fig. 4. Influence of four hyper-parameters on the coACN effect.

1) β: As a hyper-parameter controlling the proportion of
service domain information learned from the domain-level
attention unit to mashup representation, β value affects the
effect of our coACN. We set β = {0, 0.2, 0.4, 0.6, 0.8, 1}
in turn to observe the corresponding service composition
recommendation effect. As shown in Fig 4, when β = 0,
which means domain information is not included, the effect
is basically the same as coACN-co. When β = 0.6, the best
effect is achieved. When β = 1, the final representation of the
mashup is completely dependent on the domain information,
while its own description information is discarded, so the
effect is poor.

2) λ: This parameter controls the proportion of L2
regularization in the optimization function of the model.
According to experience, adding L2 regularization could
avoid overfitting. In our experiment, we set λ =
{1e−6, 1e−5, 1e−4, 1e−3, 1e−2, 1e−1}. It can be found that
HR-index increases first and then decreases. The maximum
value of HR is obtained at λ = 0.0001.
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3) Ks: The number of service domains Ks determines how
many categories to retain. An appropriate Ks can ensure the
effect of the service composition recommendation. Fig 4(c)
shows the effect of hyper-parameter Ks on the HR@10 of
coACN recommendation. The results show that 40 is a reason-
able choice of Ks. When Ks is less than 40, increasing Ks can
significantly improve the recommendation effect. While when
Ks is more than 40, the recommendation effect of coACN
tends to be stable.

4) Ls: We also investigated the number of layers of graph
convolution networks on the service side and found that the
model has reached the upper limit of capacity when the layer
number is 2. A deeper graph network only increased the
training time, but did not improve the recommendation effect.
Our analysis shows that the mashups in ProgrammableWeb
dataset are mostly composed of a small number of services,
which leads to the lack of high-order neighbors. In other
words, service nodes have only first-order neighbors in the
cooperative network. Considering other datasets with complex
high-order relations in the future, we may consider increasing
the number of layers to achieve better results.

V. RELATED WORK

In this paper, we propose a solution to solve the problem of
service recommendation for composition creation. Nowadays,
service recommendation plays a decisive role in relieving the
information overload problem.

Some existing service recommendation approaches use
semantic-based models and significantly improve recommen-
dation performance. Qiu et al. [14] extract content-based
features from both WSDL documents and user queries, then
calculates the semantic similarity between them. Bai et al. [1]
extend the CTR and proposes a framework that considers the
procedure of service selection as a generative process.

Rating-based methods mainly focus on the interaction rating
matrix of users and services. Collaborative filtering [12], [20]
models user preferences on services based on the user-service
historical rating matrix. MF [9] projects users and services
into a shared latent space. With the wide application of
deep learning in recommendation systems, many researchers
provide a neural network-based recommendation. Zheng et
al. [22] present the DeepCoNN which exploits the feedback
information existing in the reviews by coupled deep neural
networks. Another type of classic service recommendation is
rating-based. NCF [5] explores neural network architectures
for collaborative filtering. To deepen the use of graph structure
with high-order neighbors, He et al. [4] recently propose Light-
GCN to mine high-level implicit information and achieves
state-of-the-art performance.

Some methods also take the evolution characteristics of
services into consideration [10], so as to better predict the
tendency of services invocation and update service function
information.

Apart from these function-related recommendation methods,
some researches focus on non-functional properties of ser-
vices. Strunk et al. [6], [13], [16] provide QoS-aware service

recommendation methods which give recommendations by
analyzing the characteristics of services (such as reliability,
availability, response time, and so on).

In contrast to related work, our coACN effectively learns
and enriches the bilateral information toward service recom-
mendation, from both user needs and services.

VI. CONCLUSIONS

This paper has presented a novel deep learning-based service
recommendation framework for composition creation, named
coACN, short for Collaborative Attention Convolutional Net-
work. This framework can exhaustively understand the two
sides’ information on service recommendations. One is user
needs, and the other is service functions. By using a domain-
level attention unit to learn the similarity between user needs
and related service domains, the service domain information
is reasonably integrated into the embeddings of user needs. By
using a graph convolution network on the service-composition
graph, the structured information can be imported into ser-
vice embeddings. Extensive experiments on real-world dataset
ProgrammableWeb have demonstrated the effectiveness of our
proposed method. The overall HR@20 of coACN is 6.9%
higher than the state-of-the-art methods.

We plan to continue our research in the following two
aspects. First, we plan to integrated additional information to
further enrich the descriptions of user needs and services, such
as user profiles and service usage data. Second, we plan to
consider datasets with complex high-order relations, to further
study the effectiveness of our coACN framework.
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