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Services Invocation
Haozhe Lin, Yushun Fan, Jia Zhang, Senior Member, IEEE, Bing Bai

Abstract—Driven by the widespread application of Service-Oriented Architecture (SOA), an increasing number of services and
mashups have been developed and published onto the Internet in the past decades. With the number keeping on burgeoning,
predicting the tendency of services invocation will provide various roles in service ecosystems with promising opportunities. However,
services invocation bear three unique characteristics, which give rise to difficulties in predicting them. Firstly, enormous services show
different and complicated traits, like periodicity, nonlinearity and nonstationarity. Secondly, services providing similar or compensatory
functions make up intricate relationship. Thirdly, the combination dependencies between mashups and their comprising component
services further amplify the difficulty. Given these factors, we have developed a tailored model Multi-Step Piecewise Recurrent Neural
Network (MSP-RNN) to predict the tendency of services invocation. In MSP-RNN, Long Short Term Memory (LSTM) units are used to
extract universal features. Based on these features, we have developed a piecewise regressive mechanism to make prediction
discriminatingly. Besides, we have developed a multi-step prediction strategy to further enhance prediction accuracy and robustness.
Extensive experiments in real-world data set with interpretable analysis show that MSP-RNN predicts the tendency of services
invocation more accurately, i.e., by 3.7% in terms of symmetric mean absolute percentage error (SMAPE), than state-of-the-art
baseline methods.

Index Terms—Service Discovery, Tendency of Services Invocation, Deep Learning, Time Series Prediction.
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1 INTRODUCTION

W ITH the wide application of Service-Oriented Archi-
tecture (SOA) and Cloud Computing [1], a burgeon-

ing number of services have been developed and published
into service ecosystems (e.g., ProgrammableWeb.com1) in the
past decades. Based on the enormous available services, i.e.,
APIs, software developers have been leveraging them as
reusable components to create value-added new products,
i.e., service compositions or mashups [2], to meet various user
requirements. Such a service-oriented software engineering
methodology has changed the business mode and in turn
made service ecosystems progressively prosperous [3]. Un-
der this context, predicting the tendency of services invoca-
tion, i.e., the number of services invocation at a given future time
period, is becoming increasingly important. Such a predic-
tion may benefit service providers, service users, as well as
system administrators. For example, service providers can
exploit the foreseen traffic to dynamically adjust their com-
putational resources rather than applying a static strategy,
so that they can operate their services in a more economic
way. For service users, accurate prediction will allow them
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to choose the optimal services that better satisfy their re-
quirements [4]. Meanwhile, system administrators can also
utilize the prediction to alert service developers or provide
suggestions in advance [5].

Regarding services invocation tendency prediction, one
may associate with time series forecasting technique, like
weather forecast. However, predicting the tendency of ser-
vices invocation bears three unique features to which have
to be paid special attention. (i) Complicated Traits. In a
service ecosystem, each service shows complicated traits in
periodicity, nonlinearity and nonstationarity. Moreover, the
attributes of these enormous services even differ from each
other. Take the service World Cup in JSON as an example.
For it provides users with up-to-date information about
World Cup progress, it tends to be intensively invoked while
the World Cup is being held. Thus it shows a four-year
periodicity without distinct patterns in other days, which
is apparently different from many traits of other services.
(ii) Intricate Relationship. In our previous work [6], we
have found that there exists intricate relationship among
services due to their similar or compensatory functions, and
we believe that such a relationship is useful for predicting
the tendency of services invocation. For example, Last.fm
and Spotify are two services both supplying streaming media
service. Therefore, when a famous singer releases a new
album, we would be more confident that Spotify would
witness a high invocation, if a prominent invocation ten-
dency of Last.fm could be observed. (iii) Combination De-
pendency. Since mashups are developed based on existing
services, the invocation times of one service will not only be
ascribed to itself, but also result from its related mashups.
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In other words, once a mashup is invoked, all component
services will be invoked at the same time, even though
they are not similar in their functions or descriptions at
all. For instance, Foodsta is a mashup with Instagram and
Google Maps as its component services. When Foodsta is
invoked, both Instagram and Google Maps will be invoked
as well. Consequently, these intractable facts remarkably
discriminate the service invocation prediction problem from
other time-series prediction problems.

Given these unique features, no existing time series
predicting methods could fully address the problem con-
cerning services invocation prediction. Traditional univari-
ate methods, such as Autoregressive Integrated Moving
Average model (ARIMA) [7] and Support Vector Regres-
sion (SVR) [8], focus on predicting an individual time se-
ries. For such methods, the tendency of one time series
will be predicted based on its past observation, which
can be regarded as targeted prediction or discriminating
prediction. Apparently, such methods can only focus on
intrinsic traits of one sequence, but waste the potential of the
intricate relationship among sequences. In recent years, with
in-depth research about deep learning, Recurrent Neural
Networks (RNN) [9] have become auspicious approaches
to predicting time series. For this model, sequences will be
treated as a whole and universal changing patterns among
sequences will be learned. However, comparing to univari-
ate time series prediction models, RNN making prediction
generally impairs the pertinence of prediction, and thus
shows a limitation.

Intuitively, taking into consideration of both general-
ity and pertinence of prediction may be helpful to pre-
dict the tendency of services invocation more accurately.
In this context, we have developed a novel deep neural
network, named Multi-Step Piecewise Recurrent Neural
Network (MSP-RNN), for predicting the tendency of ser-
vices invocation. As for the model structure, MSP-RNN
first leverages the Long Short Term Memory (LSTM) [10]
to capture general traits of service invocation sequences,
such as periodicity, nonlinearity and long-term dependen-
cies. Afterwards, MSP-RNN develops a piecewise regres-
sive mechanism to stimulate the pertinence of prediction.
Through the piecewise regressive mechanism, on the one
hand, MSP-RNN clusters service invocation sequences into
a collection of categories; and on the other hand, MSP-
RNN trains parallel fully connected layers for different
categories to regress corresponding intermediate results.
During training process, MSP-RNN will continuously ad-
just the cluster mode and regression way until the opti-
mal equilibrium is achieved. As a result, the tendency of
services invocation will be predicted discriminatingly. As
for parameters learning, we have designed a subtle loss
function with several regularization techniques to ensure
the efficacy of the piecewise regressive mechanism. We have
also developed a multi-step prediction strategy to further
enhance the prediction accuracy, as well as to improve the
robustness of our model. Such a strategy enables our MSP-
RNN to predict more accurately than baseline methods in a
longer time range. To our best knowledge, this work is the
first effort to apply deep learning techniques to predict the
tendency of service invocation, considering both generality
and pertinence.

To test and verify the performance of our MSP-RNN
against its main opponents, we designed and conducted
a collection of experiments on real-world data set. The
experimental results indicate that MSP-RNN remarkably
outperforms baseline models. By visualizing the inner parts
of MSP-RNN, it can be proved that the improvements of
prediction accuracy brought by MSP-RNN are interpretable.

By incorporating the aforementioned points, the main
contributions of this work are summarized as follows:

• We have proposed a piecewise regressive mecha-
nism. Integrating with LSTM, our model can predict
the tendency of services invocation, by taking into
consideration of both generality and pertinence.

• We have developed a multi-step prediction strategy.
Through this strategy, prediction accuracy could be
further enhanced, and the robustness of MSP-RNN
could also be increased.

• We designed and conducted a collection of experi-
ments on real-world data set, which show that MSP-
RNN outperforms baseline methods in terms of pre-
diction accuracy, especially when prediction periods
are longer.

The rest of the paper is organized as follows. Section 2
restates our problem mathematically. Section 3 describes the
framework of our MSP-RNN model. Section 4 introduces
the details of parameter learning. Section 5 reports the ex-
perimental settings, results and analysis. Section 6 discusses
the related work. Finally, Section 7 draws conclusions.

2 NOTATIONS AND PROBLEM DEFINITION

In this section, we will first introduce notations, and then
formulate the problem mathematically.
Definition 1 (Service invocation records). Given one service,

its invocation records refer to its invocation times in the
past p days. We denote by a time series xi the service
invocation records, where xi can be broken down to
xi = {xi,0, xi,1, . . . , xi,p} for service i in the past p days.
More specifically, xi,t (t ∈ [0, p]) represents the number
of invocation times for service i in the the past t-th day.
In this paper, we regard the number of services n in a
service ecosystem significant, 20,000 at least.
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Fig. 1: Predicting the tendency of services invocation. The
aim is to fill out the missing values in this table as tendency
of services invocation (i.e., values after the red dashed line) for n
services in a service ecosystem, based on service invocation
records we have already known in the past p days.

Definition 2 (Tendency of service invocation). The ten-
dency of one service invocation refers to the invocation
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Fig. 2: Network structure of MSP-RNN. Being a layered structure, MSP-RNN takes a batch of service invocation records
x as inputs, which are shown in the blue dashed rectangle. These records will be utilized in two different ways, one
being information source of an LSTM-based feature extraction module, the other providing autocorrelation coefficients
for a piecewise regressive mechanism. At the lower layer, MSP-RNN applies LSTM units to extract general features of
sequences, and to represent them as hidden states h in every time step. At the upper layer, in the yellow dashed rectangle,
MSP-RNN develops a piecewise regressive mechanism to predict the tendency of service invocation ŷt discriminatingly,
where several FCs refer to fully connected layers. During training, MSP-RNN applies a multi-step prediction strategy to
forecast invocation tendency in the subsequent several steps, and uses such results to update model parameters. During
forecasting, MSP-RNN treats its previous prediction values as the inputs of the following steps to predict the tendency of
services invocation.

times of the service in the next q days. We denote by
ŷi = {ŷi,p+1, ŷi,p+2, . . . , ŷi,p+q} the tendency of ser-
vice invocation for service i in the next q days, where
ŷi,t (t ∈ (p, p + q]) represents the predicted value of
invocation times for service i in the next t-th day.

Based on the formal definitions, Fig. 1 illustrates prob-
lem 1 definition vividly.

Problem 1 (Predicting the tendency of services invoca-
tion). Given n services in a service ecosystem, we de-
fine the problem as predicting the tendency of services
invocation for all n services in the next q days (i.e.,
ŷi = {ŷi,p+1, ŷi,p+2, . . . , ŷi,p+q} for all i), by making use
of the services invocation records made known in the
past p days (i.e., xi = {xi,0, xi,1, . . . , xi,p} for all i).

3 MODEL FRAMEWORK

In this section, we will elaborate our solution Multi-Step
Piecewise Recurrent Neural Network (MSP-RNN) for pre-
dicting the tendency of services invocation, which com-
prises two main parts: an LSTM-based feature extraction
module and a piecewise regressive mechanism. (A multi-
step prediction strategy will be introduced in Section 4.)
Fig. 2 shows its network structure.

3.1 LSTM-based Feature Extraction Module

To predict the tendency of services invocation, the changing
patterns of sequences could be modeled according to the
past records. With the in-depth study of Recurrent Neural
Network (RNN), Long Short Term Memory (LSTM), a spe-
cial structure of RNN, has been proved to be capable of

modeling some meaningful states of sequences [11]. For ex-
ample, in text modeling tasks, LSTM is able to keep track of
line lengths, quotes and brackets. Similarly, in our problem,
we believe that LSTM units can capture the complicated
intrinsic traits among service invocation sequences, since
the tendency of services invocation shows strong correlation
with their past records.

As shown in Fig. 3, an LSTM unit is composed of a
memory cell and three gates, i.e., forget gate, input gate
and output gate, enabling modification of the cell memory,
whose functions can be defined as Eq. 1.

ft = σ(Wf [ht−1, xt] + bf )

it = σ(Wi[ht−1, xt] + bi)

c̃t = tanh(Wc[ht−1, xt] + bc)

ct = ft ⊙ ct−1 + it ⊙ c̃t

ot = σ(Wo[ht−1, xt] + bo)

ht = ot ⊙ tanh(ct)

(1)

where ⊙ represents the element-wise product; Wf , Wi, Wo

and Wc represent the parameters of the forget gate, input
gate, output gate and the memory cell, respectively; σ(·) and
tanh(·) represent sigmoid function and hyperbolic tangent
function, respectively.

Once receiving sufficient training, LSTM will project
these records into a high-dimension space, where each
dimension presents a meaningful state, probably being
different kinds of periodicity or other features. Based on
these effective features, i.e., the hidden states from LSTM,
a fully connected layer (FC as shown in Fig. 3) will be able
to transform them into prediction values, and present an
acceptable prediction accuracy [12]. In other words, because
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LSTM takes all service invocation records as a whole, the
generality of prediction is conserved. However, since the
changing patterns of service invocation sequences fairly
differ from each other, the pertinence of prediction demands
further consideration.
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Fig. 3: LSTM-based feature extracture module. Memory
cells c in different units record historical information with
different meanings, and three gates, i.e., forget gate, input
gate and output gate, execute sigmoid functions to modify
the memory at every time step. The hidden states will be
used as input of both LSTM units in next step and parallel
fully connected layers (FCs).

3.2 Piecewise Regressive Mechanism
To further improve prediction accuracy, we make a reason-
able assumption that different kinds of service invocation
sequences will pay different attention to different hidden
states extracted by LSTM. So we expect that training mul-
tiple parallel fully connected layers will induce MSP-RNN
to predict the tendency of services invocation differently.
Thus, we propose a piecewise regressive mechanism to
make prediction discriminatingly, which idea is depicted in
Fig. 4.
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LSTM
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FC

...
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Fig. 4: Overview of Piecewise regressive mechanism.

The piecewise regressive mechanism comprises two
functions. On the one hand, it clusters service invocation
sequences into k categories with class probabilities α. On
the other hand, it regresses the corresponding intermediate
results zk by several parallel fully connected layers (FCs).
The combination of the results of these two functions gener-
ates the final prediction value ŷ.

The major process of the piecewise regressive mecha-
nism is illustrated in the yellow dotted polygon. As shown
in Fig. 4, the prerequisite of applying the piecewise regres-
sive mechanism is to determine a regression method and
a clustering pattern. With respect to the regression method,
we take hidden states from LSTM (Eq. 1) as effective features
and apply parallel fully connected layers to synthesize them
as intermediate results, which can be described by Eq. 2.

zk = w⊤
k · h+ b (2)

where various wk refer to weight parameters of different
fully connected layers, h refers to the hidden states extracted
by LSTM units, b refers to the bias of this layer, and various
zk refer to the intermediate results. It should be noted
that the piecewise regressive mechanism, combining several
intermediate results to generate finial prediction, is slightly
similar with the maxout active function in modeling non-
linearity [13]. Therefore, it is fine to place an active function
after each individual fully connected layer. However, given
computational complexity associated, we remove the active
function to accelerate the training process.

To cluster service invocation sequences into different
categories, it might be tricky to utilize raw dates directly,
because the underneath rule of service invocation records is
subtle and the length of the time series is endless [14]. After
many trials, we discovered that autocorrelation coefficients
reflecting correlation of one sequence can be influential fea-
tures. Consequently, we adopt the autocorrelation function
in MSP-RNN, to transform the original sequential data into
another way, which is formulated in Eq. 3. Based on the
autocorrelation coefficients, we then set up a softmax classi-
fier,i.e., the softmax function together with the FC between
it and autocorrelation, to obtain various class probabilities
αk in Eq. 4.

ρτ =
E [(xt − µ)(xt+τ − µ)]

σ2
(3)

α =
ew

⊤
s ·ρ∑nclass

k=1 e
w⊤

s ·ρ (4)

where ρτ represents the autocorrelation coefficient with time
lag τ , E represents the expected value operator, µ represents
the mean value of one service invocation sequence, σ2

represents the variance of one service invocation sequence,
xt represents the invocation records of one service in day
t, ws represents the parameters of the fully connected layer
between the autocorrelation function and the softmax func-
tion, α represents the class probabilities that can be broken
down to α = {α0, α1, . . . , αk} to represent the probability
of one service invocation sequence belonging to class k, and
nclass represents the number of the clusters predefined.

To boost the piecewise regressive mechanism, we further
develop a threshold-based smoothing technique over the
class probabilities outputted by the network. In detail, we
smooth insignificant α into very small values (Eq. 5), and
then re-scale them into a probabilistic scale (Eq. 6). As
a consequence, the impact of the specific fully connected
layers is intensified, so as to ensure to apply proper regres-
sion strategies over different clusters. By comparison, if we
directly apply original probabilities without re-scaling, the
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neural network will probably tend to train several similar
fully connected layers.

αi =

{
αi, if αi ≤ 1

nclass

0.01, otherwise
(5)

αi =
αi∑
k αk

(6)

Ultimately, as shown in Fig. 4, at the end of each for-
ward propagating process, through the piecewise regressive
mechanism, MSP-RNN will integrate all these intermediate
results z and their corresponding class probabilities α to
produce the final prediction ŷt, which is shown in Eq. 7.

ŷ =
nclass∑
k=1

αk · zk (7)

In theory, the piecewise regressive mechanism shall
not lead to a worse prediction result, comparing to the
vanilla RNN without it. Assume we meet an egregious
situation where all the service invocation sequences are
clustered into the same category, which implies that only
one fully connected layer will be activated while others
will be deactivated. In such an extreme situation, MSP-
RNN will degenerate into a vanilla RNN. In other situa-
tions, when the piecewise regressive mechanism works, the
tendency of services invocation will not only be predicted
generally but also be predicted discriminatingly based on
corresponding categories. Actually, based on the piecewise
regressive mechanism, during backward propagation, the
cluster mode of a regressive way will be ceaselessly adjusted
until the best equilibrium is reached. As a result, the service
invocation sequences will be predicted by an ensemble
model, which will eventually give rise to the enhancement
of prediction accuracy.

4 PARAMETERS LEARNING

In this section, we carefully analyze the aspects regarding
the prediction effect and training efficiency of MSP-RNN.

4.1 Loss Function

The piecewise regressive mechanism sounds inspiring, but
what if all the fully connected layers happen to decode
hidden states by the same way? Our experiments found that
only an ingenious loss function can ensure the mechanism
functioning properly. Otherwise, the piecewise regressive
mechanism, i.e., the structure shown in Fig. 4, sometimes
may even lead to several identical fully connected layers,
performing just like a vanilla RNN. For this sake, we have
designed a dedicated loss function for MSP-RNN from three
perspectives, which is devised as Eq. 8:

L =
1

n

∑
(i,t)

∣∣∣∣log yit + 1

ŷit + 1

∣∣∣∣+ λ
wp ·wq

∥ wp ∥2 · ∥ wq ∥2
+

∑
k

γk ∥ wk ∥1
(8)

where n represents the number of samples in a batch, ŷit
represents the prediction value of MSP-RNN for service i in

day t, yit represents the true invocation records for service i
in day t, various γ and λ represent hyper-parameters deter-
mining the intensity of regularization, respectively. Various
w in the above function represent the weight parameters
of parallel fully connected layers just after the LSTM layer,
where wp and wq represent the wight parameters of two of
them randomly selected.

The first part of the loss function reflects the discrep-
ancy between prediction values and real values. In many
time series prediction scenarios, people tend to measure
the discrepancy by some absolute indicators, like mean
square error (MSE), mean absolute error (MAE), and so
on. However, these indicators are inappreciable here in
our case. In this problem of service invocation prediction,
service invocation records considerably vary in the orders
of magnitude. If such absolute indicators are applied, it will
lead to a situation where a service invocation sequence with
a larger order of magnitude will impact model parameters
much more than a sequence with a smaller one. As a result,
the model will fit mainly according to the sequences with
larger orders of magnitude, while neglecting the smaller
ones. Therefore, we choose to evaluate our model in a
logarithmic scale, which will eliminate the influence caused
by the order of magnitude to some extent. Besides, being a
relative indicator, the first item of our loss function makes it
more meaningful than an absolute one.

The second part and third part of the loss function act
as a catalyst for the piecewise regressive mechanism, which
also enhance the interpretability of our MSP-RNN. Since we
hope that multiple fully connected layers can be learned
discriminatingly for service invocation sequences with dif-
ferent traits, we first measure cosine similarity between two
fully connected layers as a part of loss. On the one hand,
we allocate λ with a very slight value, so at the initial
training stage, the decoding way of fully connected layers
will be discriminated directly. On the other hand, we set
a larger predefined cluster number to allow redundancy. As
mentioned before, if only one fully connected layer conducts
the decoding process while others are smoothed to near
zero, MSP-RNN will degenerate as a vanilla RNN. Such
a setting will ensure that the prediction accuracy will not
become too bad under this extreme situation. Under other
circumstances, the piecewise regressive mechanism will
bring about promising results. Finally, the third item is an ℓ1
norm regularization, which can lead to sparse solutions of
multiple fully connected layers wk, implying that different
fully connected layers pay different attentions to different
hidden states. As a consequence, the piecewise regressive
mechanism will avoid service invocation sequences from
being clustered into one category, and increase prediction
accuracy eventually.

4.2 Multi-Step Prediction Strategy

After elaborating the piecewise regressive mechanism, we
have developed a multi-step prediction strategy to take
place of the single-step prediction strategy in our previous
work [15]. This is because in time series prediction tasks,
RNNs are inclined to assign great importance to the input
in current time step, i.e., service invocation record xt in our
problem. This implies that trained models would value the
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Fig. 5: Training and predicting processes of PRNN and MSP-
RNN. (a) and (c) represent the training process of PRNN
and MSP-RNN, respectively; (b) represents the predicting
process of both models.

hidden states (e.g., ht−1 from LSTM) less, even though they
might have contained useful meanings. Typically, single-
step prediction strategy is very useful if only few forward
values are required to be forecast. However, since we expect
to estimate the invocation tendency of services in a longer
time period, (e.g., 2 months at least), a multi-step prediction
strategy seems more appropriate, which can be illustrated
in Fig. 5.

When training a model for PRNN, a single-step predict-
ing strategy is adopted. As shown in Fig. 5 (a), we use
the observed value xt at day t to predict the invocation
times in the next day (i.e., ŷt+1), and use the observed value
xt+1 at day (t + 1) to predict the invocation times in the
following day (i.e., ŷt+2). Train loss will be calculated by
only the differences between each pair. By contrast, for MSP-
RNN, we extend the strategy by using the observed value to
predict the invocation times in the next few days in an au-
toregressive manner, (e.g., use xt−3 to predict for day ŷt−2,
ŷt−1, and ŷt) as shown in Fig. 5 (c). All the prediction results
{ŷt, t ≤ nstep} will be used to back propagate gradients.
Under this context, it it natural that MSP-RNN has to count
more on previous hidden states, and the expression ability
of MSP-RNN will be in turn enhanced. Nevertheless when
predicting, it is certainly better to use single-step strategy to
make prediction, because the information xt at the current
moment is definitely more valuable than a predicted one,
since the model has already known how to utilize its hidden
states.

5 EXPERIMENTS

In this section, we will report a collection of experiments
designed on real-world data set to test and verify the
performance of our MSP-RNN.

5.1 Data Set
Since the real service invocation records are inadequate, we
conducted experiments on a public data set Wikistat2, which
records millions of Web Page Views (PV) from English,
Chinese and other wiki-projects, hourly since September
2013. The reason why we adopted such a substitution is
due to three aspects. Firstly, Web page views bear complex
characteristics, which are comparable to those of services
invocation. For example, a Wikipage World Cup, because
of its content, presents similar traits of service World Cup

2. https://dumps.wikimedia.org

in JSON we mentioned in the introduction section. Mean-
while, there are also millions of Web pages hardly being
viewed by people, which is similar with the traits of long-
tail services in a service ecosystem [16]. Secondly, there are
also intricate relationships among Web pages. One example
is that when people visit a Web page about a character
in Marvel movies, like Iron Man3 in Wikipedia, it is likely
that the Wikipage about Captain America4 will be visited as
well. Thirdly, it seems that combination dependencies also
exist in this context. Analogous to services that may provide
several functions or operations, we regard wikipages as
services and the hyperlinks in a wikipage as its functions
or operations in our experiments. Similar with mashups in
a service ecosystem, we deem a new composition is created,
if two or more Web pages are always viewed in a very
short time period. Given these reasons, we believe that it
is reasonable to take Web pages as analog of services and
regard the number of access to a Web page as the invocation
number of a service.

In our experiments, we randomly picked up 29,839 pages
from English and Chinese projects, and divided them into
two parts. The first part, starting from July 1, 2015 to June
30, 2017 and containing 731 points for each, were used to
train and validate the models. The rest one, starting from
July 1, 2017 to August 31, 2017 and containing 62 points
for each, were used to evaluate the prediction accuracy and
robustness of our model. Numerical properties of the data
set are summarized in Table 1 (PV refers to page view).

TABLE 1: Numerical properties of dataset

Item Number

PVs with decadal order of magnitudes 6,331
PVs with hundred order of magnitudes 10,567
PVs with thousand order of magnitudes 8,996
PVs with other order of magnitudes 3,945
samples of PVs for training 2.1× 107

samples of PVs for testing 1.8× 106

5.2 Evaluation Scheme
To evaluate our model, we adopted two indicators, Sym-
metric Mean Absolute Percentage Error (SMAPE) [17] and
Dynamic Time Warping (DTW) [18].

The first indicator SMAPE is formulated by Eq. 9:

SMAPE =
1

n

∑
t

|Ŷt − Yt|
(Ŷt + Yt)/2

(9)

where n represents the number of samples in a training
batch, Ŷt represents the prediction values of the invocation
times for all services (or PVs in the experiments), and Yt

represents the real values. It is obvious that a lower SMAPE
value means a higher prediction accuracy.

As shown in Table 1, page views fairly vary in the
orders of magnitude, which make it inappropriate to be
evaluated by the most common indicators, like Mean Square
Error (MSE) and Mean Absolute Error (MAE), etc. Imaging
there are ten sequences, one is in thousand scale, while

3. https://en.wikipedia.org/wiki/Iron Man
4. https://en.wikipedia.org/wiki/Captain America
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(a)

(b)

(c)

Fig. 6: Two evaluation schemes. (a) depicts the observed val-
ues and predicted values of one service invocation sequence.
(b) and (c) refer to different ways to measure prediction
accuracy, with red lines as their alignment. For SMAPE,
two trajectories will be measured by calculating pointwise
residual, while for DTW, two trajectories will be measured
by calculating residual of optimal alignment.

others are in decadal scale. When the one in thousand
scale is predicted inaccurately, no matter how precisely the
others are predicted, a model will be deemed as an awful
one, if MSE or MAE are used to evaluate. By comparison,
SMAPE evaluates the relative error between true values and
predicted values, which is proper in this task, because it
will not be affected by the order of magnitude. Besides, in
terms of SMAPE, under-forecasting prediction gets higher
value than over-forecasting one. It is quite suitable for our
problem, because slight redundancy is essential for any
kinds of roles in service ecosystem as explained in earlier
sections.

The second indicator DTW is a shape-based similarity
measurement, widely used in speech recognition, time bar-
gain and some other time series inference and prediction
problems. A lower DTW stands for a higher shape similarity
between two sequences. Different from other indicators,
DTW places an extra emphasis on similarity of trajectory
between two sequences. Take Fig. 6 as an example, where
the blue line and the green line are observed invocation
records and predicted invocation tendency of one service,
respectively. For SMAPE, the prediction accuracy will be
evaluated according to pointwise residual. For DTW, the
accuracy will be evaluated through measuring the similarity
of trajectory. More specifically, DTW will find the optimal
alignment between two sequences, and then calculate corre-
sponding residual.

5.3 Benchmarks and Hyper-parameters Setting
To test and verify the performance of our MSP-RNN, we
compared it with the following baseline methods.

• ARIMA. As one of the most classical time series
prediction models, Autoregressive Integrated Mov-
ing Average model (ARIMA) was applied to treat
each service invocation sequence as an individual to
make prediction [7]. In our experiments, we applied
Dickey-Fuller test [19] and Bayesian Information Cri-
terion (BIC) to determine whether to apply Autore-
gressive Moving Average (ARMA) or ARIMA. We

modeled stationary sequences through the ARMA
model (Eq. 10) and nonstationary ones through the
ARIMA model. For some PVs whose orders caused
singular value decomposition exception in the exper-
iments, we set the last day of training set (June 30,
2017) as the prediction results. We implemented this
method through the statsmodel python package5.

xt = c+

p∑
i=1

φixt−i +

q∑
i=1

θiεt−i (10)

where various φp and θi refer to parameters of
ARMA, c refers to a constant, and εt refers to white
noise.

• SVR. Support Vector Regression (SVR) has been
widely used in predicting time series since 2004, be-
cause it presents an impressive ability to model non-
linearity of sequences [20], [21]. In our experiments,
we treated each service invocation sequence as an
individual, and set one’s past 731 days as training set
to model their invocation patterns. After training, we
used each model to generate corresponding predic-
tion values. For all sequences, we set the polynomial
kernel for each SVR model, because it performed the
best among all optional kernels when validating. We
implemented this method through the sklearn python
package6.

• LSTM-based RNN. Recurrent neural networks have
been acknowledged as a promising way to predict
time series in recent years. Particularly, Long Short-
Term Memory (LSTM), a special structure of RNNs,
is capable of capturing long-term dependency of
sequences, which has widely been used for pre-
dicting traffic, weather, stock price and some other
domains [22], [23], [24]. In our experiments, we built
an LSTM-based model treating all sequences equally
to predict the tendency of services invocation.

• LSTNet. Long- and Short-term Time-series network
is the state-of-the-art method to capture both long-
term and short-term pattern of time series [25].

In the following experiments, all neural network-based
models (including our MSP-RNN) shared the same batch
size (nbatch = 128), hidden size in recurrent layer (nh = 200),
and they were optimized by Adam [26] with an initial
learning rate as lr = 0.001. We set intensity factor γ = 0.1
for cosine similarity in loss function to discriminate parallel
fully connected layers, and set intensity factor λ = 0.01 to
each ℓ1 regularization items to stimulate sparse solutions.
For MSP-RNN, we predefined cluster number as nclass = 5,
and step length as nstep = 3, which will be carefully dis-
cussed in the following sections.

5.4 Evaluation Results

5.4.1 Accuracy Comparison
Prediction accuracy is one of the most important properties
needed to be discreetly evaluated. Therefore, we conducted
10 repeated experiments with the baselines methods as a

5. https://www.statsmodels.org
6. https://pypi.org/project/scikit-learn
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comparison to verify the performance of our MSP-RNN
model. Fig. 7 and Fig. 8 illustrate the SMAPE and DTW of
MSP-RNN and other baseline methods with two months (62
days) prediction.

ARIMA SVR LSTM-RNNLSTNet MSP-RNN
20
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Fig. 7: SMAPE of ARIMA, SVR, LSTM-RNN and MSP-RNN.
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Fig. 8: DTW of ARIMA, SVR, LSTM-RNN and MSP-RNN.

In terms of SMAPE, the prediction error of MSP-RNN
is prominently lower than those of ARIMA and SVR. Com-
paring to LSTM-RNN, MSP-RNN also decreases by 3.7%.
In terms of DTW, MSP-RNN outperforms other methods
more drastically, with 17.9% drop comparing to LSTM-
RNN. Generally speaking, MSP-RNN is excellent among
these methods. We thus ascribe the remarkable increment
of the LSTM-based models to the LSTM component, which
is able to extract efficient features of sequences. We also
believe that the further increment of our MSP-RNN should
be contributed to the piecewise regressive mechanism en-
abling the model to make prediction discriminatingly, and
the multi-step prediction strategy enhancing the robustness
of the model.

Since the LSTM-based models perform much better than
the other methods, we further compare the performance of
these methods with growing prediction days. Fig. 9 depicts
SMAPE of LSTM-RNN, PRNN (a degeneration of MSP-
RNN, which we elaborate in [15]), and MSP-RNN with
growing prediction range. As shown in this figure, the per-
formance of PRNN and MSP-RNN are always better than
that of LSTM-RNN, especially in the first few prediction
spans. The phenomenon justifies that the piecewise regres-
sive mechanism is effective. Besides, with the prediction
span keeps on growing, MSP-RNN predicts more accurately
than PRNN, although they are neck-and-neck in very initial
prediction span. This indicates that the multi-step prediction
strategy is helpful for improving the robustness of our
model.
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Fig. 9: SMAPE of LSTM-RNN, PRNN and MSP-RNN with
growing prediction days.

5.4.2 Impact of Cluster Number
In MSP-RNN, the piecewise regressive mechanism is the
most important component to enhance the prediction ac-
curacy, so we meticulously study the influence of cluster
number predefined. We conducted 10 repeated experiments
with different cluster numbers varying from 1 to 10, and
the SMAPE of these experiments are drawn in Fig. 10. In
this line chart, SMAPE declines with the increasing cluster
number predefined in general. When nclass = 2 or 3, the
variance of SMAPE is large, which indicates these hyper-
parameters are inappropriate for MSP-RNN, because the
regularization items may make it difficult to converge.
When nclass ≤ 4, SMAPE fluctuates, which demonstrates
that increasing predefined cluster number cannot bring
about further improvement of prediction accuracy.

To determine the optimal cluster number predefined,
we carefully studied the intermediate results of MSP-RNN.
Taking one experiment as an example, Fig. 11 shows the
distribution of sequences that were classified into differ-
ent categories. In this experiment, we predefined cluster
number as 5. As shown in this figure, MSP-RNN mainly
divides them into 4 clusters, i.e., class #0, #1, #3, #4, which

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 17,2020 at 21:10:00 UTC from IEEE Xplore.  Restrictions apply. 



1939-1374 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2020.2966487, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, JUNE 2019 9

1 2 3 4 5 6 7 8 9 10
cluster number

31.5

32.0

32.5

33.0

33.5
SM

AP
E

Fig. 10: Error bar of SMAPE with growing cluster numbers.

account approximately 90% of the results. Actually, this is
not an accident. Through extensive experiments, we found
that even the cluster number predefined is 9, MSP-RNN can
only converge to 4 main categories. We think this might due
to the unbalanced data distribution, or limited cluster way.

To further study the piecewise regressive mechanism,
we visualized the weight of various fully connected layers
in Fig. 13 to study how MSP-RNN treats different types of
sequences. Fig. 13 (a) shows the weight parameter of fully
connected layers between the autocorrelation function and
the softmax function, where we can find different clusters
paid different attention to the autocorrelation coefficients.
More specifically, all clusters focus largely on the initial
autocorrelation coefficients, which is very reasonable be-
cause most sequences are affected greatly by their past few
days, while different clusters also paid different attentions
to different autocorrelation coefficients. As for the decoding
manner, we observed that some hidden states (e.g., #31, #36
and #100) are highly valued by several decoders, indicating
that these hidden states are very useful. We also observed
that different decoders utilize the hidden states discrimi-
natingly due to the piecewise regressive mechanism, which
breeds the diversity. In Section 5.4.4, we will produce several
cases to demonstrate the clustering results and point out the
advantages and disadvantages that our model presents in
different situations.

Through the above analysis, we deem that nclass = 5 is
the best for MSP-RNN, because it is just adequate for the
softmax classifier to separate meaningful clusters without
wasting much computational resources. However, we also
believe that if better hand-craft features or cluster way are
applied, more meaningful patterns could be recognized ,
rendering this hyper-parameter larger, and eventually the
effect of the piecewise regressive mechanism will become
stronger.

5.4.3 Impact of Step Length
Except for the piecewise regressive mechanism, the multi-
step prediction strategy is also an essential part to enhance
the quality of prediction of our MSP-RNN model. In the

2

2.6%

3 19.8%

1

13.5%

052.7%

4

11.5%

Fig. 11: Class distribution of prediction results when cluster
number was predefined as 5.

experiments, we tested MSP-RNN with the prediction step
length from 1 to 5 steps, and reported the results in Fig. 12.
As shown in this line chart, SMAPE decreases with the
step length predefined increasing, while it rebounds when
nstep = 4. This indicates that the multi-step prediction strat-
egy can help enhance prediction accuracy, if a slight nstep
is set. We deem such improvement is due to the principle
of LSTM (Section 3.1) that RNN is likely to attach greater
importance to current input xt rather than previous states
ht−1, while the multi-step training strategy may eliminate
such dependencies in some way, and allow RNN to value
more on the previous states. However, if a large nstep is
set, MSP-RNN might also be confused, and lead to a worse
result.
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Fig. 12: SMAPE of MSP-RNN with different steps.

5.4.4 Case Study
To further study the merits and demerits of MSP-RNN
and other baseline methods, we have observed substantive
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(a) Attention to different autocorrelation coefficients for different clusters.

(b) Attention to different hidden states from LSTM for different fully connected layers.

Fig. 13: Visualization of fully connected layers weights in MSP-RNN.

page views, their prediction results from different models
and their corresponding autocorrelation coefficients. In this
section, we will analyze some of them, which are shown in
Fig. 14.

Case 1. Fig. 14 (a) shows the page views of wikepage
Romania7 in the upper part and its corresponding autocorre-
lation coefficients in the lower part, which is also a typical
example of #0 cluster with a 87% probability determined by
MSP-RNN. For this cluster, the autocorrelation coefficients
concentrate on 0, indicating that it shows minute correlation
with its past records. Therefore, we deem that this cluster
is like white noise. Through our experiments, MSP-RNN
as well as other baseline methods all performed quite well
in this situation. In this case, the SMAPE of ARIMA, SVR,
LSTM-RNN, LSTNet and MSP-RNN are 10.96, 7.93, 6.54,
6.67, 6.34, respectively.

Case 2. Fig. 14 (b) is about NCIS8, a TV series, and it
is a representative of #1 cluster with 91% likelihood. Just
like the heatmap of the fully connected layer of cluster #1
(see Fig. 13 (a)), this cluster values autocorrelation in many
places, where the peaks show. In this case, the prediction of
ARIMA goes an entirely wrong direction, which is because
this model is quite easily affected by its past few days,
while the LSTM-based models predict right tendency. For
this case, SMAPE of ARIMA, SVR, LSTM-RNN, LSTNet and
MSP-RNN are 27.66, 10.83, 8.36, 9.24, 8.17, respectively.

Case 3. Fig. 14 (c) is concerning Caesium carbonate9, a
kind of chemical substance that is a representative of cluster
#2. Similar with the heatmap of the fully connected layer of

7. https://en.wikipedia.org/wiki/Romania
8. https://en.wikipedia.org/wiki/NCIS (TV series)
9. https://en.wikipedia.org/wiki/Caesium carbonate

cluster #2, this cluster also pays attention to autocorrelation
in many places. Although cluster #2 only accounts for 2.6%
in all sequences, MSP-RNN frequently outperforms other
baseline methods in this situation.

Case 4. Fig. 14 (d) introduces 76mm air defense gun
M193810, which is a representative of cluster #3. Fig. 14 (e)
introduces Facebook11, which is another representative of
cluster #4. Their autocorrelation coefficients do associate
with the weight of corresponding fully connected layers, but
they seem not so meaningful. Even so, our empirical results
show that MSP-RNN outperforms other methods frequently
in this situation. But, we also believe that a better cluster
way may be required here to produce more interpretable
clustering results.

Case 5. All above cases show the most typical examples
of 5 kinds of clustering results, and in many situations, MSP-
RNN does perform well. However, MSP-RNN is far more
than that. Fig. 14 (f) is about YouTube12, and its probabilities
to different categories calculated by MSP-RNN are 43%, 2%,
2%, 49% and 2%, respectively. For this case, both decoder
#0 and decoder #3 will mainly contribute to the results. In
this case, SMAPE of ARIMA, SVR, LSTM-RNN, LSTNet and
MSP-RNN are 12.25, 15.54, 10.24, 7.75, 6.90, respectively. Ac-
tually, most of the experimental sequences will be predicted
by more than one decoder (fully connected layer), and these
decoders also make the results more accurate.

As illustrated in the above analyses, we have proved that
MSP-RNN outperforms other baseline methods in term of

10. https://en.wikipedia.org/wiki/76 mm air defense gun M1938
11. https://en.wikipedia.org/wiki/Facebook
12. https://en.wikipedia.org/wiki/YouTube
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Fig. 14: Typical cases. The upper part of each case shows true values and predicted ones, where blue line represents the true
page views of a wikipage, and cambridge blue, orange, purple and green lines represent the prediction results of ARIMA,
SVR, LSTM-RNN and MSP-RNN, respectively. It is noticeable that the blue lines before the dashed line (July 1, 2017) in
the upper parts represent real data for training models during a year, while the rest after the dash line are used to evaluate
models. The lower part shows autocorrelation coefficients corresponding to the upper cases, which is calculated by using
only training data.

prediction accuracy. Meanwhile, its potential still needs to
be further developed.

6 RELATED WORK

As our work touches on a couple of different research areas,
in this section, we will review some representative ones and
differentiate our work from them.

6.1 QoS Inference
When it comes to predicting the tendency of service in-
vocation, one may associate with predicting Quality of
Services (QoS) that includes a set of indicators, like packet
loss, bit rate, throughput, transmission delay, etc. Although
there exist some similarities between these indicators and
tendency of services invocation, actually they are quite
different.

With respect to methodology, existing works concerning
QoS predicting aim to infer a score about how good a user
can receive a service from its provider. Initially, many works
have not considered the factor of changing time. In this

scenario, non-negative matrix factorization has been widely
applied. Based on this, Y. Zhang et al. [27] and Y. Ma
el al. [28] have built the relationship between user-to-user
and service-to-service, and successfully inferred the missing
QoS values. Further, W. Zhang et al. [29] have considered
the time factor and based on tensor factorization to infer
the missing QoS values with changing time. However, the
changes of these QoS indicators in future days still cannot be
predicted. Subsequently, some studies have considered the
factor of time and make prediction. Based on Autoregressive
Moving Average (ARMA) model, M. Godse et al. [30] and
Amin et al. [31] have proposed their own methods to pre-
dict individual QoS for one user. To build the relationship
between users and services, R. Xiong et al. [32] have built
an LSTM-based model to predict QoS dynamically.

Besides, all above methods are facing a fixed user base,
while our problem predicting the tendency of services invo-
cation is confronting a service base. That is to say, to solve
the problem, we can only utilize the past invocation records
without users relationship. Additionally, the number of ser-
vices being huge and the traits of them being vastly different
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also make our problem more challenging.

6.2 Time Series Prediction
Time series prediction has always been a critical research
problem, and it goes through a long development his-
tory. Traditionally, people tended to analyze the traits of
time series and designed corresponding models to predict
ones separately. In 1970, GEP Box et al. [7] have first
put forward ARMA and Autoregressive Integrated Moving
Average (ARIMA) model for predicting time series being
stationary and non-stationary. These models can effectively
model the linearity and periodicity of time series, and still
take a dominant position in this domain. However, since
many time series are nonlinear, later works are proposed to
cover this point. Z. Ding [8] and TB Trafalis et al. [33] have
applied Support Vector Machine to Regress (SVR) stock
price, which makes up for the limitation of linear models.
These models can be solutions to predict the tendency of
service invocation in our problem.

However, these models are univariate models. When
facing multivariate prediction problem, the correlation be-
tween variables will be neglected, meaning that they can-
not utilize the intrinsic relationship among services. Subse-
quently, Vector Autoregression (VAR) model and Multiple-
output SVR, extension of ARMA and SVR model, have been
proposed to seize the correlation between sequences [34],
[35]. Since this model takes immense computer memory to
build relationships, it cannot address time series prediction
problem with thousands ones. As a consequence, our prob-
lem cannot be solved by them.

In recent years, big data has been becoming a popular
topic, which results in a need to predict time series in a
very large scale data. In this context, a substantial amount of
data on past days can be leveraged for predicting thousands
time series. Lee et al. [36] have used RBF neural network
to predict time series. Dasgupta et al. [37] have proposed
Nonlinear Dynamic Boltzmann Machines to predict time
series. Specially, LSTM and GRU are capable of remem-
bering long short term dependencies among a sequences
thus have been widely used [12], [38]. Recently, attention
mechanism has also been applied to capture the temporal
dependency of time series, and gain great strides in pre-
diction accuracy [25], [39]. However, because our problem
presents a combination dependencies (i.e., mashups invoking
their comprising services), these models still cannot fully solve
our problem.

6.3 Time Series Clustering
Time series clustering is another important research area
related to our work. Studying how to cluster time series can
facilitate predicting millions of time series. In this section,
we review several famous works about time series clus-
tering. To begin with, from Aghabozorgi’s point of view,
approaches to clustering time series can be divided into
three categories: whole time-series clustering, sub-sequence
clustering and time point clustering [14]. Among them, the
whole time-series clustering refers to dividing time series
into categories with respect to their similarity, which can be
further divided into model-based approaches, feature-based
approaches and shape-based approaches.

Model-based approaches refer to people predefining a
parametric model, then transforming raw time series date
into model parameters, and finally clustering them ac-
cording to model distance. For example, Bicego et al. [40]
and Panuccio et al. [41] have applied Hidden Markov
Model (HMM) to cluster time series. Feature-based ap-
proaches refer to transforming raw time series date into
some particular features and then applying clustering al-
gorithm on these features. Piecewise regressive mechanism
is one of them, which transforms raw time series into
autocorrelation coefficients, and then learns to cluster them
through a neural network.

Besides, shape-based approaches refer to making as-
signment according to similarity between two time series.
Dynamic Time Warping (DTW), which we adopt to evaluate
similarity of two time series, is a typical method to align
time series. Similarly, Niennattrakul et al. [42] have clus-
tered multimedia time series by using k-means algorithm
and DTW. Some other works have used other distances
to cluster time series. For example, Shumway et al. [43]
have introduced J divergence; Chen et al. [44], [45] have
introduced Edit Distance; Zhang el al. [46] have introduced
Triangle similarity. Inspired by these clustering methods, we
merge an effective one into our model, especially the loss
function, thus to predict the tendency of services invocation
more accurately with respect to shape in particular.

7 CONCLUSIONS

As predicting the tendency of services invocation has been
progressively beneficial to all roles in service ecosystems,
in this paper, we abstract three unique features of services
invocation, namely complicated traits, intricate relationship
and combination dependencies. Tailored by these features,
we have developed a deep neural network, named Multi-
Step Piecewise Recurrent Neural Network (MSP-RNN), to
predict the tendency of services invocation, whose predic-
tion accuracy is higher than our previous work Piecewise
Recurrent Neural Networks (PRNN) and other state-of-the-
art baseline methods. The main ideas include: 1) apply-
ing LSTM units to model the complicated characteristics
of service invocation sequences generally; 2) developing a
piecewise mechanism to predict different types of service
invocation sequences discriminatingly; and 3) proposing
a multi-step prediction strategy to enhance model robust-
ness and further increase prediction accuracy. Extensive
experiments with interpretable analysis have proved that
MSP-RNN significantly outperforms the baseline methods
in term of prediction accuracy, i.e., by 3.7% with respect
to SMAPE, particularly, when the prediction days become
longer.

In our future research, we plan to focus on the follow-
ing three aspects: 1) to lucubrate the piecewise regressive
mechanism to better cluster and predict service invocation
sequences; 2) to model the combination dependencies and
further increase the accuracy of predicting the tendency
of services invocation; and 3) to study online predicting
technology, so that the tendency of services invocation can
be predicted in a shorter time period.
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