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Abstract—Next location recommendation services play a pivotal
role in Location-Based Social Networks (LBSNs) due to their ability
to provide personalized recommendations of attractive destina-
tions, resulting in substantial benefits for both users and service
providers. Recent research indicates that these services are influ-
enced by both sequential and geographical factors. However, we
argue that most of these services fail to fully exploit the latent multi-
group knowledge of location semantics and user preferences, result-
ing in suboptimal performance. Therefore, we propose STMGCL,
a novel spatial-temporal multi-group contrastive learning-based
method to discover intrinsic multi-group information for improv-
ing next location recommendation services. Specifically, STMGCL
designs Spatial Group Contrastive Learning (SGCL) to extract
multiple group knowledge regarding location semantics. Addition-
ally, it develops Temporal Group Contrastive Learning (TGCL)
to explore multiple user preference group information through
a self-attention based encoder. Finally, we leverage a multi-task
learning strategy and a generalized Expectation Maximization
(EM) algorithm to ensure that STMGCL is optimized end-to-end
with guaranteed convergence. Extensive experiments conducted on
four real-world datasets demonstrate the superior performance of
STMGCL over baselines.

Index Terms—Next location recommendation, spatial-temporal,
contrastive learning, multi-group.

I. INTRODUCTION

LOCATION-BASED Services (LBSs) [1] have experienced
significant advancements in recent years, thanks to the

prevalence of GPS-enabled mobile devices. Service providers,
also known as Location-Based Social Networks (LBSNs) [2],
[3], such as Foursquare and Gowalla, offer users the ability to
record and share their experiences, tips, and moments at various
locations. Due to massive volumes of data being accumulated,
location recommendation services lie at the heart of LBSNs, as
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they have proven successful in alleviating information overload
by recommending attractive locations [4], such as restaurants,
museums, and shopping malls, to users [5], [6]. These services
not only facilitate users in better exploring their surroundings,
but also help businesses improve their advertising strategies [7],
[8], [9].

Next location recommendation services have emerged as a
natural extension of general location recommendation services,
gaining increasing momentum in both academia and industry in
recent years [2], [10]. These services aim to assist users in dis-
covering the most appropriate next destination by mining their
historical check-in sequences and geographical information of
locations [11], [12]. They have a wide range of applications,
including sightseeing tours, route planning, and location-based
advertising [13], [14]. Previous research has studied next lo-
cation recommendation services using classical methods that
explore the impact of users’ previous visit behaviors on their sub-
sequent decisions via Tensor Factorization (TF) [15] and Markov
Chain (MC) [16]. Nowadays, deep learning-based methods have
gained substantial traction in the research community. To model
the spatiotemporal transitions in a user’s check-in sequence
more accurately, Recurrent Neural Networks (RNNs) [17], [18]
and their variants, for example, Long Short-Term Memory
(LSTM) [5], [19], have become the leading solutions in this field.
Cutting-edge techniques leverage attention mechanisms to learn
from both successive and non-successive location transitions in
a user’s check-in sequence [20], [21]. This allows for the capture
of long-term dependencies and spatial-temporal correlations
among locations. More recently, graph-based methods have been
proposed that aim to enhance location representations by mod-
eling the complex transition relationships among locations [22].

Although existing methods have demonstrated promising per-
formance, we argue that the majority of these works overlook the
inherent multi-group knowledge of location semantics and user
preferences. Location semantics comprise not only geograph-
ical attributes but also functionality, which divides locations
into several groups. Fig. 1(a) illustrates a variety of locations
within a specific geographic grid, such as the basketball court,
canteen, and Internet café, that collectively constitute an en-
tertainment area. In addition, locations with similar functions
can form group associations. For example, the basketball court,
badminton court, table tennis room, and soccer field can be
clustered together as sports activity support facilities. Capturing
the knowledge of location semantics across multiple groups can
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Fig. 1. An example of the multi-group nature of location semantics and user preferences. In (a), the square areas demarcated by dashed lines represent groups
organized according to geographical grids, while the oval areas of various colors represent groups defined by different functionalities. In (b), dashed areas of various
colors containing user trajectories depict different groups based on user preferences. Cloud-like boxes indicate users’ current preferences, while the locations they
are likely to visit next are displayed on the right-hand side.

enhance location representation. Similarly, the user preferences
inferred from users’ historical check-ins over time exhibit a
phenomenon of multiple groups. Various user trajectories may
reflect different or comparable user preferences. Users in the
same preference group typically share common interests or pur-
poses, and therefore may prefer similar locations. As shown in
Fig. 1(b), the user in the blue dashed box intends to travel, while
the user in the yellow dashed box requires medical treatment.
Consequently, distinct recommendations will be generated for
each of them. Although the users in the green dashed box have
different trajectories, they are likely to share the same intention,
which is going out for a date or party. Therefore, recognizing
multiple user preference groups can enable the generation of
more plausible location recommendations for users.

Unfortunately, it can be a daunting challenge to acquire
latent multi-group knowledge and make it conducive to next
location recommendation services. First, most scenarios lack
multi-group labeled data for location semantics and user pref-
erences. Therefore, there is no panacea for straightforwardly
leveraging precise multi-group hints to enhance next location
recommendation services. Second, careful consideration must
be given to the subtle design of the model training process as
an end-to-end optimized process. This is due to the dilemma
that the accurate identification of multiple groups is contingent
upon well-trained representations of both locations and users,
while the high-quality representations must be learned based
on precise multi-group information of location semantics and
user preferences. Given the aforementioned facts, generating
more accurate and reasonable recommendations for a user’s next
location remains an arduous task.

To fill this gap, we propose a novel method for next location
recommendation services based on Spatial-Temporal Multi-
Group Contrastive Learning (STMGCL). It incorporates multi-
group information on location semantics and user preferences
to enhance the representations of both locations and users. We
utilize Geohash-5,1 which is a simple yet effective method for ex-
pressing geographical information in terms of grid regions [23].

1https://en.wikipedia.org/wiki/Geohash

The initial location representation is constructed by combining
its own representation with that of the region to which it belongs.
Since there are no supervision signals for the latent multi-group
characteristics, we draw inspiration from the contrastive Self-
Supervised Learning (SSL) paradigm and develop Spatial Group
Contrastive Learning (SGCL) and Temporal Group Contrastive
Learning (TGCL) separately to ensure that the representations
capture the inherent multi-group knowledge in spatial-temporal
data. To estimate user preferences, we employ three common
data augmentations (i.e., cropping, masking, and shuffling) to
adequately train the self-attention based encoder. To improve the
next location recommendation services, we employ a multi-task
learning strategy that combines the contrastive learning tasks
related to SGCL and TGCL with the primary task of predicting
the next location. To tackle the issue of end-to-end optimization,
we adopt a generalized Expectation Maximization (EM) algo-
rithm [24], which alternates between the multi-group inference
phase (E-step) and the multi-task learning phase (M-step) until
convergence.

The main contributions of our work can be summarized as
follows:
� We propose STMGCL, a novel multi-group contrastive

learning-based method for improving next location rec-
ommendation services. This method harnesses the latent
multi-group nature of location semantics and user prefer-
ences to benefit representation learning for both locations
and users.

� We develop two contrastive learning tasks to progressively
capture stable spatial-temporal multi-group knowledge. To
benefit the primary task of predicting the next location, we
employ a multi-task learning scheme and train them end-
to-end jointly with the help of a generalized EM algorithm.

� Extensive experiments show that STMGCL can consis-
tently outperform the baselines and achieve improvements
on benchmark datasets.

The remainder of this article is structured as follows. In
Section II, we formally define the notations and restate the
problem. Section III introduces our proposed STMGCL, while
Section IV reports on the details of the experiments and analyzes
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Fig. 2. An overview of STMGCL. STMGCL comprises two fundamental components, Location Representation learning and User Preference Modeling. First,
a location is represented by its own feature as well as the feature of the region to which it belongs. The multi-task consists of a SGCL task, a TGCL task, and a
primary next location prediction task. These tasks are respectively represented by red, green, and yellow arrows. * means that data augmentations are only utilized
in TGCL during the training phase of STMGCL. For the generalized EM algorithm, we define its E-step as multi-group inference and its M-step as multi-task
learning. Best viewed in color.

the experimental results. Section V reviews the related work, and
finally, Section VI concludes the article.

II. PRELIMINARIES

In this section, we present the definitions of notations, and
then formally introduce the problem.

A. Notation Definition

We use P to denote the set of locations and |P| to represent
the number of locations. We define p ∈ P as a location.

Definition 1. Spatial information: The spatial information
that is associated with a specific location p can be formally repre-
sented as a tuple Geop = (Latp, Lonp), where Latp and Lonp

respectively represent the latitude and longitude of location p.
Definition 2. Temporal information: We use the term Cn to

refer to a chronologically ordered sequence of check-ins over a
certain period, which represents the temporal information asso-
ciated with user n. Specifically, Cn = [p1n, p

2
n, . . ., p

t
n, . . ., p

|Cn|
n ],

where ptn denotes the location visited at time step t and |Cn|
represents the length of Cn.

Definition 3. Spatial group: We define a spatial group as a
collection of locations that exhibit similarities in terms of their
semantic properties. S represents the set of spatial groups exist
in P , and |S| is the number of spatial groups.

Definition 4. Temporal group: We refer to a temporal group
as a set of similar user preferences extrapolated from temporal
information. T represents the set of temporal groups, and |T | is
the number of temporal groups.

B. Problem Statement

Given both the spatial information GeoP and the temporal
information Cn, the problem is to recommend a location that
the user is most likely to visit next, which can be formulated

mathematically as follows:

argmax
pi
n∈P

P
(
p|Cn|+1
n = pin | Cn, GeoP

)
, (1)

which can be interpreted as calculating the probability of all
candidate locations and selecting the top one for next location
recommendation services.

III. METHODOLOGY

In this section, we present our proposed STMGCL for next
location recommendation services. It comprises two main mod-
ules, which are Location Representation Learning and User
Preference Modeling. An overall introduction to STMGCL is
shown in Fig. 2.

A. Location Representation Learning

In this section, we provide a detailed account of how to learn
location representations that integrate multi-group knowledge.
This process can be further subdivided into two key steps: Loca-
tion Representation Initialization and Spatial Group Contrastive
Learning.

1) Location Representation Initialization: To begin, we uti-
lize Geohash-5 to obtain the region-level IDs of all locations P
based on their spatial information.

RegP = Geohash−5 (GeoP) . (2)

Next, we set up a location embedding layer and a region em-
bedding layer to obtain representations for both the location and
its corresponding region. To incorporate geographic awareness
into the location representation, we merge these representations
by concatenating them together, as follows.

P = Embloc (P) ‖ Embreg (RegP) , (3)
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where Emb(·) represents the embedding layer. ‖ is the concate-
nation operation. P ∈ Rd×|P| and d denotes the dimensionality
of the representation.

2) Spatial Group Contrastive Learning: To investigate the
multi-group nature of location semantics, we turn to a spatial K-
means algorithm, which is a widely-used and effective clustering
method for identifying multiple spatial groups related to location
semantics.

The spatial multi-group inference is a crucial component of
the E-step in the generalized EM algorithm. To enable subse-
quent calculation of the spatial group contrastive loss, it must be
computed initially.

Gs = S−Kmeans (P) , (4)

where S−Kmeans(·) denotes the spatial K-means operation.
Gs ∈ Rd×|S| represents the centroid representations of multiple
spatial groups.

We devise SGCL with a spatial group contrastive loss Ls as
follows. This contrastive loss function is designed to maximize
the mutual information between a location and its correspond-
ing spatial group, while distinguishing it from other spatial
groups. The calculation of spatial group contrastive loss, which
corresponds to the contrastive learning task related to SGCL,
constitutes a part of the M-step in the generalized EM algorithm.

Ls = −
1

|M|
∑
m∈M

log
Exp

(
pm

Tgsm/φ
)∑

i∈SM Exp (pm
Tgsi/φ)

, (5)

whereM denotes a batch of locations with a size of |M|. Exp(·)
represents an exponential function. φ denotes the temperature
parameter in SGCL and SM ⊆ S .

Note that we do not apply data augmentations typically em-
ployed in contrastive learning at the level of location represen-
tation. We argue that random perturbations at the representation
level could significantly distort location semantics, potentially
rendering SGCL meaningless.

B. User Preference Modeling

In this section, we focus on estimating users’ preferences us-
ing temporal information with TGCL to enhance the accuracy of
next location prediction. This section consists of two main parts:
User Preference Estimation and Temporal Group Contrastive
Learning.

1) User Preference Estimation: First, to capture the position
information of locations in temporal information Cn, we add the
trainable position representationPCnpos

∈ Rd×T to the temporal
information representation PCn . They form a combined input
representation X.

X = PCn +PCnpos
. (6)

where T represents the maximum length of Cn that we set.
Then, the user preference can be estimated based on tempo-

ral information Cn. We employ a self-attention based encoder
SAEnc(·) as our primary technique, which operates in the fol-
lowing way.

Sn = SAEnc (X) , (7)

where Sn ∈ Rd×T consists of a bundle of embedding represen-
tations.

Specifically, to better understand complex transitions in tem-
poral information Cn, the self-attention based encoder SAEnc(·)
is made up of multiple stacked self-attention based encoder
blocks. A self-attention based encoder block SAB(·) is shown
below.

SAB (X) = LayerNorm (E+ Dropout (PFFN (E))) , (8)

E = LayerNorm (X+ Dropout (MHSA (X))) , (9)

where MHSA(·) denotes the multi-head self-attention mod-
ule. PFFN(·) represents the position-wise feed-forward net-
work module. LayerNorm(·) denotes layer normalization, and
Dropout(·) represents the dropout mechanism [25]. E ∈ Rd×T

is a representation matrix used as an intermediate calculation
result.

Regarding the multi-head self-attention module MHSA(·), we
provide a brief mathematical description as below.

MHSA (X) = WZ (head1 ‖ head2 ‖ . . . ‖ headz) ,

(10)

headi = Attention
(
WQ

i X,W
K
i X,WV

i X
)
,

(11)

Attention (Q,K,V) = VSoftmax

(
QTK√
d/z

)
, (12)

where z represents the number of heads. WZ , WQ
i , WK

i and
WV

i are trainable weight matrices. Softmax(·) denotes the soft-
max function. The factor

√
d/z aims to avoid large dot product

values for smooth training.
Besides, the position-wise feed-forward network module

PFFN(·) introduces nonlinearity to the self-attention based en-
coder block SAB(·) in the following way.

PFFN (E) = W2 (δ (W1E+ b1)) + b2, (13)

where δ(·) is a nonlinear activation function. W1, W2, b1 and
b2 are trainable parameters.

2) Temporal Group Contrastive Learning: To examine the
multi-group case of user preferences, we introduce TGCL as
follows. Initially, we utilize the MEAN operation to derive the
user preference representation cn of temporal information Cn
based on the output Sn of the self-attention based encoder.

cn = MEAN (Sn) . (14)

Analogous to SGCL, we proceed to extract multi-group in-
formation regarding user preferences using a temporal K-means
algorithm, as outlined below. Temporal multi-group inference
constitutes an integral component of the E-step in the general-
ized EM algorithm. It must be computed initially to facilitate
subsequent calculation of temporal group contrastive loss.

Gt = T−Kmeans (C) , (15)

where T−Kmeans(·) denotes the temporal K-means oper-
ation. Gt ∈ Rd×|T | represents the centroid representations of
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multiple temporal groups. C ∈ Rd×|U| and U indicates the set
of all temporal information.

Given a batch of temporal information N = {Cn}|N |n=1, we
obtain a temporal group contrastive loss that facilitates the explo-
ration of multiple temporal groups. The calculation of temporal
group contrastive loss, which corresponds to the contrastive
learning task related to TGCL, is a part of the M-step in the
generalized EM algorithm.

Lt (cn,gtn) = −
1

|N |
∑
n∈N

log
Exp

(
cn

Tgtn/ψ
)

∑
j∈TN Exp

(
cnTgtj/ψ

) ,
(16)

where ψ represents the temperature parameter in TGCL and
TN ⊆ T .

To fully leverage the available temporal information during
the training phase and obtain a well-trained model for sub-
sequent prediction work, we apply three common data aug-
mentations - Cropping, Masking, and Shuffling - to process
the temporal information. Cropping is to arbitrarily select a
continuous sub-sequence from the original temporal information
Cn with a proportion χc. Masking is to randomly mask certain
locations in the initial temporal information Cn with a proportion
χm. Shuffling means stochastically rearranging a consecutive
sub-sequence of temporal information Cn with a proportion χs.

Each temporal information in temporal information batch N
is processed by any two out of three data augmentations, e.g.,
τ1(·) and τ2(·), for obtaining {Ĉ11 , Ĉ21 , . . ., Ĉ1|N |, Ĉ2|N |}. Thus, the
final temporal group contrastive loss Lt of TGCL is presented
below.

Lt =
1

2
·
(
Lt

(
ĉ1n,gtn

)
+ Lt

(
ĉ2n,gtn

))
, (17)

where Ĉ1n ∼ τ1n(Cn) and Ĉ2n ∼ τ2n(Cn).

C. Multi-Task Learning

Following common practice, we formulate the training objec-
tiveLr for the primary task of predicting the next location using
a log-likelihood loss function, which is defined as follows.

Lr =

− 1

|N |
∑
n∈N

[
log
(
σ
(
st
�

n pt+1
n

))
+log

(
1− σ

(
st
�

n pt+1
−

))]
,

(18)

where σ(·) is the sigmoid function. stn denotes the location
predicted by STMGCL for time step t+1. pt+1

n is the ground
truth (i.e., the true location) at time step t+1. pt+1

− represents a
randomly sampled negative location at time step t+1, which can
be any location not in temporal information Cn.

After establishing SGCL, TGCL, and the primary prediction
task, we proceed to deploy a multi-task learning strategy that fa-
cilitates predicting the next location of STMGCL by optimizing
these tasks jointly. Note that multi-task learning is the M-step in
the generalized EM algorithm.

L = Lr + αLs + βLt, (19)

Algorithm 1: Training Pipeline of STMGCL.
Input: Spatial information (GeoP ), temporal information

({Cn}|U|n=1), batch size (|M| and |N |), the number of
spatial groups (|S|), the number of temporal groups (|T |),
temperature parameters (φ and ψ), the proportions of data
augmentations (χc, χm and χs), the strength of SGCL
(α), the strength of TGCL (β), and trainable parameters
W and b.

Output: Model parameters Θ.
1: RegP ← Geohash− 5(GeoP)
2: P← Embloc(P) ‖ Embreg(RegP)
3: while Not convergence do
4: % E-Step: Multi-group Inference
5: Gs ← S−Kmeans(P) with |S|;
6: Gt ← T−Kmeans(C) with |T |;
7: % M-Step: Multi-task Learning
8: forM from P do
9: Calculate Ls with Gs and φ;

10: end for
11: for {Cn}|N |n=1 from {Cn}|U|n=1 do
12: Calculate Lt with Gt, ψ, χc, χm, χs, W and b;
13: Calculate Lr with W and b;
14: end for
15: L ← Lr + αLs + βLt;
16: Update Θ to minimize L;
17: end while
18: Return Θ

where α and β are different hyperparameters that control the
strength of SGCL and TGCL.

D. Discussion

To enhance comprehension, we present Algorithm 1 which
summarizes the general training pipeline of STMGCL.

1) EM Algorithm: Algorithm 1 can help us provide a detailed
analysis regarding the role of the generalized EM algorithm
in achieving end-to-end optimization of STMGCL. If there is
labeled data on multi-group knowledge, we can use supervised
learning to obtain well-trained user and location representations
that contain multi-group information intuitively. Then, we can
fine-tune them with an encoder to better suit the downstream
task of recommending the next location. However, as mentioned
in Section I, multi-group knowledge is latent in both location
semantics and user preferences in most scenarios. The lack of
observable labeled data for multi-group knowledge hinders us
from learning high-quality and comprehensive representations
straightforwardly. Moreover, accurate multi-group information
in location semantics and user preferences cannot be derived
without well-trained representations.

Nevertheless, the generalized EM algorithm offers a solution
to this predicament, with a guarantee of convergence [26].
STMGCL regards multi-group inference as the E-step and multi-
task learning as the M-step. In each iteration of the training
phase, STMGCL first executes the E-step to perceive the situa-
tion of multiple groups with respect to location semantics and
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user preferences. Based on the preliminary knowledge acquired,
STMGCL calculates the total loss, including multiple tasks,
in the M-step. Finally, the trainable parameters of STMGCL
are updated in order to minimize the total loss. Therefore, by
distinguishing between the E-step and the M-step and alternating
between them, STMGCL smoothly completes the end-to-end
training process until convergence. With the assistance of the
generalized EM algorithm, STMGCL can effectively capture
latent multi-group knowledge and apply it to next location
prediction.

2) Multi-Task Learning Strategy: As elucidated in Section
III-C, we adopt a multi-task learning strategy that integrates the
contrastive learning tasks related to SGCL and TGCL with the
primary next location prediction task to accomplish the ultimate
objective optimization. In contrastive SSL-based methods, it is
customary to optimize the contrastive SSL task in conjunction
with and for the benefit of the primary prediction task [27], [59].
The utilization of the multi-task learning strategy in STMGCL
facilitates the prediction of the next location while progressively
identifying multiple groups based on location semantics and
user preferences. Note that capturing multi-group knowledge is
a gradual process, which is also influenced by the step-by-step
optimization of the primary next location prediction task.

3) Computational Complexity: According to Algorithm 1,
for the training phase of STMGCL, the computation costs pri-
marily stem from two steps, the E-step (multi-group inference)
and the M-step (multi-task learning). It can be roughly estimated
as O(|P||S|d+ |U||T |d+ |U|T 2d+ |U|Td2). In the E-step,
the time complexity primarily arises from identifying multiple
spatial-temporal groups, which is aboutO(|P||S|d+ |U||T |d).
Regarding the M-step, the main computational cost arises from
the operation of the self-attention based encoder SAEnc(·),
which is approximately O(|U|T 2d+ |U|Td2) due to the multi-
head self-attention module and the position-wise feed-forward
network module. It is readily apparent that the time complexity
of the M-step is dominated by O(|U|T 2d). Please note that
after the training phase, we have already obtained a proficiently
trained encoder through SGCL, TGCL and data augmentation.
During the test phase, there is no need to use the proposed SGCL,
TGCL, and data augmentation. We only utilize the well-trained
encoder to generate predictions. Therefore, in practice, the com-
putational cost of STMGCL during the test phase is slightly
higher than that of SASRec [28] mainly due to the additional
use of Geohash-5.

IV. EXPERIMENTS

We conduct extensive experiments to evaluate the effective-
ness of STMGCL. In this section, we introduce our experimental
settings and analyze our experimental results in detail.

A. Datasets and Metrics

We conduct experiments on four real-world datasets collected
from two well-known LBSNs, Foursquare2 and Gowalla,3 which

2https://foursquare.com/
3https://www.gowalla.com/

TABLE I
STATISTICS OF DATASETS

are abbreviated as US, JP, CA and TX. US and JP include
check-in data recorded by Foursquare in the United States of
America and Japan. CA and TX contain the check-in data
collected by Gowalla within California and Texas regions of the
United States of America. Table I summarizes the statistics of the
datasets. The data density (i.e., Density) means the ratio of the
locations exposed to the users, i.e., the proportion of observed
values in the user-location matrix [29]. To avoid the location
cold start problem, we remove unpopular locations with less than
five check-ins. We partition each user’s entire check-in sequence
into multiple sub-sequences with a time interval of six hours. In
the following experiments, we treat each sub-sequence as an
individual check-in sequence.

Density =
#Check-in

#User×#Location
× 100% (20)

We adopt two prevalent top-K metrics, Normalized Dis-
counted Cumulative Gain (NDCG) and Recall rate (Recall),
which are widely applied in recommendation systems, to evalu-
ate performance. NDCG is a measure that considers the position
of the hit by assigning greater scores to hits that appear at higher
ranks within the top-K recommendations. Recall is a measure
for computing the fraction of relevant items out of all relevant
items. In our experiments, we present the results using these two
metrics at K = 10 and 20.

B. Baselines

We compare STMGCL with eight representative baselines,
which are described as follows.
� POP: It recommends the most popular items based on their

frequency of occurrence.
� SASRec [28]: It is a sequential recommendation model

based on the self-attention mechanism without any recur-
rent or convolution operations.

� STGN [18]: It extends LSTM with time and distance
gates to integrate spatial and temporal intervals between
successive check-ins.

� HGN [30]: It leverages a hierarchical gating network with
an item-item product module for sequential recommenda-
tions.

� GeoSAN [20]: A self-attention based model incorporates
geographical information through grid mapping and intro-
duces geographic modeling.

� SINE [31]: It activates multiple intentions from a large pool
of concepts to generate multiple user interest representa-
tions for sequential recommendations.
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� STAN [21]: It utilizes self-attention layers to explicitly ex-
ploit relative spatial-temporal information of all check-ins
along the trajectory.

� SGRec [22]: It captures collaborative signals among lo-
cations and sets an auxiliary prediction task to enhance
recommendation performance.

C. Settings

Taking guidance from [21], [23], [28], [32], [33], [58] and for
a fair comparison, we set the maximum length T of temporal
information Cn to 100. This means that if the length of temporal
informationCn is greater than 100, we will intercept the 100 most
recent check-ins as the new check-in sequence. If the length of
temporal information Cn is less than 100, we will pad it with
zeros on the left side to reach the maximum length T . The
dimensionality of the region representation in STMGCL is 8
(included in d). For the self-attention based encoder SAEnc(·),
we set the number of self-attention based encoder blocks to 2 and
the number of attention heads z to 2. We choose the temperature
parameters φ and ψ to be 1. For data augmentations, χc, χm and
χs are set to 0.8, 0.2 and 0.2, respectively. For the number of
spatial-temporal groups, we investigate |S| and |T |within {256,
512, 1024, 2048, 4096}, respectively. For the strength of STGL
and TGCL, α and β are considered from {0.01, 0.05, 0.1, 0.2,
0.4, 0.8}. We examine the dimensionality of the representation
d from {16, 32, 64, 128, 256}.

Regarding the baselines, we meticulously reproduce them
based on their original papers and set their specific hyperpa-
rameters according to the reported optimal ones. Subsequently,
we fine-tune them to run successfully and achieve optimal
performance. We employ a similar approach in [34] to train
and test STAN due to its extremely high memory usage. For a
fair comparison, we exclude the utilization of location category
information in SGRec since other methods do not utilize it [33].
For STMGCL, we optimize all trainable parameters Θ by an
AdamW optimizer [35] with a learning rate of 0.001, a batch
size (|M| and |N |) of 512, and a dropout ratio of 0.5. We choose
the Gaussian Error Linear Unit (GELU) [36] as the nonlinear
activation function δ(·). For each temporal information Cn that
has |Cn| check-ins, we divide it into training, validation, and
test parts. We utilize a leave-one-out method, meaning we use
the first [1, |Cn| - 2] check-ins as the training part. For the
validation part, we use the first [1, |Cn| - 2] check-ins as the
input and the penultimate check-in in Cn as the label. For
the test part, we take the first [1, |Cn| - 1] check-ins as the
input and the last check-in in Cn as the label. For the eval-
uation phase, we rank the results on all locations P without
negative sampling, which otherwise leads to biased discov-
eries [37]. We utilize an early stopping strategy [38], which
means we stop the training process if there is no improvement
in NDCG@10 on the validation set for 50 consecutive epochs,
and we record the results from testing on the test set. For all
methods, we execute them seven times with various random
seeds and take the average values as the ultimate experimental
outcomes.

D. Performance Comparison

In this section, we report the performance of all the methods.
The results of the performance comparison are presented in
Table II. Based on these results, the following observations can
be made.
� Our proposed approach, STMGCL, consistently outper-

forms all baseline methods, attributed to the developed
spatial-temporal multi-group contrastive learning. Specif-
ically, STMGCL demonstrates an improvement over the
strongest baseline in terms of NDCG@10 by 9.50%,
8.16%, 7.34%, and 4.61%; Recall@10 by 7.03%, 4.04%,
6.10%, and 6.77% on US, JP, CA, and TX respectively.
These results provide empirical evidence for the efficacy
of STMGCL in capturing multi-group knowledge related to
location semantics and user preferences, thereby enhancing
the learning of user and location representations.

� Deep learning-based approaches exhibit superior perfor-
mance compared to the classical approach, POP. This
suggests that deep learning has a significant advantage in
accurately learning representations and enhancing down-
stream tasks.

� In most cases, self-attention based methods outperform
other methods. This could be attributed to the self-attention
mechanism’s ability to capture intra-dependencies in tem-
poral information in a more differentiated manner. The
graph-based approach improves performance on CA and
TX by modeling complex transition relationships with
collaborative signals.

� Despite all of them being based on the self-attention
mechanism, GeoSAN and STAN consistently outperform
SASRec. This outcome provides clear evidence that the
incorporation of spatial information can enhance recom-
mendation performance. This finding aligns well with the
fact that a user’s mobility is typically confined to a certain
geographic area over a period of time, and their subsequent
movements are often closely related to that region.

E. Ablation Study

To verify the effectiveness of each main component in
STMGCL, including SGCL, TGCL, and data augmentations
(D.A.), we conduct an ablation study on four datasets US, JP, CA,
and TX. Specifically, we compare the performance of STMGCL
with its three variants and present the results for NDCG@20 and
Recall@20 in Fig. 3. The three variants are as follows. Here, w/o
is an abbreviation for without.
� w/o SGCL: This variant removes the spatial group con-

trastive learning module (SGCL) from STMGCL, which
means that knowledge about multiple spatial groups is not
considered.

� w/o TGCL: This variant removes the temporal group
contrastive learning module (TGCL) from STMGCL,
resulting in the failure to extract useful signals from mul-
tiple temporal groups based on temporal information.

� w/o D.A.: This variant removes the data augmentations
from the temporal group contrastive learning module
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TABLE II
PERFORMANCE COMPARISON OF DIFFERENT METHODS

Fig. 3. Ablation study on the main components of STMGCL.

Fig. 4. Sensitivity analysis on the number of spatial groups.

(TGCL), indicating that no data augmentation operations
are applied to temporal information during training.

By examining Fig. 3, we have made the following findings.
� Removing SGCL results in a decrease in the recommen-

dation performance of STMGCL, which indicates that
capturing the knowledge of multiple spatial groups helps
refine location representations and improve next location
recommendation services.

� The failure of TGCL results in a noticeable degradation of
STMGCL performance, and the fine-grained utilization of
temporal information is critical for next location recom-
mendation services.

� Eliminating data augmentations leads to a decrease in the
performance of STMGCL. Data augmentations help to
fully utilize temporal information during training, enabling
more effective training of the self-attention based encoder.

F. Sensitivity Analysis

In this section, we present some sensitivity analyses of the
main hyperparameters in STMGCL. These include the number
of spatial groups (|S|), the number of temporal groups (|T |), the
strength of SGCL and TGCL (α and β), and the dimensionality
of the representation (d).

1) The Number of Spatial Groups: As outlined in the set-
tings, we investigate the impact of the number of spatial groups
|S| by varying it from {256, 512, 1024, 2048, 4096} on US,
JP, CA, and TX. To provide better visualization, we present the
results in terms of NDCG@20 and Recall@20 in Fig. 4.

As shown in Fig. 4, we observe that STMGCL outperforms
the baseline methods with different numbers of spatial groups.
Furthermore, we find that the best results are obtained when
the number of spatial groups |S| is about 1024 on US and
JP, 2048 on CA and TX. This is because a smaller number of
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Fig. 5. Sensitivity analysis on the number of temporal groups.

Fig. 6. Sensitivity analysis on the strength of SGCL and TGCL.

spatial groups |S| can introduce noise, which causes locations
with dissimilar semantics to be placed in the same group and
impedes accurate learning of location representations. Yet, if
the number of spatial groups |S| is excessively large, locations
with similar semantics may be separated into different spatial
groups, resulting in distinct location representations guided by
the SGCL task.

2) The Number of Temporal Groups: As mentioned earlier,
we adjust the number of temporal groups |T | from {256,
512, 1024, 2048, 4096} on US, JP, CA, and TX. To improve
visualization, we present the results in terms of NDCG@20 and
Recall@20 in Fig. 5.

As shown in Fig. 5, STMGCL outperforms the baseline
methods with different numbers of temporal groups, which is
consistent with the previous section. The most satisfactory
results are obtained when the number of temporal groups
|T | is around 512 on US and JP, and 1024 on CA and
TX. We again confirm our finding that a smaller number
of temporal groups |T | tends to cluster dissimilar user pref-
erences together, thereby hindering the accurate analysis of
user preference types and leading to unsatisfactory location
recommendations. Meanwhile, a larger number of tempo-
ral groups |T | results in higher computational costs and a
greater likelihood of STMGCL misclassifying similar user pref-
erences as different types, which can negatively impact recom-
mendation performance.

3) The Strength of SGCL and TGCL: We survey the strength
of SGCL and TGCL α and β from {0.01, 0.05, 0.1, 0.2, 0.4,
0.8} on the four datasets US, JP, CA, and TX. The results on
NDCG@20 are reported in Fig. 6.

From Fig. 6, we conclude that SGCL and TGCL are better
suited for overall training objectives when their strengths are
set to smaller values, specifically around 0.1. The rationale for
this choice stems from the primary goal of STMGCL, which is
to provide recommendations for user locations. In this context,

Fig. 7. Sensitivity analysis on the dimensionality of the representation.

the contrastive learning tasks related to SGCL and TGCL serve
as auxiliary tasks that enhance the quality of next location rec-
ommendation services. It is also consistent with the fundamen-
tal principle of the instance discrimination task in contrastive
learning. Furthermore, we observe that changes in the strength
of TGCL β result in greater performance fluctuations compared
to those of SGCL α. This indicates that β has a more significant
impact on STMGCL.

4) The Dimensionality of the Representation: As we stated
before, we have fine-tuned the hyperparameters in baselines,
including the dimensionality of the representation d. To further
explore and clarify the impact of the dimensionality of the
representation d, we vary it within {16, 32, 64, 128, 256}. We
report the results on CA and TX in terms of Recall@20 in Fig. 7
to facilitate observation. Note that POP does not depend on the
dimensionality of the representation, so its corresponding results
are not reported here.

As shown in Fig. 7, SASRec, HGN, GeoSAN, STAN, and
STMGCL perform optimally on CA and TX when d is equal
to 64. STGN, SINE, and SGRec deliver satisfactory results on
CA and TX when d is 128. We observe that different values
of d have some impact on the performance of these methods
across various datasets, highlighting the importance of carefully
examining the dimensionality of the representation d.
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V. RELATED WORK

Our work mainly touches on three research areas: next
location recommendation, sequential recommendation, and
contrastive learning for recommendation. In this section, we
review notable works in these domains and differentiate our
work from them.

A. Next Location Recommendation

Next location recommendation has been an important topic
in LBSNs, which aims to suggest the next possible location
for users based on their historical check-ins and geographical
information of locations. For the early classical works, FPMC-
LR [16] is proposed to learn a personalized MC for each user by
extending FPMC [39]. PRME-G [40] models locations and users
in a sequential transition space and a user preference space, re-
spectively. NEXT [41] incorporates a comprehensive framework
that encompasses multiple contextual factors, including tempo-
ral and geographical influences, sequential relations, and auxil-
iary information. Currently, the majority of location recommen-
dation services are mainly based on RNNs, self-attention mech-
anisms, and graphs. STRNN [17] models local spatial-temporal
contexts with different transition matrices. ATST-LSTM [5] de-
signs an attention-based spatial-temporal LSTM to better model
spatial and temporal contexts. DeepMove [42] combines an
attention layer with Gated Recurrent Units (GRU) to learn long-
term periodicity and short-term sequential patterns. STGN [18]
enhances LSTM by incorporating spatial and temporal gates.
LSTPM [43] devises a context-aware non-local network and
a geo-dilated LSTM to model both long-term and short-term
preferences. GeoSAN [20] incorporates geographical informa-
tion into a self-attention based method. STAN [21] extracts
relative spatiotemporal information between consecutive and
non-consecutive locations through the attention layer. GPR [44]
considers ingoing and outgoing influences while discovering
highly non-linear geographical influences from complex user-
location networks. SGRec [22] captures collaborative signals
among locations and incorporates location category information
into an auxiliary prediction task. Despite notable progress, we
assert that current methods are significantly restricted by their
limited utilization of the latent multi-group nature of location
semantics and user preference. This constraint hinders their
ability to learn high-quality user and location representations,
ultimately resulting in suboptimal performance.

B. Sequential Recommendation

Recent methods for sequential recommendation can be
broadly categorized into two schools of models: Markov
Chain-based models and deep learning-based models. Markov
Chain-based models use transition matrices to predict the prob-
ability of future behaviors. For instance, FPMC [39] combines
the normal matrix factorization model with a common Markov
Chain. Fossil [45] fuses similarity-based models with Markov
Chains to personalize sequential behavior. With the emergence

of deep learning, an increasing number of sequential recommen-
dation models based on deep learning paradigms have been pro-
posed to overcome the limitations of previous models. Caser [46]
proposes to learn sequential patterns by using convolutional
filters that can capture essential features. GRU4Rec [47] utilizes
a model based on RNNs for sequential recommendation at the
session level. HGN [30] develops a hierarchical gating network
that uses Bayesian Personalized Ranking to capture both the
long-term and short-term interests of users. SASRec [28] is a
self-attention based model that can capture long-term semantics
and make predictions based on relative actions. BERT4Rec [48]
utilizes a sophisticated bi-directional self-attention mechanism
to effectively model user behavior sequences. FMLP-Rec [49]
is an all multi-layer perception-based model equipped with
trainable filters, which offers lower time complexity. In contrast
to conventional sequential recommendation approaches that
mainly focus on exploiting temporal data, our work sufficiently
exploits both spatial data and temporal data by discovering
intrinsic multi-group knowledge of location semantics and user
preferences. And it achieves satisfactory performance in the field
of next location recommendation services.

C. Contrastive Learning for Recommendation

Through further research on contrastive learning, methods
based on the contrastive learning paradigm have become a
key component in SSL-based recommendation systems [50].
Consistent with the original ideology of contrastive learning,
these methods aim to bring the views of the same instance
closer while pushing those of different instances further apart.
In terms of contrastive learning for recommendation systems,
CLCRec [51] solves the cold-start problem through contrastive
learning, which maximizes the mutual dependencies between
item content and collaborative signals. HCCF [52] proposes
a hypergraph structure learning module and a cross-view hy-
pergraph contrastive encoding schema. SimGCL [53] intro-
duces directed random noises to the representation and regu-
lates the uniformity of the representation distribution. In the
context of time-aware recommendation, S3-Rec [54] proposes
a self-supervised contrastive learning model for sequential rec-
ommendation by mining data correlations using the principle
of mutual information maximization. CLEA [55] utilizes con-
trastive learning to extract items relevant to the target item
for next basket recommendation. ACVAE [56] integrates con-
trastive learning into the variational autoencoder for analyzing
sequential data. CL4SRec [32] utilizes self-supervised signals
obtained solely from raw data to enhance recommendation
models. DuoRec [57] incorporates a contrastive regularization
technique with both model-level augmentation and supervised
positive sampling to construct contrastive samples. Despite the
promising results yielded by the contrastive SSL paradigm,
its application in the context of next location recommendation
services has received relatively little attention. Therefore, our
work has the potential to inspire the integration of contrastive
SSL techniques into the field of next location recommendation
services.
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VI. CONCLUSION

To gain a better understanding of users’ dynamic preferences,
next location recommendation services make suggestions to
users based on their check-in records and geographical informa-
tion of locations. However, we contend that two crucial multi-
group characteristics about location semantics and user pref-
erences, have not been sufficiently leveraged for next location
recommendation services. In this article, we present STMGCL,
a novel next location recommendation approach based on our
crafted spatial group contrastive learning and temporal group
contrastive learning. STMGCL mines latent multi-group knowl-
edge of location semantics and user preferences to enhance
next location recommendation services, without requiring re-
lated or accurate supervision data. The compelling results of
extensive experiments unambiguously establish the superiority
of STMGCL and verify the benefits of its different components.
To advance next location recommendation services, we will
strive to incorporate more side information, such as user social
information and location category information. Another future
endeavor is to enhance STMGCL so that it can generalize to
the task of recommending a list of consecutive locations that
users are likely to visit in the next period. Additionally, we
will consider handling the situation where a location or a user
may belong to multiple location semantics groups or multiple
user preference groups simultaneously through efficient spatial-
temporal clustering methods.
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