
Facilitating Data-Centric Recommendation in
Knowledge Graph

Jia Zhang1, Maryam Pourreza1, Rahul Ramachandran2, Tsengdar J. Lee3, Patrick Gatlin2, Manil Maskey2,

Amanda Marie Weigel4

1Department of Electrical and Computer Engineering, Carnegie Mellon University, USA
2NASA/MSFC, USA

3Science Mission Directorate, NASA Headquarters, USA
4University of Alabama Huntsville, USA

{jia.zhang, maryam.pourreza}@sv.cmu.edu;{rahul.ramachandran, tsengdar.j.lee, patrick.gatlin,manil.maskey}@nasa.gov;

amw0039@uah.edu

Abstract—In order to help Earth scientists share knowledge
and expedite scientific exploration, NASA is developing NASA
Earth Science Enterprise (ESE) whose underlying basis is
NASA Science Knowledge Graph (SKG). This paper focuses
on the information model design of the SKG, where entity-
and relationship-encapsulated features are extracted as first-
class citizens in SKG. The rationale is that typological structural
analysis can thus be exploited for runtime knowledge extraction,
discovery, and prediction, in addition to semantic analysis. Based
on the information model, a knowledge discovery technique
is equipped to answer queries and provide personalized rec-
ommendation based upon the SKG. Deep learning techniques,
i.e., Stacked Denoising Auto-Encoders (SDAE) and Translating
Embeddings (TransE), are applied to detect structural similarity
and explore paths at runtime, respectively, supporting higher
scalability and performance. Experiments on a science-oriented
testbed serves as a proof of concept and demonstrates the
feasibility and effectiveness of the techniques.

Index Terms—Science knowledge graph, knowledge discovery,
deep learning

I. INTRODUCTION

Data-centric recommendation has become a critical issue

in the modern scientific research. Take Hurricane science

as an example. It encompasses a wide array of research

working to improve Hurricane observation methods, modeling

and prediction, data assimilation, understanding of hurricane

impacts, and dynamic and physical processes. To conduct

this research, a scientist's goal is to use the best data, tools,

methodologies, and models available to answer a hypothesis.

Thus, the scientist needs to accurately locate the sources where

data can be found, available user guides, information on how

the data was acquired, and available tools and models to use

with this data. Such a process has been proven to be highly

tedious, time consuming and inefficient [7] without computer

support.

To address the problem, researchers have been studying data

recommendation from various aspects. Our previous research

has proposed a concept of data service container that treats

data as first-class citizen and organizes around data the soft-

ware and procedures that can process the data [18]. In this

paper, we move one step forward to study the scalability of

realizing data service containers and explore how to enable

the data service containers to provide direct answers to user

queries in an effective manner.

Google Knowledge Graph1 (name changed to Knowledge

Vault) project aggregates structured and detailed information

about defined topic, so that users could resolve their query

without having to navigate and assemble information man-

ually. Fig. 1(a) shows the knowledge panel when searching

for ”Isaac Newton.” The knowledge panel summarizes infor-

mation that people commonly wish to know about Newton,

by aggregating his profile including his short bio and major

achievements. However, a researcher may be more interested

in knowing his science-related information like his theories

and major experiments conducted. Such information may

be scattered among Newton's publications and will not be

provided by Google Knowledge Vault.

Fig. 1. Knowledge graph and science knowledge graph

In addition to human-related search, domain scientists may

be more interested in science keyword-related search. For ex-

ample, an Earth scientist may query over keyword ”Hurricane.”

What she would really like to know, instead of Wikipedia

explanation of the term and a huge number of websites

containing the Hurricane keyword in text, is the information

regarding a collection of questions such as: Which datasets

should I study on this topic? How to process this dataset? Any

results came from this dataset? What did other researchers do

1https://www.google.com/intl/en us/insidesearch/features/search/knowledge.html

207

2018 IEEE 4th International Conference on Collaboration and Internet Computing

978-1-5386-9502-9/18/$31.00 ©2018 IEEE
DOI 10.1109/CIC.2018.00037

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 15:59:23 UTC from IEEE Xplore. Restrictions apply.

on this dataset? Can I repeat their process? and Can I revise

their process and rerun?

Limited on People, Places, and (general) Things, answers of

such research-oriented queries will not be answered by Google

Knowledge Vault. Thinking about where to find possible

answers to these questions, though, keys are usually scattered

and hidden in publication literature. For an example as shown

in Fig. 1(b), analytics over an Earth science journal paper

typically will reveal the datasets used in the study, including

the variables examined and algorithms used to process the

datasets.

Therefore, this on-going project aims to design and develop

a Science Knowledge Graph (SKG) oriented to scientific

researchers. The ultimate goal is to provide a one-stop gateway

that is able to mine, all together, data-centric knowledge

including datasets, tools and models, algorithms, statistical

analyses, projects, topics, hypotheses and conclusions, as well

as hidden information. In this paper, we focus on the data

model and fundamental network structure of the SKG. Based

on them, we propose a tailored technique of how to record,

retrieve, infuse, and refer data-centric knowledge.

Our contributions in this paper are summarized in three-fold.

First, we have developed an information model to carry key

information entities and relationships around scientific data.

Traditional entity- and relationship-encapsulated features are

extracted as first-class citizens in our SKG, so that implicit

feature relationships can be turned into explicit structural

relationships in the SKG. As a result, we could leverage

structural relationships embedded in SKG to explore hidden

information at runtime, in contrast to semantic analysis where

application-specific rules have to be manually coded. Second,

based upon the information model and knowledge network

constructed, we have developed a tailored technique to answer

community-oriented queries and provide personalized recom-

mendation. Third, we have applied deep learning algorithms

(Stacked Denoising Auto-Encoders (SDAE) [14] and Trans-

lating Embeddings (TransE) [2] to detect structural similarity

and explore paths at runtime, respectively, for addressing

scalability and performance issues.

We have also conducted a collection of experiments over

a science-oriented testbed (myExperiment.org). Our experi-

ments have demonstrated the viability and effectiveness of our

techniques. Note that although focusing on Earth science, our

techniques established can be applied to other domains.

The remainder of the paper is organized as follows. In

Section 2, we discuss related work. In Section III, we introduce

two motivating examples and our strategy. In Section IV and

V, we present the information model and tailored technique for

knowledge inference. In Section VI and VII, we address the

potential scalability issue by applying deep learning-powered

techniques to perform topological structure analysis and path

finding. In Section VIII, we discuss experimental studies.

Finally in Section IX, we draw conclusions.

II. RELATED WORK

Recent years have witnessed a collection of knowledge

graph projects. Google Knowledge Graph project1 integrates

both structured data (e.g., Freebase2, Wikipedia3) and unstruc-

tured data (e.g., the web) to answer user queries. DeepDive

[17] from Stanford provides an engineering procedure to

process dark data into databases. GeoDeepDive [16] is an

extension of DeepDive, focusing on processing dark data from

geological articles. Microsoft Academic Graph (MAG)4 [12]

builds a heterogeneous graph aiming to support generic scien-

tific research on scholarly big data. IBM Watson [6] aims to

create a question answering (QA) computing system by learn-

ing domain knowledge from various sources. On building these

knowledge bases, knowledge extraction relies on extensive

human involvement by defining hand-crafted extraction rules

or hand-labeled training data. According to Nickel et al. [10],

existing knowledge base construction efforts can be divided

into two categories, based on whether a fixed or open lexicon

of entities are employed. In a schema-based approach, on the

one hand, tuples (entities and relationships) are represented by

globally unique identifiers, and all possible relationships are

predefined in a fixed vocabulary. In a schema-free method, on

the other hand, an Open Information Extraction technique is

adopted so that tuples are represented via normalized but not

disambiguated strings.

We have studied the existing technology landscape from

three angles: strategies for knowledge graph construction,

systems for knowledge graph construction, and tools and al-

gorithms on knowledge graphs. While our other paper reports

our efforts from the first two angles [4], this paper focuses on

the fundamental information model and knowledge inference

techniques on the knowledge network constructed.

DeepDive [17] applies statistical learning and inference to

construct knowledge base. Aiming to offer a toolkit, DeepDive

provides natural language processing tools, machine learning

algorithms, and statistical inference and learning methods to

help users to build and customize a knowledge base from

multiple input data sources, existing knowledge bases and

taxonomies. In contrast to their work focusing on building

a knowledge base, our work proposes an information model

dedicated to a science knowledge graph equipped with knowl-

edge discovery and inference technique.

Microsoft Academic Graph (MAG) [12] is a heterogeneous

graph containing scientific publication records, citation re-

lationships between the publications, authors, organizations,

journals, conferences, and fields of study. In contrast to MAG

where nodes are high-level concepts encapsulating rich se-

mantic features, our work extracts those features as individual

nodes in the knowledge network. Thus, typological structural

analysis can be applied for knowledge discovery instead of

semantic analysis, for higher scalability and extensibility. To

2https://developers.google.com/freebase/
3https://en.wikipedia.org/wiki/Wikipedia:Database download
4https://www.microsoft.com/en-us/research/project/microsoft-academic-

graph/

208

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 15:59:23 UTC from IEEE Xplore. Restrictions apply.

eliminate the scalability issue caused by our method, deep

learning techniques are applied.

In our previous work, we have developed a software social

network to support data processing-centric recommendation

leveraging software usage history [19]. In our other efforts, we

predict possible software service collaboration in a workflow

context [1], and develop a technique to calculate service

collaboration possibility based on intent and context [19]. Our

earlier works are integrated into our SKG analysis.

III. MOTIVATING EXAMPLES AND STRATEGY

We discuss two motivating examples in this section, illus-

trating how topology-based network analysis and network path

exploration techniques can be exploited to facilitate knowledge

discovery and recommendation.

A. Motivating Example #1

According to [13], a scientific paper typically encapsulates

a collection of common knowledge (semantic) items such

as its datasets studied, the focused physical variables, and

the algorithms and tools used to study the datasets. A typ-

ical graph-oriented data model, however, adopts a low-order

modal, meaning that the number of node types is small. For

example, a social network is usually a one-modal network,

meaning that all nodes bear the same node type, i.e., person.

If adopting such a data model, nodes in our knowledge graph

will be individual papers and users. As shown in Fig. 2 on

the left-hand side, a paper node embeds its corresponding

knowledge items as attributes/features. In order to compare

the similarity between two papers at runtime, the two nodes

are compared according to their carried attributes and values.

Such a calculation usually adopts semantic web technique that

may not scale at runtime.

Fig. 2. Motivating Example #1

We intend to tackle the runtime scalability problem, since

our project aims to support a large number of queries from the

community over the SKG simultaneously. Our basic strategy

is to construct a high-order-modal knowledge network, where

attributes now become first-class entities in an SKG. As shown

in Fig. 2 on the right-hand side, semantic entities are extracted

and become individual nodes in SKG, and the aforementioned

node-attribute relationship (e.g., between a paper and semantic

items) is turned into edge relationship among nodes. In other

words, some implicit encapsulation relationships are turned

into explicit structural relationships in the knowledge graph.

Such extracted semantic entities add abundant structural rela-

tionships, which can be leveraged to enable topological mining

and investigation. Taking the highly simplified example in Fig.

2, the network structure can be constructed offline. At runtime,

assume a query intends to recommend dataset for user 1. By

studying the network topology, we may conclude that user 1

and user 2 have similar subtree structure. Although they never

co-authored an article, their researches seem to overlap on

studying the same variables on the same dataset using the same

algorithms and tools. Therefore, we can recommend dataset 3

to user 1 from user 2's experience.

Revisiting the Fig. 2 example, it can be seen that a tradi-

tional network model will only include the nodes above the

separation line. In contrast, we propose to extract the hidden

semantic entities (underneath the separation line) and make

them first-class citizens in the network. This example illus-

trates that our finer granularity in SKG enables topology-based

network analysis. Compared with semantics-based similarity

computation at run-time, our strategy also enables optimization

and parallelism on real-time computation because calculations

over different nodes can be conducted simultaneously.

B. Motivating Example #2

Fig. 3. Motivating Example #2

Fig. 3 shows another motivating example. Fig. 3(a) de-

scribes a scenario comprising two paper citations. paper 1

cites paper 2, and paper 3 cites paper 4. Note that both

paper 1 and paper 3 cite dataset x, and both paper 2 and

paper 4 cite dataset y. If using the traditional way to represent

their relationships as in Fig. 2(a), paper 4 could only be linked

to and recommended to paper 1 after calculating the similarity

between paper 1 and paper 3, and paper 2 and paper 4. It is

obviously neither explicit nor intuitive.

In contrast, linking paper 4 to paper 1 can be easily in-

ferred through network path routing methods. As shown in

Fig. 3(b), two paths lead paper 1 to paper 4: (1) paper 1
cite−−→

dataset x
-cite−−→ paper 3

cite−−→ paper 4; (2) paper 1
cite−−→ paper 2

cite−−→ dataset y
-cite−−→ paper 4. Meanwhile, such multiple paths

strengthen the connection possibility among the two entities in

the network, if facing a recommendation. Furthermore, extract-

ing the original internal attributes as first-class citizens in the

network makes recommendation scalable. Using semantics-

based analysis requires to build up rules for each type of

attribute. For example, one has to establish rules to calculate

the similarity between two papers based on their common

citation on the same datasets, i.e., citing the same dataset x by

both paper 1 and paper 3. If another attribute (e.g., algorithm)

209

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 15:59:23 UTC from IEEE Xplore. Restrictions apply.

is taken into consideration, new rules have to be added into the

similarity calculation algorithm. On the contrary, if attributes

are extracted as nodes, the same path finding algorithm can be

used to navigate across the network thus to ensure scalability.

IV. INFORMATION MODEL

In this section, we discuss our information model estab-

lishment. As discussed in the last section, one core idea of

our SKG is to create a multimodal network with fine-grained

semantic concepts as first-class citizens, i.e., nodes. Recall that

our goal is to extract and link valuable information from the

vast data sources of existing knowledge. It is obviously critical

to decide the granularity of the nodes, meaning an information

model that defines key information and relationships in the

Earth science domain.

Sponsored by Google, Microsoft etc, schema.org provides

community-oriented shared vocabularies for structured data on

the Internet. Its actions tag, however, provides a powerful

facility for extensibility. However, schema.org is limited in

terms of the objects it defines for scientific fields. Meanwhile,

the data model of the Global Change Information System

(GCIS, https://data.globalchange.gov/) describes the structure

of information, including the overlaps between relational and

semantic representations of the data. Being rich, however, it

focuses on national climate change assessment reports only.

Another related work is the book ”Eloquent Science,” where

Schultz summarizes the structure of a science paper [11].

Learned from schema.org, GCIS data model, and Schultzs

book, our strategy is to scrutinize how an Earth scientist reads

a paper and identify reusable information components to be

extracted from the literature. Working with Earth scientists

closely, Fig. 4 summarizes how we extend the GCIS data

model to establish the basic information model in SKG. For

each paper, in addition to metadata (title, author, affiliations,

contact information), we focus on what an Earth scientist

wishes to learn: data, tools, methodology, hypotheses, and

conclusions. A typical Earth science paper starts with some

hypotheses. The paper then explains how the authors demon-

strate their hypotheses over some specific datasets. Techniques,

tools, algorithms, and workflows are explained in detail to

explain how they conduct experiments and analytics. Findings

and conclusions summarize the contributions of the paper.

Our team is formed with computer scientists, domain scien-

tists, and graduate students in the domain. From many brain-

storming and workshops, we found that the aforementioned

semantic entities are what an Earth scientist usually extracts

from reading a paper. Learning from this cognitive process,

we use this information model as the underlying data model,

where domain knowledge serves as schema to guide automatic

information and extraction toward building the SKG.

V. KNOWLEDGE DISCOVERY

Now that the underlying data model is established, an SKG

can be constructed. Detailed methods of how we extract the se-

mantic components from publications and incrementally build

an SKG testbed are reported in our another paper [4]. In this

Fig. 4. Information model in SKG

article, we focus on explaining how we discover knowledge in

our established SKG. We will first define semantic entity type

and relationship type based on the information model defined

in Section IV.

A. Problem Formalization

Definition 1 (Science Knowledge Graph Building Blocks).
An entity type refers to one of the semantic entities {ET}
identified in the information model (in Section IV). A relation

type refers to one of the relationships {R} identified in the

information model (in Section IV), or its inverse relationship

{R−1}. A relation Rx defines a transition starting from an

entity type l(Rx) and pointing to another entity type r(Rx):

∀Rx ∈ {R} ∪ {R−1}, ∃ETl, ETr ∈ ET ⇒ l(Rx) = ETl
Rx−→

ETr = r(Rx), 1 ≤ l, r ≤ |ET |.
In other words, we consider Rx and ETl

Rx−→ ETr equiv-

alent, meaning that each relation implies a 3-tuple (original

entity type, relation type, target entity type). With the building

blocks defined, we can define a science knowledge graph.

Definition 2 (Science Knowledge Graph). A science knowl-

edge graph is a directed graph SKG = G(V,E):

1) V denotes a collection of nodes where each node is an

instance of an entity type: ∀v ∈ V, ∃i⇒ v = a(ETi);
2) E denotes a collection of edges where each edge is an

instance of a relation type: ∀e ∈ E, ∃j ⇒ e = a(Rj);
3) ∀e ∈ E, e−1 ∈ E denotes the inverse of the relation

According to the definition, each edge is an instance of a

relation type: ∀e = [vl
e−→ vr] ∈ E, ∃Rx = [ETl

Rx−→ ETr] ∈
R ∪R−1 ⇒ e = a(Rx), vl = a(ETl), vr = a(ETr).

Definition 3 (Path Pattern). A path pattern P in an SKG

is defined as a sequence of relation types concatenated.

P = R1R2...RL defines an L-length relation types chained

together: ∀1 ≤ i < L, r(Ri) = l(Ri+1). We also define the

starting node type l(P) and the ending node type r(P) of

a path pattern P : l(P) = l(R1); r(P) = r(RL). A path

traversal across an SKG thus is an instance of a path pattern

210

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 15:59:23 UTC from IEEE Xplore. Restrictions apply.

over a starting node, in other words, implying a concatenation

of relations instances applied to an entity instance. Each path

p has a starting node and an ending node, represented as l(p)
and r(p), respectively.

Given a starting node v1 ∈ V , a path pattern P of length

L over v1 can be denoted as: v1
e1−→ v2

e2−→ ...
eL−→ vL+1.

It implies a sequence of relations consecutively operated over

v1: v1.a(P) = v1.a(R1).a(R2).a(RL). Note that such

an operation may result in a collection of different paths:

p = [v1
R1−−→ v2

R2−−→ ...
RL−−→ vL+1] ∈ v1.a(P). Also

l(p) = a(l(P)) and r(p) = a(r(P)).

Definition 4 (Query in SKG). A query in a science knowledge

graph is a 4-tuple: q =< I, S, T,R >, where I denotes the

intent of the query (typically in a collection of words), S
denotes a collection of required entity types to start from, T
denotes a collection of expected entity types to target on, and

R denotes a collection of relation types that have to be used

(i.e., included).

In other words, a query aims to explore some paths guided

by intent and some relations, starting from some entity types

and ending with some entity types. Consider the query of the

motivating example in Fig. 3:

(Q1) Assume that a researcher desires to study on how to
predict California wild fire, recommend papers for her to read.

The query suggests to explore the paths in the following

pattern:

P : {Dataset = California wild fire} paper cite data−1

−−−−−−−−−−→
Paper → ...→ Paper

The starting entity type is dataset, and the starting nodes

are instances of dataset related to California wild fire. The

expected entity type is Paper. One relation type that has to

be included is paper cite data−1. The intent of the query is

to find papers on fire prediction topic.

B. Path Finding Heuristics

In order to find paths for such a query q =< I, S, T,R >,

our focus will be to find path patterns, meaning which types

of path are good for solving the query. Similar to the Path

Ranking Algorithm [8], we define a reward function for

computing scores of the nodes covered along the paths under

exploration.

Definition 5 (Node Intent and Path Context). All latent topics

in an SKG form an Intent space of T . The intent of a node

v, denoted as φv = {φ1,v, φ2,v, ..., φ|T |,v}, is a distribution

of topics in the node’s description over the Intent space

of the network SKG, where the |T |-dimensional vector of

probabilities sum to 1:
∑|T |

i=1 φi,v = 1. The context of a path

p is denoted as ψp = {ψ1,p, ψ2,p, ..., ψ|T |,p}, as a union of

the intent of all the nodes encompassed in the path. It can be

calculated using a SoftMax function σ such that:

ψj,p = σ(
∑
n∈p

φj,n) =
e
∑

n∈p φj,s∑|T |
j=1 e

∑
n∈p φj,n

(1)

where φj,n denotes the jth intent value of node n ∈ p and

ψj,p denotes the jth intent value of path p.

Based on the definitions above, we can calculate the reward

function of a query q, with a partial path p as an instance of

path pattern P , with p.V representing its encompassed nodes,

to a candidate node c through a relation R toward an ultimate

intent q.I:

Ω(R(r(p), c)|q) = α · sim(φc, φq.I) + β · sim(ψp, φq.I)

+
γ

|p.V − 1|
(2)

Here, α, β, and γ are weights showing the importance of

intent similarity of the candidate node and the query intent,

context similarity of the path and the query, and the path

length, respectively. These weights have values between 0 and

1 and also α+ β + γ = 1.

Based on the reward function of each edge defined above,

we can compute the reward score of each node through a path

exploration. Given a path pattern P = R1R2...RL and a set of

starting nodes Sq (∀n ∈ Sq ⇒ n = a(S) = a(l(R1)), a reward

function Ω for a node v is defined as ΩP,Sq
(v) recursively:

ΩP,Sq (v) =
∑

v′∈r(P ′)
ΩP ′,Sq (v

′) · Ω(RL(v
′, v)|q)

|RL(v′)| (3)

The initialization of the reward function is when path pattern

P has length zero:

ΩP,Sq (v) =

{
1
|Sq| , if v ∈ Sq

0, otherwise
(4)

C. Path Finding Implementation

In this section, we describe how we implement the path

finding heuristics and recommend a list of nodes {v} of type

T from the SKG that can satisfy user’s query. Algorithm 1 gets

the whole SKG graph containing nodes V and edges E along

with the user’s query as its input. This algorithm returns sorted

candidate nodes which can satisfy user’s query, according to

the probability of their occurrence in the future.

In Algorithm 1, first all candidate pairs of nodes are ex-

tracted from the graph in lines 5-20. For finding the candidate

pairs, we find all the nodes from V that have a type of q.S or

q.T as candidate source or target nodes, respectively. Then for

every pair of source node and target node, we check if there

exists a path from the source to target with length less that λ.

All these pairs are considered candidate node pairs.

Then in lines 21-29, we assign a score to each candidate

pair and prune those ones which do not have the edge types

specified by q.R along their paths. Therefore, for every pair,

say < vs, vt > in the candidate pairs list, we first find all

paths from vs to vt which contain q.R among the edges. If

there exists such paths, then we find the shortest one from this

set and assign a score to it based on Equation 5.

211

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 15:59:23 UTC from IEEE Xplore. Restrictions apply.

Ω(p, c)|q) = α ·
∑

ni→nj∈p
wij ∗ sim(φnj

, φq.I)

+ β · sim(ψp, φq.I) +
γ

|p.V − 1|
(5)

Note that Equation 5 is an extension of Equation 2 defined

as the reward function of a path p, as an instance of path

pattern P , reaching to a candidate node c for query q.

Specially, the weight of an edge (i.e., every segment of a path)

is taken into consideration. In this function, wij denotes the

weight of every edge along the path p and φnj
is the intent

of every target node in this path.

Finally, in line 30, the candidate pairs are sorted in descend-

ing order based on their computed scores. The target nodes

{vt} from this sorted list are then returned as the result of the

algorithm.

Algorithm 1 Recommend Nodes

1: procedure RECOMMENDNODES(SKG, q)
2: candidateSourceNodes← ∅
3: candidateTargetNodes← ∅
4: candidatePairs← ∅
5: for v ∈ V do
6: if v.ET ∈ q.S then
7: candidateSourceNodes← candidateSourceNodes + v
8: else
9: if v.ET ∈ q.T then

10: candidateTargetNodes← candidateTargetNodes + v
11: end if
12: end if
13: end for
14: for vs ∈ candidateSourceNodes do
15: for vt ∈ candidateTargetNodes do
16: if there is path from vs to vt with length less than λ then
17: candidatePairs← candidatePairs+ < vs, vt >
18: end if
19: end for
20: end for
21: nodePairsWithScores← ∅
22: for < vs, vt >∈ candidatePairs do
23: pathSet← Paths from vs to vt containing q.R
24: if pathSet �= ∅ then
25: path← shortest path from pathSet
26: score← calculateScore(path)
27: nodePairsWithScores ← nodePairsWithScores+ <<

vs, vt >, score >
28: end if
29: end for
30: {vt} ←sort nodePairsWithScores based on the scores in descending

order
31: return {vt} � Sorted List of Recommended Nodes
32: end procedure

VI. TOPOLOGICAL STRUCTURAL ANALYSIS

In Equation 3, the reward score of a node can be viewed as

an accumulation of the scores of all edge segments of the paths

pointing to the node. Equation 2 shows that the reward score of

an edge segment is computed based on the intent of the target

node, against the intent of the query and that of the starting

node. In other words, the reward function is calculated based

on the paths navigated. Recall in motivating example 1 in Fig.

2, paper 2 and paper 4 share many similar neighbors. Such

topological similarity could suggest the similarity between the

two nodes. Since such a sharing implies many possible paths

that yield higher rewards, we believe more weights should be

explicitly added into the calculation.

The structure of a node refers to the topological structure

of a sub-graph rooted by the node. Thus, similarity compar-

ison among nodes can be turned into similarity comparison

among the sub-graphs in the SKG. A number of algorithms

are available to measure the similarity between graphs. For

example, the edit distance-based [3] approach assigns a cost

value to every operation of transforming one graph to the

other, and attempts to identify such a sequence of operations

with a minimum cost. For another example, Fernandez and

Valiente [5] measure the similarity between two graphs based

on their maximum common sub-graph and minimum common

supergraph.

Recall that our method of extracting encapsulated features

from nodes and edges significantly increases the complexity

of the knowledge network. Calculating the structural similarity

among many sub-graphs at runtime raises significant scalabil-

ity concern. Therefore, we apply deep learning technique to

compute the topological similarity among nodes offline.

A. SDAE-based Entity Structure Learning

Among others, Stacked Denoising Auto-Encoders (SDAE)

is a supervised deep learning model for translating a stacked

denoising autoencoder into a composition of denoising au-

toencoders in the ground space [14]. SDAE is typically used

to learn hidden feature vectors of images. In this project, we

adopt SDAE to learn latent feature vectors of nodes in an

SKG, based on their topological structure.

Fig. 5 illustrates our basic idea, where a 4-layer SDAE is

used. For each node in SKG, we quantify its topological struc-

ture into an embedding vector (e.g., a feature matrix) based on

its connections to other nodes in the graph. Aggregating the

embedding vectors of all comprising nodes, an SKG receives

an X = N×N embedding matrix where N denotes the number

of nodes in the SKG. Applying Gaussian noise to a node i, the

noised embedding vector (X̃
(0)
i) acts as the input layer to the

network. Vector X̃
(4)
i of the output layer is the reconstruction

of the input layer. The first half of the layers (X̃
(1)
i and X̃

(2)
i)

serve as encoders, and the second half of the layers (X̃
(3)
i

and X̃
(4)
i) as decoders. The generated hidden layer (X̃

(2)
i)

represents a lower-dimension feature vector for the node. The

same encoding-decoding process is applied to all nodes as the

training process. The resulting bottleneck hidden layer (X̃(2))

is considered the latent feature matrix of the SKG.

Fig. 5. One iteration of model training

212

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 15:59:23 UTC from IEEE Xplore. Restrictions apply.

B. Pre-training

An SDAE model training may result in local optimization

instead of global one. Therefore, an unsupervised pre-training

process is applied. Let the number of layers be L, the number

of latent features for layer L/2 as n. Let Xi be the SDAE input

(i.e., clean) vector from the Embedding Matrix for each node.

Let noised input be X̃i. Let Wi and bi be the weight parameter

and bias parameter for the SDAE network, respectively.

As shown in Fig. 5, for layer j we have either an encode

function or a decode function:

fj = s(W
(j)
i X̃

(j−1)
i + b

(j)
i)

The learning objective function is defined as:

min
(Wi,bi)

||Xi − X̃i||2F + λ
∑
j∈L

||W (j)
i ||2F

where λ is a regularization parameter and ||.||F denotes the

Frobenius norm. To minimize the objective function, stochastic

gradient descent is applied, similar to [15].

In our model, the above SDAE process is trained for each

node in SKG, individually. Fig. 5 illustrates a simplified

example with an SDAE with four layers. The topological

structure of a node is transformed into a feature vector (e.g.,

with eight features). By adding Gaussian noise, the noised

entity vector acts as input to the SDAE on one end, while

the clean vector acts as input to the SDAE on the other end.

Running a round of pre-training, a hidden layer results in a

six-feature vector, with weight W (1) and bias b(1).

VII. SCALABILITY CONTROL

Recall that we advocate to extract many encapsulated node

features and edge features to become first-class citizen nodes

in our knowledge graph. Apparently it is necessary to study the

scalability issue due to the increase of the number of nodes,

the order of the graph, the types of edges, and the number of

edges. Our strategy is to seamlessly integrate the state-of-the-

art algorithm on matrix embeddings scaling (i.e., TransE) into

our path exploration algorithm described in Section V.

A. Introduction to TransE

TransE [2] is a machine learning-based method dealing with

comprehensive knowledge graph, where edges are modeled

as translations (in the form of vector embedding) operating

on vector embeddings of the nodes. Its goal is to learn low-

dimension vectors for the vector embedding of every node and

every type of edge. As shown in Fig. 6(a), an edge e between

two nodes vs and vf is represented as an edge vector −→e
linking two nodes’ vectors −→vs and −→vf : −→vs +−→e = −→vf . Through

a learning process, all vectors are turned into low-dimension

k vector embeddings: e, vs, vf ∈ Rk: vs + e ≈ vf .

The learning process can be summarized as below. Let node

set be denoted as V , edge set as E, and node-edge-node triplet

set as T . For each pair of triplet (vs, e, vf) ∈ T , construct its

corrupted triplets: (v′s, e, vf) and (vs, e, v
′
f) by replacing its

left-hand side or right-hand side node with a random node,

respectively. All corrupted triplets form a set T ′:

Fig. 6. transE-based KG navigation

T ′(vs,e,vf)
= {(v′s, e, vf)|v′s ∈ N} ∪ {(vs, e, v′f |v′f ∈ N)}

Then the learning process can be represented by minimizing

the following margin-based objective function over the training

set:

min
∑

(vs,e,vf)∈T

∑
(v′s,e,v

′
f)∈T ′

[γ+d(vs+e, vf))−d(v′s+e, v′f)]+

where [x]+ indicates the positive part of x, γ > 0 is a

margin hyperparameter, and d is a dissimilarity function.

B. TransE-powered Path Exploration

Based on TransE, we revise our path exploration algorithm

to address scalability. The TransE algorithm is first applied,

offline, to obtain low-dimensional vector embeddings for each

node and type of edge in the SKG. Fig. 6(b) illustrates an

example. Given a node vs and a relation type e, we can obtain

a targeting node −→vt = −→vs + −→e . As shown in Fig. 6(b), the

targeting node points to a virtual node not existing in the

network; however, it is surrounded by some nodes. Centered

on the virtual node, a circle with a small diameter d will

encompass a collection of nodes quite close to it. In other

words, we aim to find nodes with minimal distances from the

virtual node:

min
vj

||−→vj ,−→vs +−→e ||2 ≤ d2

In addition to distance, we use the query-specific intent and

context information to guide the selection. Be more specific,

we tend to select the candidate node favoring the query intent

and contextual requirements the most. The selection criteria

thus is refined as below:

max
||−→vj ,−→vs+

−→e ||2≤d2
similarity(intent,context)(vj , vs)

So far we have discussed how to move one step over an edge

in the SKG. Finding a path in the SKG can be represented by

a sequence of steps.

VIII. EXPERIMENTS

In this section, we introduce our experiments and discuss

the findings.

A. Experiment #1

The first testbed is the collection of all workflows accu-

mulated by myExperiment.org, the largest public repository

of scientific workflows. Until May 2018, the testbed contains

more than 4,200 workflows. We focus on Taverna workflows

213

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 15:59:23 UTC from IEEE Xplore. Restrictions apply.

comprising web services, since we can write code to analyze

their structure. Crawling for the publicly available Taverna

workflows provided us with 3,277 workflows from 2,030

unique ones. After finding those workflows, we extracted all

WSDL, SoapLab, BioMoby, and SADI services along with the

REST calls and found 513 unique web services. Following the

data links between services in every workflow helped us create

a network with these 513 nodes. Table 1 shows a summary of

our testbed.

TABLE I
SUMMARY OF EXPERIMENTS

A

Unique workflows 2,030

Workflow versions 3,277

Unique web services 513

Unique service operations 1,248

Unique directed edges in network 326

Pairs of nodes with directed paths in network 664

Pairs of nodes with indirected paths in network 2,484

B

With Local Services as First-class Citizen Improvement
Unique web services 573 1.117×
Unique directed edges in network 1,489 4.567×
Pairs of nodes with directed paths in network 47,230 71.130×
Pairs of nodes with indirected paths in network 95,870 38.595×

The baseline network is a graph < V,E >, where V
denotes all web services contained in all workflows. There

is only one edge type in this network - followedBy. If two

services are connected in a workflow, there is an edge linking

the two service nodes in the network. Each edge carries two

features: one is the workflow where this connection happens;

the other one is the possible local service in between the

connection. Local services are known utility services that are

carried by Taverna as reusable components. As summarized in

Table 1 part A, this baseline network contains 513 nodes and

326 edges. Directed paths among services are 664, meaning

that such paths can be used directly. Undirected paths for

recommendation among services are 2,484.

We then extracted one edge feature out as a first-class

citizen, that is local service. All local services were extracted

from the edges and became independent nodes in the network.

For example, consider an initial edge (s1
followedBy−−−−−−→ s2) linking

two services nodes s1 and s2 through an intermediate local

service ls3. By extracting the local service as a node, we

now have three nodes with two more followedBy edges:

s1
followedBy−−−−−−→ ls3 and ls3

followedBy−−−−−−→ s2. As summarized in

Table 1 part B, for the entire network, the number of nodes

increases by 11.7% to 573, the number of directed paths

increases 71 times to 47,230, and the number of indirected

paths increases 38 times to 95,870. This means that many

more possible software (i.e., service) collaborations may be

recommended through the extracted 60 local services involved.

We then evaluated the recall of our method. Started from the

network just built with all web services and local services as

nodes, all edges were removed in the network and marked at

time t0. All workflows were sorted based on their publication

timestamps, representing the total M = 716 time points

to study the network. Following the order from the earliest

timestamp, followedBy edges (with timestamp as a feature)

were added into the network among the corresponding web

services and local services nodes. Before an edge was added

between a pair of services nodes, we checked whether there

existed a path between them, with each segment being marked

by some earlier timestamp. If such a path exists, it means

such a connection could be predicted by our approach. For

example, assume at time tx, a followedBy edge is to be

added from si to sj labeled by tx. If there exists a path

si
ty1−−→ k1

ty2−−→ ...kl−1
tyl−−→ sj , where yo < x, 1 ≤ o ≤ l,

and km ∈ N, 1 ≤ m < l − 1, it means such a connection

could be predicted by our approach. The recall of our method

is reported in table II. For example, in 2008, a total of four

new edges were added in the network. Our method could have

predicted two edges, leaving a recall of 50%. As shown in

Table II, in most of the years, our method could have predicted

quite a few service connections, while the total average recall

being 42%.

TABLE II
AVERAGE RECALL OF THE ALGORITHM FOR DIFFERENT YEARS

Year Total # new edges Total # predictable edges Average recall
2008 4 2 0.5

2009 4 2 0.5

2010 1 0 0

2011 17 15 0.88

2012 10 4 0.4

2013 8 4 0.5

2014 2 0 0

2015 2 2 1

2016 1 0 0

B. Experiment #2

We also studied the feasibility of leveraging topological

structure to facilitate software recommendation. Performance

is the major concern for comprehensive structural analysis,

thus we applied the SDAE algorithm as discussed in the earlier

Section VI.

Using the method described in Section VI, we gave our

SKG adjacency matrix as the input for the SDAE algorithm,

considering every node’s adjacency vector as a mini batch

for this algorithm. Then after the pre-training phase, we used

latent vectors created by SDAE for each node in SKG to

compare the structural similarity of the nodes. For running

the SDAE algorithm, we used the Sigmoid function and two

hidden layers of size 20. Also, the pre-training epochs, pre-

training learning rate, and corruption level were considered

1000, 0.2, and 0.3, respectively.

Then, we evaluated the correlation of the structural dif-

ference of SKG nodes and the difference of latent vectors

created by SDAE. This difference was calculated based on

the Euclidean distance of the adjacency vectors for each pair

of nodes and also the Euclidean distance of latent vectors for

214

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 15:59:23 UTC from IEEE Xplore. Restrictions apply.

every pair of nodes. Fig 7 shows the results of our evalua-

tion. The relationship between the two metrics appears non-

linear. There is little correlation when the structural difference

between SKG nodes is less than 4. It almost looks like the

latent vector difference decreases for higher values of SKG

node difference. Meanwhile, the relationship does not seem

to scale when the difference between SKG nodes is greater

than 4. The average correlation of these two metrics in our

dataset was 0.49. In other words, the latent vectors created by

the SDAE method can well reflect the structural similarity of

pairs of nodes in SKG. This experiment proved that applying

offline SDAE method could help to address the scalability

issue of comparing structural similarity among SKG nodes at

runtime.

Fig. 7. Correlation of structural difference of SKG nodes and the difference
between latent vectors

C. Experiment #3
In the third experiment, we evaluated the TransE-powered

path exploration method. In order to evaluate this, we used

the transE code provided by Lin et al. [9] and gave the

baseline network and a size as the inputs for their al-

gorithm. This method provides us with vectors for ev-

ery node in the network and another vector for the only

edge type we have. The size of vectors were specified

as the input and for our evaluation we used size =
{50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500}.

For every edge e : v → v′ in the baseline network, we

calculated the Euclidean distance of the two vectors 	v+	e and
	v′′ where v′′ is every node in the network that is not equal to

v. Then we sorted the distances calculated for every node and

we obtained the rank of v′ in the list.
We then evaluated the effect of pruning nodes based on

their intent similarity on the rankings of the target nodes of

every edge. In order to do this, for every source node v and

for every edge e, we decided the intent space of the candidate

target nodes by computing the difference between the intent of

the target workflow and that of the source node. Then from the

candidate target nodes resulted from the TransE calculation,

we pruned the ones whose distances are higher than 0.41 or

whose similarity with the intent space less than 0.01. Then

again we sorted the distances and obtained the ranking of the

target nodes for every edge.
Fig. 8 shows the average ranking of the target nodes for

every edge in the network for various sizes of transE vectors.

This figure shows the results for Test 1 in which we did

not consider the intent similarity and Test 2 in which we

considered intent similarities. As can be seen in this figure,

the best vector size for our testbed is 50 for which we have

the average ranking of 2.54 for Test 1 and 2.08 for Test 2. This

figure also shows that using intent similarity can increase our

recommendation accuracy for 67%.

50 100 150 200 250 300 350 400 450 500
Vector Sizes

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

A
ve

ra
g

e
R

an
ki

n
g

Test 1
Test 2

Fig. 8. Average ranking of target nodes for every edge by using transE-
powered path exploration method

IX. CONCLUSIONS

Knowledge graph has become an important way to support

knowledge sharing and discovery. Aiming to build a science

knowledge graph, this paper proposes an information model

rooted in cognitive analysis of how researchers write and

read papers. Based on the information model, a novel way

of building science knowledge graph is presented. Semantic

entities are extracted as first-class citizens instead of acting

as features encapsulated in nodes and edges. Complemen-

tary to adopting existing semantic web technique to answer

community-oriented user queries, we have developed a tech-

nique that counts on topological structural analysis to gain

higher scalability at runtime. Semantic information can be

leveraged offline to enrich the knowledge network. Deep

learning techniques are applied to explore hidden and potential

connections.

In our future work, we plan to further study how to

address the performance and scalability issues in an SKG.

For example, how to fine tune the SDAE algorithm as a lack

of labels. In addition, we plan to build a rich SKG from

extracting the semantic entities from literature based on our

information model. We plan to study how it could effectively

respond to community-oriented queries. Furthermore, we plan

to expand our SKG technique to other Earth science areas

beyond Hurricane.

ACKNOWLEDGMENT

This work is partially supported by National Aeronautics

and Space Administration under grant NNX16AE15G, and

National Science Foundation under grant ACI-1443069.

215

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 15:59:23 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Q. Bao, J. Zhang, X. Duan, R. Ramachandran, T.J. Lee, Y. Zhang, Y.
Xu, S. Lee, L. Pan, P. Gatlin, and M. Maskey, ”A Fine-Grained API
Link Prediction Approach Supporting Mashup Recommendation,” in
Proceedings of The 24th IEEE International Conference on Web Services
(ICWS), 2017, pp. 220-228.

[2] A. Bordes, N. Usunier, A. Garcia-Durn, J. Weston, and O. Yakhnenko,
”Translating Embeddings for Modeling Multi-Relational Data,” in Pro-
ceedings of The 26th International Conference on Neural Information
Processing Systems (NIPS), Vol. 2. 2013, pp. 2787-2795.

[3] H. Bunke, ”Error Correcting Graph Matching: on the Influence of the
Underlying Cost Function,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 21(9), Sep. 1999, pp. 917922.

[4] X. Duan, J. Zhang, R. Ramachandran, P. Gatlin, M. Maskey, J.J. Miller,
K. Bugbee and T.J. Lee, ”A Neural Network-Powered Cognitive Method
of Identifying Semantic Entities in Earth Science Papers,” in Proceedings
of IEEE International Conference on Cognitive Computing (ICCC), pp.
9-16.

[5] M.-L. Fernndez and G. Valiente, ”A Graph Distance Metric Combining
Maximum Common Subgraph and Minimum Common Supergraph,”
Pattern Recognittion Letters, 22(67), 2001, pp. 753758.

[6] D.A. Ferrucci, ”Introduction to ’This is Watson’,” IBM Journal of
Research and Development, 56(3.4), 2012, pp. 1-15.

[7] A. Labrinidis and H.V. Jagadish, ”Challenges and Opportunities with
Big Data,” in Proceedings of VLDB Endowment, 5(12), Aug. 2012, pp.
2032-2033.

[8] N. Lao and W.W. Cohen, ”Fast Query Execution for Retrieval Models
based on Path-Constrained Random Walks,” in Proceedings of The 16th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD), 2010, pp. 881-888.

[9] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, ”Learning Entity and Re-
lation Embeddings for Knowledge Graph Completion,” in Proceedings
of The 29th AAAI Conference on Artificial Intelligence, 15, 2015, pp.
2181-2187.

[10] M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich, ”A Review of
Relational Machine Learning for Knowledge Graphs,” Proceedings of
the IEEE, 2016, 104(1), pp. 11-33.

[11] D. Schultz, Eloquent Science: A Practical Guide to Becoming a Better
Writer, Speaker, and Atmospheric Scientist, American Meteorological
Society, 2009.

[12] A. Sinha, Z. Shen, Y. Song, H. Ma, D. Eide, B.-J. (Paul) Hsu, and
K. Wang, ”An Overview of Microsoft Academic Service (MAS) and
Applications,” in Proceedings of The 24th International Conference on
World Wide Web (WWW), 2015, pp. 243-246.

[13] F. Suppe, ”The Structure of a Scientific Paper,” Philosophy of Science,
65(3), 1998, pp. 381-405.

[14] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
”Stacked Denoising Autoencoders: Learning Useful Representations in
a Deep Network with a Local Denoising Criterion,” The Journal of
Machine Learning Research, 11, 2010, pp. 33713408.

[15] H. Wang, N. Wang, and D.-Y. Yeung, ”Collaborative Deep Learning for
Recommender Systems,” in Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(KDD), 2015, pp. 1235-1244.

[16] C. Zhang, V. Govindaraju, J. Borchardt, T. Foltz, C. R, and S. Peters,
”GeoDeepDive: Statistical Inference using Familiar Data-Processing
Languages,” in Proceedings of The ACM SIGMOD International Con-
ference on Management of Data (SIGMOD), 2013, pp. 993-996.

[17] C. Zhang, C. R, M. Cafarella, C. De Sa, A. Ratner, J. Shin, F. Wang,
and S. Wu, ”Deepdive: Declarative Knowledge Base Construction,”
Communications of the ACM, 60(5), May 2017, pp. 93-102.

[18] J. Zhang, W. Wang, X. Wei, C. Lee, S. Lee, L. Pan, and T.J. Lee, ”Cli-
mate Analytics Workflow Recommendation as a Service - Provenance-
Driven Automatic Workflow Mashup, in Proceedings of The 22nd IEEE
International Conference on Web Services (ICWS), 2015, pp. 89-97.

[19] J. Zhang, M. Pourreza, S. Lee, R. Nemani, and T.J. Lee, ”Unit of Work
Supporting Generative Scientific Workflow Recommendation,” accepted
by International Conference on Service Oriented Computing (ICSOC),
2018.

216

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 15:59:23 UTC from IEEE Xplore. Restrictions apply.

