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Abstract—A large number of services provided by cloud/edge
computing systems have become the most important part of
Internet services. In spite of their numerous benefits, cloud/edge
providers face some challenging issues, e.g., inaccurate prediction
of large-scale workload and resource usage traces. However, due
to the complexity of cloud computing environments, workload
and resource usage traces are highly-variable, thus making
it difficult for traditional models to predict them accurately.
Traditional models fail to deal with nonlinear characteristics
and long-term memory dependencies. To solve this problem, this
work proposes an integrated prediction method that combines
Bi-directional and Grid Long Short-Term Memory network (BG-
LSTM) models to predict workload and resource usage traces.
In this method, workload and resource usage traces are first
smoothed by a Savitzky-Golay filter to eliminate their extreme
points and noise interference. Then, an integrated prediction
model is established to achieve accurate prediction for highly-
variable traces. Using real-world workload and resource usage
traces from Google cloud data centers, we have conducted
extensive experiments to show the effectiveness and adaptability
of BG-LSTM for different traces. The performance results well
demonstrate that BG-LSTM achieves better prediction results
than some typical prediction methods for highly-variable real-
world cloud systems.

Index Terms—Cloud computing systems, hybrid prediction,
resource provisioning, BG-LSTM, artificial intelligence, deep
learning, Savitzky-Golay filter

I. INTRODUCTION

In recent years, cloud computing has become growingly in
demand and widely adopted by many massive organizations.
It integrates data center networks, servers, storage, application
software, services and other resources to build a shareable and
configurable computing resource pool [1]–[3]. For example,
network bandwidth, internal and external storage resources
are distributed according to users’ demand. Typical cloud
providers, e.g., Google, Facebook, Amazon and Alibaba, have
built large-scale data centers for users to rent their computing
resources [4]–[6]. As the quantity of users sustained to expand,
cloud computing providers need to handle a large number of
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users’ requests while ensuring Quality of Services (QoS) of
all users, and this dramatically increases their cost.

To ensure the on-demand availability of resources and
meet the requirements of Service-Level Agreements (SLAs),
cloud data center (CDC) providers have to conduct proactive
resource provisioning [7], [8]. They must predict future server
load trace conditions and provide appropriate resource pro-
visioning to cope with CDC workload. However, Workload
is dynamic and highly fluctuating, and resource usage is
constantly changing during the execution of a task, which
makes it difficult to predict. Under normal circumstances, most
of users suffer unnecessary cost. It also causes huge waste of
resources and reduce revenue of CDC providers. In addition, if
users select insufficient resources, their tasks may be delayed
or even unable to complete. In this way, QoS requirements of
users’ services cannot be well met, and may lead to the loss
of users. If CDC providers can accurately predict the number
of resources that users may need to use in future time slots
based on historical workload and resource data, they can more
effectively manage CDC resources, and obtain greater revenue.

Currently, there are multiple prediction methods in the field
of time series. For traditional time series prediction, Back-
Propagation Neural Network (BPNN) [9], Support Vector
Machine (SVM) [10] and Autoregressive Integrated Moving
Average model (ARIMA) [11] are some widely used and
typical methods. Calheiros et al. [12] apply ARIMA model
to solve the workload prediction problem for cloud service
providers. However, it fails to capture nonlinear characteristics
of workload time series. Our previous work [13] proposes
an integrated forecasting method to predict the amount of
workload in future time slots. The recent emergence of deep
learning methods, e.g., Deep Belief Networks (DBN) [14],
especially Long Short-Term Memory (LSTM) [15] neural
network model, provides new mechanisms to effectively real-
ize high-accuracy time series prediction, and can effectively
alleviate the gradient disappearance problem of traditional
Recurrent Neural Networks (RNN) [16]. Zhang et al. [17] offer
an efficient deep learning model to predict cloud workload
for industry informatics. Chen et al. [18] propose a deep
learning based prediction algorithm for cloud workloads (L-
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PAW). Futhermore, some studies have been conducted to
improve the internal cell of an LSTM network structure
and transform its external model structure. Among them, Bi-
directional Long Short-Term Memory (BiLSTM) [19] and
Grid Long Short-Term Memory (GridLSTM) [20] are two
variants that change its external model structures. BiLSTM and
GridLSTM can capture two directional dependence character-
istics and different dimension information, respectively. Due to
the highly changing characteristics of workload and resource
usage, traditional prediction methods are insufficient to predict
the large-scale data. Therefore, different from these studies,
our work proposes a novel deep RNN method that integrates
advantages of both BiLSTM and GridLSTM to predict the
time series of workload and resource usage, and achieve better
prediction performance.

The contributions of this work are given as follows:

1) After testing various smoothing methods to eliminate
extreme points and noise interference in the original time
series, it identifies a Savitzky-Golay (S-G) filter [21] as
the most effective one to do so among the tested ones;

2) It integrates BiLSTM and GridLSTM models, referred to
as BG-LSTM, to build a prediction model of workload
and resource usage time series. It can effectively extract
the complex characteristics of such series and achieve
high prediction accuracy; and

3) Extensive experiments with real-world datasets demon-
strate that BG-LSTM outperforms several baseline meth-
ods in terms of prediction accuracy, particularly for the
prediction of relatively longer time series.

Section II describes the proposed method. Section III
presents experimental results. Section IV concludes this work.

II. MODEL FRAMEWORK

A. BG-LSTM

Traditional RNNs like LSTM can only investigate previous
context information. To overcome it, Schuster et al. [22]
introduce a Bi-directional RNN (BRNN) that can simulta-
neously train a model in two temporal directions, and has
forward and backward hidden layers, respectively. Graves et al.
[19] combine BRNN with LSTM, and propose the BiLSTM.
GridLSTM [20] arranges LSTM cells into a grid of one or
more dimensions. Different from existing LSTM, a GridLSTM
network has recurrent connections along their depth dimension
for improving learning characteristics. Fei et al. [23] propose a
method that takes into account context-sensitivity and gradient
problems. They construct a novel bidirectional structure by
using GridLSTM named Bidirectional Grid Long Short-Term
Memory (BiGridLSTM).

Different from [23], to achieve better prediction accuracy,
and to capture features of context and depth dimension, this
work stacks BiLSTM and GridLSTM models into a new
integrating model called BG-LSTM, with its structure shown
in Fig. 1. The output of BG-LSTM is described as follows.
BiLSTM and GridLSTM are improved models of LSTM, and

their calculations of some intermediate outputs are similar to
LSTM. Their repetitive parts are replaced by Υ(·) defined as:
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where f , i and o denote outputs of three LSTM gate units.
I denotes the input of BG-LSTM.

←−
OL

t and
−→
OL

t represent the
outputs of layer L in BiLSTM.

←−
OL+1

t+1 and
−→
OL+1

t+1 represent the
outputs of layer L+1 in BiLSTM. OL+1

t denotes the output of
layer L+1 in GridLSTM. W and b denote the weight matrix
and bias, respectively. h denotes the recurrent information
among models. t denotes the time interval. The superscript
→ denotes the sequence from 1 to T , and ← the sequence
from T to 1. yt+1 denotes the output of BG-LSTM.

During the training phase in BG-LSTM, this work adopts
a loss function in (2) to achieve the best prediction accuracy.
Workload and resources have a large amount of traffic and
a large differences in the order of magnitude. Many common
network performance function, like Mean Square Error (MSE),
cannot reflect the prediction accuracy appropriately. It is
obvious that a large differences in the order of magnitude
sequences impact more in these performance function than
smaller ones. Thus, to diminish the influence caused by the
orders of magnitude we take logarithm for both actual and
predicted data. The evaluation metric is Root Mean Squared
Logarithmic Error (RMSLE). The loss function for sequence
It = [I1, . . . , In] is given as:

Loss(t) =
1

n

n∑
t=1

| log
yt + 1

ŷt + 1
| (2)

where n is length of input, yt and ŷt represent actual and
predicted data, respectively. Based on this function, we update
weights and bias of BG-LSTM.

B. Framework of Prediction

To seek high prediction accuracy, three methods are used in
the stage of data preprocessing. An S-G filter is first adopted to
reduce the noise of the original workload and resource usage
data. Then, the nature logarithm [24] and Min-Max scaler [25]
are adopted to reduce the scale of the original data. After such
data preprocessing, BiLSTM and GridLSTM are integrated
into BG-LSTM for training and testing time series data. The
specific prediction framework is proposed, as shown in Fig. 2.
The input of the proposed prediction model is generated from
the preprocessed data. BG-LSTM includes a GridLSTM layer,
which is in the middle of two BiLSTM layers. After that, the
output of BG-LSTM is transmitted to a fully connected layer
for the final output.
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Fig. 1. BG-LSTM model structure.

Integrated 

Prediction

Data Preprocessing

S-G Filter

Logarithm

Min-Max Scaler

BG-LSTM

Output

Predictions

Historical Time Series

Historical 

workload 

and 

resource 

time series

Fig. 2. Prediction framework including data preprocessing and BG-LSTM.

III. PERFORMANCE EVALUATION

A. Data Preprocessing

To obtain characteristics of realistic arriving task and re-
source usage data, this section adopts the workload and re-
source usage trace collected from Google production compute
clusters1, which consists of approximately 12,000 machines.
This workload trace contains a total of 672,003 jobs and
25,462,157 tasks over a time span of 29 days. Our work
builds a prediction model based on workload and resource
usage sequences. We first divide 29 days into 20880 time slots.
The length of each time slot is 2 minutes. According to the
timestamps of tasks, we count the number of task and record
resource usage data, e.g., CPU and Random Access Memory

1https://github.com/google/cluster-data

(RAM) usages, which are needed by the tasks during each time
slot. Here, the workload time series means all of the whole
task trace data in Google clusters in 29 days as shown in Fig.
3(a). CPU and RAM usage time series are illustrated in Figs.
3(b)-(c), respectively.

However, original workload and resource usage time series
contain much noise caused by physical machine failures in
CDCs or other abnormal cases, e.g., the number of abnor-
mal workload and resource usage caused by some unusual
activities. Therefore, this makes it difficult to realize accurate
prediction. We take the nature logarithm before smoothing
such that the magnitude of total workload and resource usage
time series is greatly reduced. We further compare several filter
algorithms to filter outliers and noise. There are four series
in our experiments, including the original sequence without
smoothing, two processed by median and average filters, and
smoothed one processed by the S-G filter. Here we collect
workload, CPU and RAM series from Google cluster trace
and perform experiments. The evaluation metric is RMSLE.
In median, average and S-G filters, the window size needs
to be set first. As shown in Table I, an S-G filter has better
performance than commonly used median and average filters
in different window (Win.) sizes. In this case, the processed
workload time series is smoothed by the S-G filter to eliminate
the possible outliers and noises.

Fig. 4(a) shows MSE between the original data and pre-
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(a) Total workload time series data.

(b) Total CPU usage time series data.

(c) Total RAM usage time series data.

Fig. 3. Workload and resource usage time series data.

dicted data with BG-LSTM and the S-G filter with respect to
different window sizes and rank values. It is shown in Fig. 4(a)
that after several experiments, the S-G filter with the window
size of 11 and the rank of 6 achieves the minimum change
of the original shape of the data, and therefore it is used to
establish the model. Fig. 4(b) shows MSE between the original
data and data processed by the S-G filter. In Fig. 4(b), MSE is
used to calculate the amount of change between the smoothed
data and original one. Larger MSE means a greater change
between the smoothed data and original one. Based on results
shown in Figs. 4(a)-(b), the S-G filter with the window size
of 11 and the rank of 6 is finally selected in our method.

B. Prediction Results

The best comprised of hyper-parameters for BG-LSTM is
methodically investigated by conducting multiple trials and
experiments. Tables II and III show the parameter setting of
BG-LSTM for workload and resource time series.

Fig. 5 shows the performance of BG-LSTM on three
different datasets. The left figures show the predicted data
and actual data, and the right ones show the errors between
them. Fig. 5(a) shows the prediction results for workload. Figs.
5(b)-(c) show the prediction results for CPU and RAM usage,

TABLE I
PERFORMANCE COMPARISON OF DIFFERENT FILTERS

Win. Size
Methods Workload

No filter Median filter Average filter S-G filter

3

0.72

0.46 0.18 0.20
5 0.51 0.23 0.17
7 0.52 0.25 0.15
9 0.54 0.29 0.15
11 0.76 0.70 0.16

Win. Size
Methods CPU

No filter Median filter Average filter S-G filter

3

0.73

0.54 0.57 0.28
5 0.55 0.59 0.23
7 0.57 0.58 0.18
9 0.59 0.62 0.17
11 0.62 0.58 0.16

Win. Size
Methods RAM

No filter Median filter Average filter S-G filter

3

0.75

0.67 0.70 0.22
5 0.61 0.79 0.18
7 0.59 0.60 0.15
9 0.69 0.68 0.16
11 0.68 0.69 0.14

(a) MSE with the BG-LSTM and the S-G filter.

(b) MSE between the original data and the data processed by the S-G
filter.

Fig. 4. MSE with respect to different window sizes and rank values.

respectively. Table IV shows the performance of BG-LSTM on
different data of Google cluster trace in the experimental test
set. The three data sets are workload, CPU usage and RAM
usage. The evaluation metrics are MSE, RMSLE and R2.

To verify the effectiveness and robustness of BG-LSTM,
we conduct repeated experiments on the random data from the
workload and resource usage time series, as shown in Table V.
RMSLE is used as the evaluation criterion of different models.
They include traditional methods, e.g., ARIMA and SVM,
and deep learning methods, e.g., LSTM, BiLSTM, GridL-
STM, SG-LSTM, SG-BiLSTM, and SG-GridLSTM. Here SG-
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(a) Prediction results for the total workload time series.

(b) Prediction results for CPU usage.

(c) Prediction results for RAM usage.

Fig. 5. Prediction results for three data sets with BG-LSTM.

TABLE II
PARAMETER SETTING OF BG-LSTM FOR WORKLOAD

Parameter Value Description
X 60 Network input
Y 1 Network output

Structure [60,45,30,15,1] Network structure
Optimizer Adam Optimization function
Batch size 5000 Batch size

Epochs 40000 Iteration times

TABLE III
PARAMETER SETTING OF BG-LSTM FOR RESOURCES

Parameter Value Description
X 60 Network input
Y 1 Network output

Structure [60,50,45,20,1] Network structure
Optimizer Adam Optimization function
Batch size 4000 Batch size

Epochs 40000 Iteration times

TABLE IV
PERFORMANCE COMPARISON OF DIFFERENT DATASETS IN BG-LSTM

Performance Workload CPU RAM
RMSLE 0.15 0.16 0.14

MSE 13934.54 128.89 131.29
R2 0.9991 0.9997 0.9999

TABLE V
PERFORMANCE COMPARISON OF DIFFERENT METHODS WITH RMSLE

Methods
RMSLE Workload CPU RAM

ARIMA 0.93 0.77 0.81
SVM 0.86 0.67 0.78
LSTM 0.83 0.56 0.61

BiLSTM 0.80 0.63 0.75
GridLSTM 0.77 0.58 0.69
SG-LSTM 0.74 0.23 0.22

SG-BiLSTM 0.17 0.20 0.16
SG-GridLSTM 0.19 0.19 0.15

BG-LSTM 0.15 0.16 0.14
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means that before using the model to predict data, the S-
G filter is first used to process the data. It is observed
from Table V that the deep learning methods perform better
than the traditional ones. In addition, after applying the S-
G filter method, RMSLE of each method is significantly
improved. Among them, BG-LSTM that combines BiLSTM
and GridLSTM performs the best in terms of RMSLE.

C. Discussion

The combination of BiLSTM and GridLSTM layers in
BG-LSTM has better modeling capacities than LSTM layers
and other improved LSTM models in Google cluster trace.
BiLSTM layers are able to explicitly model the time series
directly near the current time interval. While GridLSTM layer
can model the time series through the depth dimention. This
complements the implicit modeling of LSTMs. The increase in
modeling capacities allows BG-LSTM to outperform LSTM or
other improved LSTMs with the similar number of parameters.

IV. CONCLUSION

Accurate prediction of complex and varying workload and
resource usage traces plays is important in efficient resource
provisioning for cloud data centers (CDCs). Due to their com-
plicated characteristics, it is challenging to accurately predict
them. In this work, we propose an integrated prediction model,
named BG-LSTM, which is composed of a Bi-directional
LSTM and a Grid LSTM. This work first adopts a Savitzky-
Golay filter to make workload and resource usage traces easier
to predict. Furthermore, the constructed BG-LSTM is pro-
posed to extract the characteristics in workload and resource
usage traces, and achieve the adaptive and accurate prediction
for highly-variable workload and resource usage traces in
CDCs. Finally, real-world datasets are used to demonstrate
that the proposed model achieves significantly better prediction
accuracy than other methods. Next, we plan to extend our
work in two aspects: 1) using intelligent optimization meth-
ods to train model’s parameters for fast training and better
performance of the model [26]; and 2) exploring an adaptive
method for resource provisioning with reinforcement learning
for the dynamic and complex environment of cloud systems.
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