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Junqi Zhang, Yushun Fan, Jia Zhang, Senior Member, IEEE , Bing Bai

Abstract—With the boom of Web services, there is a growing need for visualizing service ecosystems to help people browse services
and understand their functionalities and positions in the systems. One foundational step of building a proper visualization is to ensure
accurate representations for the comprising services. However, it is not a trivial task as service profiles may not be sufficient for two
significant reasons. Firstly, while the services themselves being used in various scenarios, their profiles may not always precisely
reflect all of them. Secondly, service profiles usually comprise quite a few universal background terms that cannot distinguish services.
To address these two issues, we apply machine learning techniques to incrementally learn service representations in a whole. A
tailored topic model is developed, named Service Representation-Latent Dirichlet Allocation (SR-LDA). The core idea is to learn more
comprehensive and up-to-date information about services from the profiles of the involved service compositions (i.e., mashup profiles),
while introducing a global filter to identify and filter out background terms. Both quantitative and qualitative experiments on a real-world
dataset demonstrate that the proposed SR-LDA builds higher-quality service representations comparing with baselines. We further
generate a knowledge map to visualize a service ecosystem based on the learned service representations. Such a knowledge map
directly leads to the detection of four typical functionality patterns of Web services and serves the purpose of mashup creation.

Index Terms—Service representation, service visualization, service ecosystem, topic model, knowledge map
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1 INTRODUCTION

W EB services are self-described programmable appli-
cations, offering interoperability and universal ac-

cessibility over the Internet [1]. Such a remote reusabil-
ity allows software developers to efficiently integrate
multiple functionalities offered by different Web services
and quickly build value-added service compositions, also
called mashups [2], [3]. As a matter of course, an in-
creasing number of services published by their providers,
together with mashups and corresponding developers,
have formed several Web service ecosystems such as Pro-
grammableWeb.com [4].

However, the overload of information from the rapidly
increasing number of services in a service ecosystem brings
a considerable challenge for mashup developers as well as
system managers: how to choose from the sea of services?
In order to alleviate this problem, the research community
has developed many service recommendation and discov-
ery methods [5], [6], [7], [8]. However, most methods can
only give references when developers have clear demands,
whereas cannot help people with fuzzy problems like: “Are
there any interesting services that can bring appealing func-
tionalities to build my mashups?” “What are the functional
relationships among various services?” “What domains of
services are still in the early stages of market competi-
tion and have the space for new entries?” In such cases,
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visualizing a service ecosystem may provide a practical
overview of all the services, and help in understanding their
functionalities and complex relationships among them. For
example, some services form a clique meaning that they bear
similar functionalities, and a clique composed of abundant
services indicates that there is not much chance for new
services to succeed in that service domain. By studying
such a visualization, people may also identify services that
deserve further investigation [9].

Before forming a proper visualization of a service ecosys-
tem, though, one foundational step is to make sure the
representations of all its comprising services are accurate.
A term service profile1 was coined to describe and represent
services, earlier built from WSDL files for SOAP services
and later from textual descriptions for RESTful services.
Relying on such original service profiles published by ser-
vice providers, however, suffers from the following two
significant matters.

First, service profiles may not always precisely reflect
the various usage scenarios of corresponding services.
Original service profiles are created by relevant service
providers, whose subjective descriptions might not accu-
rately depict the service functionality. In addition, mashup
developers may find new ways, beyond service publishers’
initial thoughts, to use the services. For example, an origi-
nally published ”social” service is widely used in mashups
focusing on ”books.”2

Second, service profiles typically comprise quite some
background terms that do not distinguish services. For
instance, the description of service Facebook says “The Face-
book API is a platform for building applications that are available

1. https://www.w3.org/Submission/OWL-S
2. Detailed examples are presented in Section 5.3.4.
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Fig. 1: The basic idea of the proposed SR-LDA and visualization. Service representations are constructed from profiles
of both mashups and services, as well as the invocation records, in a service ecosystem. Additionally, a global filter is
introduced to identify and down-weight background terms. A service knowledge map is generated for visualization.

to the members of the social network of Facebook. . . ” In this
profile description, the terms ”API,” ”platform,” and ”appli-
cations” are service ecosystem-common background terms
that possibly appear in various Web services. Such words
describing shared features are irrelevant to services’ specific
characteristics, which means background terms bring an
adverse impact to service representations.

To address the aforementioned two issues, our position
is that, service representations shall be up-to-date, objective
and distinct from each other. More specifically, we believe
that service users’ opinions should be taken into consid-
eration and automatically incorporated into service repre-
sentations, while background terms should be filtered out.
We hypothesize that service users’ opinions are hidden and
reflected in service usage history, which may be recorded by
service composition (i.e., mashup) profiles. In other words,
the profiles of mashups carry the supplementary informa-
tion of the comprising services invoked by the mashups.
Note that service users’ opinions may also be included in
their comments or annotations, which however might not
be verified thus will not be considered in this paper.

Based on our previous work [10], we propose to extend
the ordinary Author-Topic Model [11], [12] into a tailored
topic model, named Service Representation-Latent Dirichlet
Allocation (SR-LDA), to build high-quality services repre-
sentations through learning from the underneath service
ecosystem and then generate a knowledge map of Web
services. The core idea of this paper is illustrated in Fig. 1.
A service ecosystem comprises a collection of services and
mashups, as well as their invocation relationships. For ex-
ample, mashup A invokes services a and b; mashup B
invokes services b and c. The profiles of the constituent
services and mashups altogether form a corpus comprising
a collection of words (terms), i.e., word 1 to word 8.

Fig. 1 shows that the original profile of service b contains
words 1, 4, and 5. However, our probabilistic model (that
will be discussed in detail later) finds that both mashups

A and B adopt word 8 to describe service b. Thus, after
studying the service ecosystem, word 8 is incorporated into
the representation of service b, even though it hasn’t been
used in service profiles. Meanwhile, since words 1 and
4 appear roughly uniformly in most service and mashup
profiles, they are caught by an introduced concept of ”global
filter”3 and identified as background terms to mitigate their
adverse impact on service representations. Note that our
model also categorizes the words into topics.

The main contributions of this paper are three-fold:

• We have proposed a tailored machine learning model
to build accurate service representations. The model
can effectively extract supplementary information
about services from service usage history, while au-
tomatically filtering out background terms.

• We have tested our model over the real-world
ProgrammableWeb dataset. Both quantitative and
qualitative analyses have demonstrated that our
model builds higher-quality representations of ser-
vices comparing with baselines.

• We have presented a proper visualization of a service
ecosystem based on the learned service represen-
tations. Four typical functionality patterns of Web
services are derived from a knowledge map. The
assistance of this map in mashup creation is also
illuminated.

The rest of this paper is organized as follows. Section 2
describes the model framework. Section 3 shows how to
train the optimal parameters. Section 4 reports the experi-
ments and case studies. Section 5 describes how the knowl-
edge map can be generated and our findings. Section 6
discusses the related work and Section 7 draws conclusions.

3. Specifically defined in Section 2.2.
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Fig. 2: Graphical model of SR-LDA. Words in the profiles of
services and mashups are assigned to proper services or the
global filter.

2 MODEL FRAMEWORK

In this section, we will first introduce the definitions of the
notations used for Web service ecosystems, then describe
the framework of our model.

2.1 Background notations

The definitions of the notations used for mashups and
services are defined as follows.

For services, in this paper, we use subscript “j” to denote
that one notation is related to service sj , and j = 1 : J .
Service description SDj = {wj1, wj2, . . . , wjnj

} is the set of
nj words (terms) used in the profile of service sj .

For mashups, we use subscript “i” to denote that one
notation is related to mashup mi, and i = 1 : I . CSi =
{csi1, csi2, . . . , csihi

} is the set of hi component services
invoked by mashup mi, and MDi = {wi1, wi2, . . . , wini

}
is the set of ni words used to describe mashup mi.

As illustrated above, in this model we mainly use the
invocation relationships between mashups and services, as
well as the profiles of services and mashups. Note that the
profiles include, but are not limited to, content descriptions,
category information, tags and WSDL documents.

2.2 Generative process of SR-LDA

The original service profiles are static and may contain
service ecosystem-common background terms. Thus the
representations built directly from service profiles may not
be effective. In this paper, we incorporate mashup profiles as
additional sources of information about services and try to
filter out the background words automatically. To achieve
the goals, we define a tailored generative process Ser-
vice Representation-Latent Dirichlet Allocation (SR-LDA),
whose graphical model is shown in Fig. 2, to simulate how
the profiles of a service ecosystem are formed in terms of
words.

Figuratively speaking, we regard services as “authors”
of the profiles of both services and mashups. On one hand,
every service is the author of its own profile; on the other

hand, every mashup profile is co-authored by its compris-
ing services. Additionally, an introduced “global filter” is
shared by all the profiles in a service ecosystem as the
author of background terms. For conciseness, we use the
subscript “J + 1” to denote that one notation is related to
the global filter. For example, notation θJ+1 represents the
topic proportions of the global filter.

The probabilistic generative process of SR-LDA is de-
fined as follows. Assuming that there are T topics,

1) For each topic z = 1 : T , draw word proportions
φz ∼ Dirichlet(β).

2) For the global filter, draw topic proportions θJ+1 ∼
Dirichlet(α).

3) For each service sj , j = 1 : J ,

a) Draw topic proportions θj ∼ Dirichlet(α)
b) For each word wjn ∈ SDj ,

i) Draw a service assignment sjn ∼
Uniform({j, J + 1})

ii) Conditioned on sjn, draw a topic as-
signment zjn ∼ Mult(θsjn).

iii) Conditioned on zjn, draw the word
wjn ∼ Mult(φzjn).

4) For each mashup mi, i = 1 : I ,

a) For each word win ∈MDi,

i) Draw a service assignment sin ∼
Uniform(CSi

⋃
{J + 1})

ii) Conditioned on sin, draw a topic assign-
ment zin ∼ Mult(θsin).

iii) Conditioned on zin, draw the word
win ∼ Mult(φzin).

As shown in Fig. 1 and discussed in Section 1, when a
mashup invokes multiple services (e.g., mashup A invokes
services a and b), it is difficult yet necessary to identify to
which service each word in the mashup profile is corre-
sponding. For example, how to infer that word 8 is used
to describe service b. Based on the generative process of
SR-LDA, we can figure out the corresponding relations
between words and services via maximizing the posterior
probability in Section 3.3. In this way, words that are used
to describe mashups can also fertilize the representations of
services (i.e., the topic proportions θ1:J ). Furthermore, as the
global filter corresponds to the profiles of all the services and
mashups, background terms that appear in many profiles
will be assigned to the global filter, thus the model can
automatically identify background terms and then down-
weight their adverse impact on the representations.

3 PARAMETER LEARNING

Effective service representations can be achieved by max-
imizing a posterior estimation of the generative SR-LDA
model. Assuming that T topics exist, we are interested in
learning two sets of variables: (1) service-topic proportions
Θ = θ1:J+1, and (2) topic-word proportions Φ = φ1:T . Our
aim is to maximize the posterior distribution on Θ and Φ. In
this section, firstly we will merge the data from the service
part and the mashup part for conciseness, then we will
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derive the probability of the generation of content and how
to obtain the maximum a posteriori estimates, finally we
will analyze the computational complexity of our approach.

3.1 Notation refinement

Since the data from service profiles and mashup profiles
shares similar structure, for conciseness, we refine the no-
tations by merging them for explaining the model training
procedure. We define

D = {SD1, . . . ,SDJ ,MD1, . . . ,MDI},

in other words, D contains all the profiles in a service
ecosystem, and |D| = I + J .

Similarly, we define the “authors” of all the profiles as
follows,

S =
{{

1, J + 1
}
, . . . ,

{
J, J + 1

}
,{

CS1
⋃
{J + 1}

}
, . . . ,

{
CSI

⋃
{J + 1}

}}
,

in other words, S contains the global filter besides the
corresponding services associated withD. The subscript “k”
denotes that the notation is related to the merged variables.

3.2 Probability of corpus generation

Under the generative process defined in Section 2.2, the
words (terms) are drawn independently when conditioned
on Θ and Φ. Thus, the probability of the corpus w generated
is

P (w|Θ,Φ,S) =
∏

w

P (wkn|Θ,Φ,Sk),

where wkn is the nth word token in the kth merged profile,
w is the vector recording all the word tokens, and Sk is the
corresponding set for the kth merged profile.

Then we can obtain the probability of word token wkn

being generated, based on the probability assumptions de-
fined in Section 2.2, i.e.,

P (wkn|Θ,Φ,Sk)

=
J+1∑
j=1

T∑
t=1

P (wkn, zkn = t, skn = j|Θ,Φ,Sk)

=
J+1∑
j=1

T∑
t=1

P (wkn|zkn = t,φt)

P (zkn = t|skn = j,θj)P (skn = j|Sk)

=
1

|Sk|
∑
j∈Sk

T∑
t=1

φwkntθtj ,

where φwknt is the probability of word token wkn condi-
tioned on t, θtj is the probability of topic t conditioned
on service j, and Sk is the component service set of the
kth profile, added with the global filter. According to the
uniform assumption, P (skn = j|Sk) = 1

|Sk| when j ∈ Sk,
and 0 otherwise.

Based on the analyses above, the conditional probability
of w becomes:

P (w|S, α, β)

=

∫∫
P (w|Θ,Φ,S)p(Θ,Φ|α, β)dΘdΦ

=

∫∫ ( ∏
wkn∈w

1

|Sk|
∑
j∈Sk

T∑
t=1

φwkntθtj
)
p(Θ|α)p(Φ|β)dΘdΦ,

and according to the probability distribution assumption,
p(Θ|α) and p(Φ|β) are the Dirichlet priors on Θ and Φ,
respectively.

3.3 Maximum a posteriori estimation

Our inference scheme is based upon maximizing the obser-
vation that

p(Θ,Φ|D,S, α, β)

=
∑
z,s

p(Θ,Φ|z, s,D,S, α, β)P (z, s|D,S, α, β),

where z = {zkn} is the topic assignments for the words in
D, and s = {skn} is the service assignments.

An approximate posterior on Θ and Φ can be obtained
by applying variational inference, expectation propagation
or Markov-chain Monte Carlo (MCMC) schemes. In this
paper, we adopt a MCMC method, i.e., Gibbs Sampling, to
approximate our SR-LDA model. First an empirical sample-
based estimate of P (z, s|D,S, α, β) can be obtained. Af-
terwards we can get the expectation of Θ and Φ directly
by exploiting the conjugation of Dirichlet distribution and
multinomial distribution.

The Gibbs sampler corresponding for P (z, s|D,S, α, β)
is expressed in the following basic equation:

P (skn = j, zkn = t|wkn = w, z¬kn, s¬kn,D¬kn,S, α, β)

∝
g¬knjt + α∑
t′ g
¬kn
jt′ + Tα

× c¬kntw + β∑
w′ c¬kntw′ +Wβ

,

(1)

where gjt is the number of word tokens assigned to topic t
and service j at the same time, i.e., gjt =

∑
I(zkn = t, skn =

j), ctw is the frequency at which word w is assigned to topic
t, i.e., ctw =

∑
I(wkn = w, zkn = t), and I(·) is the indicator

function. The superscript ¬ denotes a quantity excluding the
current instance.

Starting with random initialization on the service assign-
ments s and topic assignments z, we can use the Gibbs
sampler for sampling. After sampling a sufficient number of
burn-in iterations, the sampler will converge and approach
the stationary distribution. We can then accumulate the
results for several iterations, average them and compute the
expectation of the true posterior. Given z, s, D, α and β, we
can get that Θ and Φ follow simple Dirichlet distributions
based on the assumptions in Section 2.2 and the fact that the
Dirichlet distribution is conjugate prior for the multinomial
distribution, i.e.,

φt|z,D, β ∼ Dirichlet(ct· + β)

θj |z, s, α ∼ Dirichlet(gj· + α),
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TABLE 1: Notations Used in SR-LDA

Symbol / Type Description

i / Scalar Subscript for mashups

j / Scalar Subscript for services

k / Scalar Subscript for merged variables

MDi / Set Profile content for mashup i

SDj / Set Profile content for service j

D = {Dk} / Set Dk is the kth merged profile content

w = {wkn} /
|w|-dimensional

vector
wkn is the word for nth word token in Dk

W / Scalar Vocabulary size

CSi / Set Component services of mashup i

S = {Sk} / Set Sk is the corresponding service set for Dk

T / Scalar Number of topics

Φ = φ1:T /
T ×W matrix

Topic-word proportions. φtw indicates the
probability of word w given topic t

Θ = θ1:J+1 /
(J + 1)× T matrix

Service-topic proportions, and θJ+1 is the
topic proportions for the global filter. θjt
indicates the probability of topic t given
service j

α / Scalar Dirichlet prior for service-topic proportions

β / Scalar Dirichlet prior for topic-word proportions

z = {zkn} /
|w|-dimensional

vector
zkn is the topic assignment for wkn

s = {skn} /
|w|-dimensional

vector
skn is the service assignment for wkn

gjt / Scalar Number of word tokens assigned to topic t
and service j at the same time

ctw / Scalar Frequency at which word w is assigned to
topic t

Nburn / Scalar Number of burn-in iterations

Nacc / Scalar Number of accumulation iterations

where ct· is the vector containing ctw, w = 1, . . . ,W , and
gj· is the vector containing gjt, t = 1, . . . , T .

Finally we can reach the expectation of Θ and Φ for any
given instances z and s, i.e.,

E[φtw|z,D, β] =
ctw + β∑

w′ ctw′ +Wβ
(2)

E[θjt|z, s, α] =
gjt + α∑

t′ gjt′ + Tα
. (3)

The notations used here are summarized in Table 1.
Assuming that the number of burn-in iterations isNburn and
the number of accumulation iterations is Nacc, the pseudo
code of parameter learning is listed in Algorithm 1.

3.4 Computational complexity analysis

For each step of Gibbs sampling, we have to use gjt and
ctw. However, as z and s only change one instance each sam-
pling, gjt, we decide to cache

∑
t′ gjt′ , ctw and

∑
w′ ctw′ , and

Algorithm 1: Parameter learning of SR-LDA

Input: α, β, D, S, T , Nburn and Nacc

Output: Optimal Θ and Φ

Procedure:

01 Initialize z and s randomly

02 Calculate and cache gjt,
∑

t′ gjt′ , ctw and
∑

w′ ctw′

03 For iter = 1 : Nburn +Nacc

04 For each word token wkn

05 Sample zkn and skn according to Eq. (1)

06 Update gjt,
∑

t′ gjt′ , ctw and
∑

w′ ctw′

07 End

08 If iter ≥ Nburn + 1

09 Record the sampling results of zkn and skn

10 End

11 End

12 Calculate the average of recorded z and s

13 Calculate expectational Φ according to Eq. (2)

14 Calculate expectational Θ according to Eq. (3)

update them during a constant time period. The algorithm
thus can become more efficient.

The time complexity of initialization for Line 01 of
Algorithm 1 is bounded by O(|w|), where |w| is the total
number of word tokens, for we need to give every word
token an assignment of the topic and an assignment of the
service. The time complexity for Line 02, i.e., building the
cache, is bounded by O(|w| + J · T + T ·W ), for we need
to go through all words’ assignment and count gjt,

∑
t′ gjt′ ,

ctw and
∑

w′ ctw′ generated in Line 01. If we assume that
each mashup invoke h services on average, for every word
token, we need to go through all the possible topic and
service assignments, so the time complexity of every Gibbs
sampling iteration is bounded by O(|w|Th), thus the time
complexity of Line 03 to Line 11 isO

(
(Nburn+Nacc)|w|Th

)
.

For Line 12 to Line 14, we calculate the expectations for Θ
and Φ, and the time complexity isO(Nacc|w|+|w|T+J ·T ).

Considering that |w| is the number of word tokens in
the corpus, it is safe to say that |w| is far greater than J and
W . Therefore, the major time complexity of Algorithm 1
comes from the Gibbs sampler. We can thus conclude
that the total time complexity of SR-LDA is bounded by
O
(
(Nburn +Nacc)|w|Th

)
, and |w| is roughly in proportion

to (I + J).

4 EXPERIMENTS

We have designed and conducted a collection of experi-
ments to evaluate the effectiveness of our approach4. In
this section, we will first introduce the dataset we used for
evaluation, the evaluation metric and the baseline methods.
Then we will discuss the quantitative and qualitative results,
comparing with the baselines. Additionally, we will show
case studies on the quality of word-service assignment.

4. The dataset and results are published at
http://www.simflow.net/team/baibing/sr-lda.zip

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 17,2020 at 21:11:59 UTC from IEEE Xplore.  Restrictions apply. 



1939-1374 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.3001307,
IEEE Transactions on Services Computing

6

TABLE 2: Statistical Information about ProgrammableWeb
Dataset

Total # of services 13,931

Total # of services invoked by mashups 1,241

Total # of mashups 6,295

Vocabulary Size 9,555

Average # of services invoked by mashups 2.06

Average # of word tokens in service and mashup
profiles

34.82

4.1 Dataset

ProgrammableWeb.com is to-date the largest online reposi-
tory of public Web services (APIs) and their mashups [13].
Since it provides APIs for people to fetch its stored data,
ProgrammableWeb.com has been used as a testbed in many
Web service researches [13], [14], [15], [16]. The profiles of
services and mashups include their textual descriptions as
well as category tags. After preprocessing the profiles by
stemming and removing stop words, we obtained a vocab-
ulary size of 9,555. Detailed statistical information about the
dataset is summarized in Table 2.

4.2 Evaluation scheme

Recall that the mission of SR-LDA is to build accurate
representations for services from the service ecosystem.
However, the accuracy of service representations is hard
to measure directly. Intuitively, high-quality representations
should be able to: (1) reflect the similarities of services in
the same domain; and (2) reflect the differences among
services in different domains. Based on such a perspective,
we designed a three-phase method as below to evaluate the
quality of service representations generated by SR-LDA.

First, similar with [17], we perform a K-means cluster-
ing method over the generated service representations, to
divide them into clusters. Second, we calculate the Davies-
Bouldin Index (DBI) [18] between each pair of service clus-
ters resulted. DBI@K is defined as follows:

DBI@K =
1

K

K∑
i=1

max
j 6=i

(avg(Ci) + avg(Cj)
dcen(µi,µj)

)
,

where

avg(C) =
2

|C|(|C| − 1)

∑
1≤i<j≤|C|

dist(xi,xj)

is the average distance within cluster C, K is the number
of clusters, and dcen(µi,µj) indicates the distance between
the centers of two clusters µi and µj . Third, the Calinski-
Harabasz Index (CHI) [19] is also calculated for double-
checking the quality of generated service representations.
CHI@K is defined as:

CHI@K =
tr(BK)

tr(WK)

J −K
K − 1

,

where

BK =
K∑
i=1

|Ci|(µi − x̄)(µi − x̄)T

is the inter-cluster dispersion, x̄ represents the global cen-
troid of services, and

WK =
K∑
i=1

∑
x∈Ci

(x− µi)(x− µi)
T

is the intra-cluster dispersion.
A lower value of DBI or a higher value of CHI indi-

cates more effective service representations, meaning that
services within a cluster are more similar to each other, and
the clusters are separated better, which corresponds to the
aforementioned intuition.

4.3 Baselines and hyperparameter settings
In the experiments, we designed two baseline methods for
comparison:

• Vanilla LDA. For this baseline, we used the original
profiles of services and applied the vanilla Latent
Dirichlet Allocation (LDA) [20] to extract topics of
each service. This baseline can provide an evidence
for how well the vanilla LDA works in service
ecosystems.

• DSR-LDA (Degenerated SR-LDA). For this method,
we abandoned the global filter in the proposed SR-
LDA. This method is equivalent to a customized
application of the Author-Topic Model [11]. A com-
parison with this baseline can provide evidence for
both the adverse impact on building service rep-
resentations brought by background terms and the
effectiveness of the global filter.

For all runs of our SR-LDA model and baselines, we
adopted α = 50/T and β = 0.01 according to the empir-
ical formula [21]. We computed the results when the topic
number T equals to 40, 80, 120 and 160. For all values of
T , we ran five different Gibbs sampling chains over the
whole dataset, discarding the first 8,000 iterations for burn-
in, and then took the average of the next 2,000 iterations as
final results. For the quantitative evaluation, the DBI and
CHI results reported are the average of these five chains,
and the K-means clustering is performed when K equals to
20, 40, 60, · · · , 180, and 200. For qualitative evaluation and
knowledge map generation, we set T to 120 based on the
inflection point of perplexity curve [20].

4.4 Quantitative comparisons
The DBI results of the SR-LDA and baselines with different
topic numbers T are shown in Fig. 3, and Table 3 presents
the average CHI results over different cluster numbers K. It
can be found that at all tested topic numbers T and cluster
numbers K, the baseline LDA receives the highest DBI
and SR-LDA performs the best. The proposed SR-LDA also
achieves the best performance according to the average CHI
results. Comparing the results of baseline LDA and DSR-
LDA, it can be found that considering the mashup profiles
can increase the quality of service representations. While
comparing the results of the proposed SR-LDA and the
baselines, another two interesting findings were exposed.

Firstly, the gaps of both the DBI and CHI between SR-
LDA and DSR-LDA are generally more significant than
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Fig. 3: DBI results for the proposed SR-LDA and baselines. At all tested topic numbers T and cluster numbers K, SR-LDA
shows superior performance.

TABLE 3: Average CHI Results for SR-LDA and Baselines

T = 40 T = 80 T = 120 T = 160

SR-LDA 566.64 352.54 255.80 209.65

DSR-LDA 394.60 282.44 231.17 196.45

LDA 364.57 271.27 226.96 192.21

those between DSR-LDA and LDA, indicating that back-
ground terms are bringing more adverse impact on build-
ing high-quality service representations. The supplementary
information from mashup profiles won’t bring much im-
provement in the quality of service representations unless
the background terms are filtered out by the global filter.

Secondly, Fig. 3 reveals that the DBI results of SR-LDA
show a different trend compared with the results of the two
baselines, especially when T is set to be large. For example,
when T is set to 120, the optimal DBI for SR-LDA is obtained
whenK = 100, while optimal DBI values for LDA and DSR-
LDA are obtained when K = 80. If we enlarge T to 160,
the difference becomes more significant. This phenomenon
shows that without filtering out background terms, LDA
and DSR-LDA cannot guarantee that all topics learned
from data are effective for identifying the functionalities of
services.

As a conclusion, SR-LDA achieves lower DBI values and
higher CHI values at a variety of topic numbers T and
cluster numbers K, indicating that service representations
resulted from SR-LDA are more accurate.

4.5 Qualitative analyses

We also conducted qualitative analyses on the topics given
by different methods. Table 4 reports top words and services
in three example topics. The left part is the results given
by SR-LDA, and the right part is the information of the
corresponding topics given by DSR-LDA. Here, we report
the results of SR-LDA and DSR-LDA, by comparing which
can provide information about the role of the global filter.

As illustrated in Table 4, for SR-LDA, words in Topic #43
are general background terms used in service ecosystems,
and words in Topic #96 are technical background terms.
SR-LDA can assign them to the global filter, thus down-
weighting the impact of those words. As for DSR-LDA,
Topic #23 and #29 are the most similar topics to the cor-
responding topics. As DSR-LDA cannot filter these back-

ground terms, the quality of service representations suffers
from the adverse impact of them.

For the last topic pair reported in the table, we can
conclude that the topics are weather-related. As weather in-
formation is seldom used without location, in practice, Web
services like Google Maps are also related to this topic. Both
methods can discover this phenomenon from the profiles
of mashups. As “Mapping” category are centralized, and
“Weather” category is relatively evenly, given this topic, the
probability of Google Maps would be even larger than any
specific weather-related Web service. However, DSR-LDA
cannot automatically filter background terms. Thus there
are words like “data” and “provide” listed in this topic, and
some environmentally-friendly energy-related services like
Clean Power SolarAnywhere and AMEE also show up on this
topic. This shows that without filtering background terms,
the quality of function-related topics will also suffer.

As a conclusion, SR-LDA is able to learn more precise
topic distributions with the help of the global filter.

4.6 Case studies: corresponding service inference
Since SR-LDA assigns words from mashup’s profiles to
component services, we also conducted case studies on the
quality of word-service assignment. Results are listed in
Table 5.

4.6.1 Case 1: ShopTalk
ShopTalk is a mashup helping users to track orders from any
phone. It invokes two services, i.e., Cloudvox that offers Web-
based telephone services, and Shopify that gives access to the
orders. For the words like “application,” “shop,” “phone”
and “order,” the model is quite sure about to which service
they are corresponding. However, for words like “call,” it
could mean “call through the phone,” while it could also
mean “call the API.” So the model is not 100% sure about
which service the word should be assigned to, but it also
gives a 74.01% confidence to Cloudvox, which is the right
choice in this case.

4.6.2 Case 2: Episkeptis
Episkeptis is a mashup offering restaurant searching and
sharing functionalities. It invokes two services, i.e., Facebook
that offers social functionalities, and Google Maps that helps
searching restaurants and bars. Interestingly, although there
are no words like “restaurant” or “bar” in the profile of
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TABLE 4: Top Words and Services in Example Topics

SR-LDA DSR-LDA

t w P (w|t) s P (s|t) t w P (w|t) s P (s|t)

web 13.89% #global filter# 75.35% web 9.99% Google Maps 0.55%

website 10.38% NationBuilder 0.10% base 6.13% Flickr 0.52%

tool 7.74% Amazon S3 0.08% interact 5.89% OpenLayers 0.30%

#43 enable 6.06% Fitbit 0.06% #23 javascript 4.95% Twitter 0.25%

help 5.54% Google Analytics Managment 0.06% design 4.40% Google Maps Flash 0.20%

interface 4.20% Bing 0.05% feature 3.06% AnyChart 0.18%

software 3.31% PayPal 0.03% build 3.01% Yahoo Maps 0.17%

data 10.29% #global filter# 90.04% format 18.80% Google Maps 0.14%

RESTful 6.13% PriceGrabber 0.01% response 14.81% Yandex Bar 0.10%

JSON 4.31% UniGraph 0.00% RESTful 14.47% Yandex Webmaster 0.08%

#96 format 4.12% iCasework UsefulFeedback 0.00% #29 call 14.13% Bank of Russia Daily Info 0.07%

online 3.42% eRail.in Indian Railways 0.00% JSON 13.94% Mail.Ru 0.07%

return 3.19% BigCommerce 0.00% xml 11.15% Yandex Money 0.07%

response 2.67% FlightAware 0.00% let 4.12% Yandex Metrica 0.07%

weather 21.67% Google Maps 2.71% weather 14.13% Google Maps 3.99%

forecast 4.90% Weather Underground 0.79% energy 4.90% Weather Underground 0.69%

science 4.30% NOAA National Weather Service 0.70% data 4.47% WeatherBug 0.61%

#110 condition 3.09% WeatherBug 0.68% #61 environment 4.37% NOAA National Weather Service 0.58%

astronomy 3.08% Microsoft Bing Maps 0.37% forecast 3.20% Clean Power SolarAnywhere 0.37%

nasa 2.26% OpenWeatherMap 0.37% provide 2.77% AMEE 0.37%

earth 2.06% Weather Channel 0.35% condition 2.44% OpenWeatherMap 0.35%

TABLE 5: Example Mashup Descriptions and the Results about Corresponding Service Inference

Mashup ShopTalk

Description A Shopify shop owner adds the ShopTalk application to their shop, then can call into their shop from any
phone via Cloudvox. After identifying using a PIN, shopkeeper can hear total orders. Runs on Heroku.

Words application shop call phone PIN order run

Component
services

Cloudvox 4.88% 3.70% 74.01% 95.65% 77.27% 6.09% 19.62%

Shopify 3.89% 96.24% 3.67% 4.26% 22.33% 91.73% 17.01%

#global filer# 91.23% 0.06% 22.33% 0.09% 0.40% 2.18% 63.37%

Mashup Episkeptis

Description Episkeptis helps users identify the best restaurants, bars, clubs and cafes in their city, with the help of
their Facebook friends. Users are able to rate, recommend and share their favorites. Site is in Greek.

Words help restaurant bar friend recommend share site

Component
services

Facebook 2.61% 13.87% 4.94% 95.83% 91.08% 88.90% 17.54%

Google Maps 0.12% 86.04% 94.84% 4.17% 8.83% 1.27% 2.27%

#global filer# 97.26% 0.09% 0.22% 0.00% 0.09% 9.83% 80.19%

Mashup Music Enthusiast

Description Search for your favorite artist. Be able to visually see locations of their upcoming concerts and events.
Check out their hottest videos on YouTube.

Words artist able visual location upcome concert video

Component
services

Eventful 34.27% 4.57% 17.72% 16.85% 92.32% 89.09% 0.37%

Google Maps 1.18% 0.78% 53.56% 70.40% 1.37% 2.30% 1.18%

YouTube 64.55% 0.40% 28.68% 0.37% 6.25% 8.58% 98.41%

#global filer# 0.00% 94.25% 0.03% 12.38% 0.06% 0.03% 0.03%
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Google Maps, the model can still be pretty sure that these
words are related to the service Google Maps. In fact, the
model has learned such characteristics from other mashups’
profiles, indicating that bringing mashups’ profiles is quite
effective in helping to build services’ representations. A
similar phenomenon about Facebook can also be witnessed,
for word “recommend” does not show up in Facebook’s
profile, but our model is quite sure that they are related
to each other.

4.6.3 Case 3: Music Enthusiast
Music Enthusiast is a mashup designed for music fans. It
invokes three services, i.e., Eventful and Google Maps for
visualization of upcoming concerts and events, and YouTube
for the hottest videos of artists. This case is relatively more
complex than Case 1 and Case 2. For the unambiguous
words like “able,” “upcome,” and “video,” SR-LDA are very
confident and can assign them to the right services or the
global filter. However, words like “artist” and “location”
can be related to multiple services. For example, Eventful
is “the world’s largest collection of events, taking place
in local markets throughout the world, from concerts and
sports to singles events and political rallies,” so “artist” can
be related to Eventful. Meanwhile, since YouTube can also
provide videos of famous artists, so it could also be related
to “artist.” Finally, SR-LDA assigns 34.27% to Eventful and
64.55% to YouTube, corresponding to such an ambiguity.

As a conclusion, SR-LDA can assign words in mashups’
profiles to appropriate services or the global filter, which
helps to improve the quality of service representations.

5 GENERATING KNOWLEDGE MAPS

After building accurate service representations by SR-LDA,
our next step is to create a proper visualization of service
ecosystems. At a higher level, such a visualization should
help users gain an overview of the ecosystem, such as gen-
eral categorizations. At a lower level, such a visualization
could help users perceive popular services in each category
together with surrounding similar services.

In this section, first we will present how to generate
knowledge maps for visualizing a service ecosystem, then
we will demonstrate the resulting map and present its effect
for mashup creation with our further findings.

5.1 Knowledge map generation process
A knowledge map of a service ecosystem is an undirected
graph comprising Web services as nodes, which may be con-
nected through the similarity relationships between them.

The diameter of a service node reflects its popularity
in the ecosystem, i.e., the diameter is proportional to the
logarithm of the number of times that the service is invoked
by mashups,

diameterj ∝ log(popj),

where popj = cardinality
(
{i|sj ∈ CSi}

)
.

The weight of an edge is set to the cosine similarity
between the two services at its ends, i.e.,

weightj,j′ = cosine(〈θj ,θj′〉) =
θT
jθj′

‖θj‖‖θj′‖
,

In a displayed knowledge map, we intentionally ignore
the relationship between services, whose similarity score is
less than 0.2. In other words, we only present the edges
whose weights are larger than 0.2. However, when we are
playing layout, all the edges are kept at first. After reaching
a stationary state, some of the edges below the threshold
will be dropped to fine-tune the knowledge map for better
visualization.

The color of a service node is set to the primary category
labeled by the service’s provider. For example, all the service
nodes mainly representing the “Social” services share the
same color.

Equipped with such settings, we run the ForceAtlas2 [22]
algorithm and Gephi [23] to generate service ecosystem
knowledge maps over all service representations. The major
reason why we selected ForceAtlas2 is because it is a force-
directed layout algorithm, which can effectively simulate
the gravity and repulsion among nodes to reach an optimal
layout state of a graph.

5.2 Overview of a knowledge map

Following the aforementioned methodology, we have gen-
erated a knowledge map for ProgrammableWeb.com service
ecosystem5, which is shown in Fig. 4.

One core phenomenon is that the visualization clearly
reveals the existence of a collection of service clusters, each
representing a topic (category) dominated by a few giant
services. Example giant services are the Google Maps and
Microsoft Bing Maps in the “Mapping” category, YouTube
and Netflix in the “Video” category, Last.fm in the “Music”
category, and Facebook and Twitter in the “Social” category.
Note that each category is assigned a distinctive color code,
which helps users to gain an overview of all available
services in the ecosystem.

In the center of the map, a few services stand out which
provide infrastructural functionalities, like Google AJAX Li-
braries, Freebase, Yahoo Answers and so on. Such services can
collaborate with a variety of services, so they are placed
in the center of the map, and do not form distinct service
clusters.

Just outside of the center are some relatively active
service categories. For example, dominated by Facebook and
Twitter, the cluster of “Social” services occupies in the lower
part of the map. Usually, services in the “social” category are
collaborating with content providers and providing sharing
or recommending functionalities. As a result, it is shown
that around the cluster of “Social” category are “Video”-
related services represented by YouTube, “Photo”-related
services represented by Flickr, as well as “Music”-related
services represented by Last.fm. However, compared with
the “Video” category and “Photo” category, the “Music” cat-
egory is noticeably farther away from the “Social” category,
indicating that the collaboration between the two categories
is weaker.

For some more independent functionalities, they locate
at peripheral positions in the map. For example, “Bitcoin”-
related services are on the lower right corner of the map.

5. This paper only reports a portion of the knowledge map for
demonstration. The full version is published on the web.
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Fig. 4: Overview of the knowledge map generated based on services representations learned by SR-LDA.

Such location-related examples demonstrate that an ob-
jective knowledge map is capable of providing an intuitive
overview of the massive services and their complex relation-
ships. Such perception will help mashup developers gain
a better understanding of the service ecosystems and their
comprising services.

5.3 Detection of functionality patterns
By scrutinizing the generated knowledge map, focusing
on the services with a conspicuous diameter or color and
services located around the edge of service clusters, we have
further discovered that services are of distinct functionality
patterns. Here we will discuss four patterns illustrated in
Fig. 5: dominating, inclining, balancing, and realigning.

5.3.1 Dominating
The services with the “dominating” functionality pattern are
usually well-known ones and attract the vast majority of in-
vocations by mashups in one service domain. Such services
are easy to locate in a service knowledge map. Fig. 5a shows
the neighbors of the service Google Maps, which is one of
the most popular Web services in the ProgrammableWeb
service ecosystem and has been used in more than 2,000
mashups. It stands out as a representative service of the
“Mapping” category. In the knowledge map, it can be seen
that the node representing the Google Maps is quite large and
surrounded by other services of the “Mapping” category.
Similar situation can be found with the service Last.fm in
the “Music” category in Fig. 5b.

5.3.2 Inclining

The functionality pattern “inclining” means that a service
is majoring in one domain but also provides auxiliary func-
tionalities. The services showing such a functionality pattern
are using a differentiated competition strategy compared
with the dominating services. Fig. 5c illustrates the neigh-
bors of an inclining service LinkedIn. As we can see, LinkedIn
is very close to Facebook as a representative of “Social”
services, but it also has relationships with SimplyHired Jobs,
CareerBuilder and indeed, coinciding with that LinkedIn is “a
business social networking hub.” For another inclining service
Google Places in Fig. 5d, it mainly deals with place search
requests, but it also provides details of places, which makes
Google Places gain neighbors like Yelp, foursquare and Bing.

5.3.3 Balancing

The functionality of services with the “balancing” pattern
is comparable in two domains. Service GetGlue is “a social
networking service where users ‘check-in’ to share what movies,
videos, or TV shows,” thus we can witness that GetGlue is
serving as the connection of the “Social” category and the
“Video” category in Fig. 5e. If developers want to make
compositions relating to both functionalities, GetGlue would
be a potential choice. Note that the service Pinterest Domain
in Fig. 5f is “a virtual pinboard allowing users to select photos
from web pages to share with their friends,” quite similar with
GetGlue while connecting the domains of “Social” category
and “Photos” category.
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(a) Dominating: Google Maps (b) Dominating: Last.fm (c) Inclining: LinkedIn

(d) Inclining: Google Places (e) Balancing: GetGlue (f) Balancing: Pinterest Domain

(g) Realigning: Readmill (h) Realigning: Miso

Fig. 5: Example Web services and their neighbors, revealing distinct functionality patterns.

5.3.4 Realigning

The “realigning” functionality pattern is interesting for in-
vestigation. Realigning services are usually some long-tail
ones that get invoked by few mashups, such as Readmill
and Miso. Such services are evidence of influence on service
functionality from user usage. Service Readmill in Fig. 5g,
published as a “Social” service, whose profile says that
“Readmill is an online and mobile platform for readers to share
information about what eBooks they are reading, allowing them
to highlight and discuss sections of eBooks with other users. . . ”
However, mashups that invoke Readmill generally do not fo-
cus on “Social” properties. For example, mashup ReadTracker
is “an app for keeping track of the books you read,” mashup
Readmap “lets users plot a map of all the places they have been
reading,” and mashup The Book Report makes users “one step
away from uncovering your timeline of books.” As a result, the
social feature of Readmill degenerates and it becomes more
related to the “Books” category than “Social.” The service
Miso in Fig. 5h shares a similar property. The publisher of
Miso claims that Miso is designed to “let people share what they
are watching on TV in a fun and easy way.” While in practice,
developers tend to view it as a simple source for information
aggregation. For example, the mashup Journamatic, which
invokes Miso, is to “connect your social media sites and create
a daily journal automatically from your check-ins, photos, tweets,
and status updates.” As a result, we find Miso located near

Rotten Tomatoes and Netflix instead of services in the “Social”
category like Facebook.

These four patterns, revealed by our generated knowl-
edge map, are some insights into the functionality of Web
services, which can hardly be discovered directly from ser-
vice profiles. Such insights will help to understand how the
services have been used by existing mashups.

5.4 Assisting in mashup creation
Assuming that we are seeking for services to build a travel-
related mashup, by which people can “search for a destination
and navigate their way, as well as share photos with their friends.”
One straightforward strategy is to identify the services dom-
inating the categories “Search,” “Mapping,” “Photo” and
“Social.” With the assistance of the generated knowledge
map in Fig. 4, we can efficiently target on Bing, Google
Maps, Flickr and Facebook, instead of looking up by category
through the descriptions of the APIs.

In addition, the functionality patterns discovered in the
generated knowledge map could offer mashup developers
another advantage. The inclining service Google Places in
Fig. 5d, as we stated above, is a mapping service that can
provide details of a searched destination. The balancing
service Pinterest Domain in Fig. 5f offers functionalities of
both “Social” and “Photo.” In other words, we may build
the intended travel mashup with these two services, instead
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of four. On the one hand, comprising fewer services means
less cost when developing mashups and less potential risk
in operation and maintenance. On the other hand, the
knowledge map supplies a way for developers to bring out
the value of other services but not only the dominating ones.

As a conclusion, the visualization of a service ecosystem
based on accurate representations could help mashup de-
velopers fast locate relevant service and also be assistance
for developers to better-selecting services.

6 RELATED WORK

In this section, we will categorize representative related
works in two sections and differentiate them from our
approach accordingly.

6.1 Topic modeling and representation learning

In Web service field, building service representations is a
fundamental step for most automatic methods, including
service discovery and recommendation. Topic modeling has
become a popular approach for service representation learn-
ing since the Latent Dirichlet Allocation (LDA) method was
proposed in [20], which mines topic proportions from texts.
LDA assumes that each word in a document is indepen-
dently drawn from a multinomial distribution, depending
on to which topic that the word is assigned. Based on LDA,
a variety of topic models have emerged. Correlated Topic
Models [24], [25] extend LDA and model the relationship
between topics. It overcomes the limitation of LDA, which
assumes that all the topics are independent from each other.
Author-Topic Models (ATM) [11], [12] model authors and
documents at the same time. Dynamic Topic Models [26],
[27] capture the topic changing over time, thus can analyze
the evolution of unobserved topics for a collection of doc-
uments. However, how to determine the number of topics
remained a problem, so in [28] the Hierarchical Dirichlet
Processes (HDP) infer the number of topics directly from
the data. All such generative topic models benefit from the
explicit hypotheses on probability distributions, and can
provide interpretable results and require relatively less data
for training.

Besides topic modeling, there are some other methods
for representation learning, including Principal Compo-
nent Analysis (PCA) [29], Independence Component Anal-
ysis (ICA) [30], Singular Value Decomposition (SVD) [31],
as well as some nonlinear methods like Local Linear Trans-
formation Embedding (LLTE) [32] and Stacked Denoising
Autoencoders (SDAE) [33]. However, these methods, which
lack interpretability, cannot give as many intuitions as
generative topic models. SDAE also requires much more
training data.

Concerning building service representations in Web ser-
vice ecosystems, the relationship of mashup-service-word
are more complex and becomes the primary issue that we
consider in this paper. Zhong et al. [34] firstly proposed to
extract service description from mashup profiles. To make
better recommendations, they directly applied the ATM to
extract words describing services from mashup profiles, so-
called reconstructing service profiles. Due to ignoring the
original service profiles, they cannot reconstruct profiles for

never-used services. Different from them, we have designed
a tailored generative model, processing the profiles of both
mashups and services at the same time, also introduced a
global filter for background terms.

6.2 Visualization for Web service ecosystem

Although academia has conducted in-depth research on
service ecosystems, there is not much work on visualization.
Lu et al. [35] presented the global structure of a service
repository with parallel coordinates. Kumara et al. [36] used
the Spherical Associated Keyword Space (SAKS) algorithm
to visualize Web service clusters on a 2D spherical surface.
Olayinka at al. [37] constructed and visualized a Web service
network using the invocation records between mashups and
services. Some others [38], [39], [40] proposed visualization
tools or techniques to ease the process of service discovery
or making service compositions.

Different from above all, we have visualized a service
system considering both the functionality and invocation
relation, based on the service representations learned by
SR-LDA. We aim to help people navigate through a service
ecosystem, as well as to provide insights into the relation-
ships and functionalities of services.

Beyond the Web service field, knowledge visualization
remains an active topic for research. Shou et al. [41] used
a model-free method to analyze component stock corpo-
rations and generated knowledge maps of financial data.
Hao et al. [42] proposed a knowledge map-based method
to reduce information overload during browsing domain
knowledge for new knowledge users. A knowledge map for
question and answer archives was constructed by exploiting
question–answer pair characteristics [43]. Gao et al. [44]
presented how to build a large-scale, accurate and fresh
knowledge graph.

7 CONCLUSIONS

As service-oriented software engineering becoming main-
stream, more and more Web services are published into
the service ecosystem on a daily basis. It becomes increas-
ingly critical to help software developers understand the
functionalities of the massive amount of services and their
relationships in a service ecosystem. One core challenge is
how to generate up-to-date and accurate representations of
services.

Applying machine learning techniques, this paper
presents SR-LDA, a model that incorporates service users’
perceptions into service profiles to form more comprehen-
sive service representations on the fly. SR-LDA is further
equipped with a global filter that helps to filter out back-
ground terms automatically. Based on the generated high-
quality service representations, we present a knowledge
map for a service ecosystem, which helps to visualize ser-
vices and their functionality patterns in an intuitive manner.

In our future work, we plan to incorporate additional
information to further enhance service representations, such
as the comments on the Web services and temporal informa-
tion explicitly. In addition, we are interested in investigating
the evolution of a service ecosystem by rebuilding the
representations and visualization regularly. We also plan
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to explore the possible applications of the representations
learned by SR-LDA, such as service recommendation and
discovery.
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