
An Empirical Analysis of Contemporary Android Mobile Vulnerability Market
Keman Huang1, Jia Zhang2, Wei Tan3, Zhiyong Feng1

1School of Computer Science and Technology, Tianjin University, Tianjin 300072, China
2Carnegie Mellon University Silicon Valley, Moffett Field, CA 94035, USA

3IBM Thomas J. Watson Research Center Yorktown Heights, NY 10598, USA
keman.huang@tju.edu.cn, jia.zhang@sv.cmu.edu, wtan@us.ibm.com, zyfeng@tju.edu.cn

Abstract— The increasing popularity and rapid growth of the
mobile ecosystem have been changing people’s daily life. The
vulnerabilities of mobiles resulting from the inherent
vulnerable characteristic of software products, however, can
be exploited, causing substantial economic loss or privacy
leakage. This paper introduces an information metadata model,
comprising a life cycle model and a heterogeneous network
model, to investigate the evolving patterns of vulnerabilities in
the current Android Mobile Vulnerability Market (AMVM).
The test bed collects data from a variety of vulnerability
datasets, comprising 19,711 vulnerable records. An empirical
study is conducted over the test bed to trace the evolution
process of vulnerabilities in the AMVM. The proposed
network analysis method has opened a new way of studying
mobile vulnerability market, in order to improve the security
situation in the Android ecosystem.

Keywords- Android Mobile Vulnerability Market, Vulnerability life
cycle, Heterogeneous Network, Evolving Pattern, Patching
Behavior

I. INTRODUCTION
The increasing popularity and rapid growth of the mobile

ecosystem is changing the way that people communicate,
work and socialize with each other [1]. Users nowadays are
employing the mobile ecosystem to perform a variety of
tasks, such as accessing social networks and running
business operations. The revenue from the end users is
significantly increasing, from barely existed to an expected
value of $25.2 billion in 2017.

Despite its extensive adoption, the mobile ecosystem
carries potential vulnerabilities that may be exploited by
attackers to undermine systems and cause substantial
economic loss or private information leakage [3]. As a matter
of fact, the increasing potential benefit from the vulnerability
exploitation in the mobile ecosystem has attracted significant
attention from the black market [4]. Such vulnerabilities may
not be avoidable since they are inherent from the vulnerable
characteristic of software products [2] in the mobile
ecosystem, ranging from the platform software supporting
the operation system to third-party applications running on
the platforms. Therefore, the security of the mobile
ecosystem, especially tackling with vulnerabilities of the
ecosystem, is becoming a crucial issue for the current
business field [5].

Uncovering the patterns of the vulnerabilities is
recognized as an effective approach to improve the security
of the software ecosystem [6]. Many agencies have been
built to collect and disclose detected software vulnerabilities,
including the Computer Emergency Response Team (CERT)

1 , Security Focus (BID) 2 , the National Vulnerability
Database (NVD) 3 , and the Open Sourced Vulnerability
Database (OSVDB) 4 . In addition, exploratory analysis of
vulnerability life cycles can help vendors reduce potential
vulnerabilities during their software development processes,
suggest consumers to select safer services, and assist
ecosystem managers in developing security policies to more
effectively handle future attacks and threats, and identify the
potential zero-day vulnerabilities [7]. Therefore,
understanding the vulnerability market is important for both
industry and academic fields [2-4, 7-10].

Current literature takes the software industry as a whole
and only considers the vulnerabilities of software products
developed for Windows (such as Internet Explorer, Firefox,
and Adobe). One core reason is because the Microsoft
Windows platform has been the main target of cyber attacks
over the past decade. The vulnerabilities of mobile systems
are oftentimes neglected by current research, causing an
apparent literature gap of vulnerability research. The
evolving patterns in the mobile ecosystem are quite different
from those in the general software industry. Typical patterns
include the emerging scale-free property, the vulnerable type
transfer, and the severity evolution. Furthermore, current
vulnerability study is based on single vulnerability data sets,
which cannot depict an overall picture of the market.

This research, thus, aims to investigate the evolution
patterns in the mobile vulnerability market for the
ecosystem's security improvement. As Android continuously
increases its popularity and market share in the mobile
ecosystem [11], this paper focuses on the vulnerabilities
which are relevant to the android ecosystem, named as the
Android Mobile Vulnerability Market (AMVM). It should be
noted that our method can be apply to other mobile system
market study. The research proposes an information
metadata model, comprising a vulnerability life cycle model
based on the vulnerability state transition and a
heterogeneous network model based on the relationships
among vulnerabilities, products and vendors. To
systematically study the evolution process of the AMVM,
the research collects the android vulnerability data since
2008 from multiple agencies, including the NVD, OSVDB,
CERT, BID and vendor websites. Based on the collected
datasets, network analysis is performed and suggestions for
security improvement are discussed.

1 http://www.kb.cert.org/vuls/
2 http://www.securityfocus.com/bid
3 https://nvd.nist.gov/
4 http://osvdb.org/

2015 IEEE International Conference on Mobile Services

978-1-4673-7284-8/15 $31.00 © 2015 IEEE

DOI 10.1109/MobServ.2015.34

182

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:32:31 UTC from IEEE Xplore. Restrictions apply.

The main contributions for this paper are two-folds:
� First, an information metadata model is proposed

for mobile vulnerability market analysis, consisting of a life
cycle model and a heterogeneous network model.

� Second, the systematical analysis over the network
constructed, using our proposed information metadata model,
from the aggregated vulnerability datasets for evolution of
vulnerabilities for Android mobile vulnerability market has
yielded suggestions for the security improvement in the
mobile ecosystem.

The remainder of the paper is organized as follows.
Section 2 presents the information metadata model oriented
for the android mobile vulnerability market. Section 3
introduces the aggregated data set from different
vulnerability agencies. Section 4 reports the vulnerability
patterns analysis results. Section 5 discusses the related work
and section 6 draws conclusions.

II. INFORMATION METADATA MODEL
In this section, we introduce an information metadata

model tailored for mobile vulnerability market analysis. It
comprises two components: a life cycle model and a
heterogeneous network model.

A. Life Cycle Model
Figure 1 illustrates a life cycle of android mobile

vulnerability. (1) A bug in the software products that is
released and deployed in the mobile ecosystem will
introduce a potential vulnerability in the market. (2) The
vulnerability may be discovered by the vulnerability
discovers, who can be the software vendors, the security
researchers, or the underground discovers such as the
hackers from the black market. (3) If the vulnerability is
discovered by the software vendor, it can be fixed by the
vendor before it becomes publicly known. (4) If the
vulnerability is discovered by attackers, the exploit will be
created and used to conduct attacks against the target. (5)
The discovered vulnerability is publicly disclosed either by
the vendor or on the public forums and mailing lists. (6) The
disclosed vulnerability can attract attentions from the black
market and results in exploitation activities. (7) On the other
hand, the disclosed vulnerability will force the vendor to
release the patching as soon as possible. (8) The identified
exploitation of the vulnerability also provides knowledge for
the patching. (9) The patching is released for the specific
vulnerability while it may also bring in new bugs.

Figure 1. Life cycle model for the android mobile vulnerability.

The life cycle of vulnerability can be divided into five
consecutive phases:

� Vulnerability Introduced (rt): the time when the
vulnerability is introduced into the ecosystem;

� Vulnerability Discovered (dist): the time when the
vulnerability is discovered;

� Vulnerability Disclosed (dt): the vulnerability is
collected by the platform and disclosed to the public.

� Vulnerability Exploited (et): the exploit of the
vulnerability is available.

� Vulnerability Solved (st): the patching for the
vulnerability is released by the vendor.

Obviously, , ,r dis d e st t t t t� � . Note that the sequence for
the , ,d e st t t is alterable. Hence, the following three durations
may exist:

� Disclosure-Patching Duration (ds s dt t t� �): the
duration between the disclosure date and the solution date. It
represents how quickly the vendors respond to the
vulnerability and neutralize the threats. The larger the dst is,
the longer the software product is in risks.

� Disclosure-Exploit Duration (de e dt t t� �): the
duration between the disclosure date and the exploit date. It
represents how quickly the hackers exploit the vulnerability.
The smaller the det is, the more attractive the product is for
the hackers. Note that if 0det � , the exploit is available
before the vulnerability is publicly known. This is the well-
known zero-day vulnerability.

� Patching-Exploit Duration (se e st t t� �): the
duration between the solution date and the exploit date. It
represents the length of competition between the vendors and
the hackers.

B. Heterogeneous Network
Two relations are important among the software products,

vulnerabilities and the vendors, the three core components in
the AMVM: 1) the vendors release software products into
the mobile ecosystem; 2) the potential vulnerabilities in the
product are introduced into the mobile ecosystem. We
formally define a heterogeneous network model for AMVM
as follows, illustrated in Figure 2:

Figure 2. vuLnerability-Product- Vendor (LPV) Heterogeneous Network.

Definition 1 (vuLnerability-Product-Vendor Network, LPV)
{ , , , , }lp pvLPV L P V R R� where { }iL l� refers to the set of

the disclosed vulnerabilities; { }jP p� refers to the

183

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:32:31 UTC from IEEE Xplore. Restrictions apply.

vulnerable products; { }kV v� refers to the vendors;
{ , }lp i jR l p� � � represents the relations among the

vulnerabilities and products; and { , }pv j kR p v� � �
represents the relations among the products and the vendors.

1) Product:
Regarding the software products in the android mobile

ecosystem, some are platforms supporting the Android
operation system and we name them as native products; the
others are developed by third party vendors to offer value-
added services for consumers and we name them as third-
party products. For the native products, our research follows
the android security architecture5 and classifies them into the
following four types:

� Kernel (NK): the software relevant to the Linux
kernel for the android operation system.

� Library (NL): the software provides basic
functionalities for the system and the runtime environment.

� Application Framework (NF): the software supports
the direct communication with the application.

� Application (NA): the software that the consumers
consume to fulfill their requirements.

Similarly, for the third-party products, we can also
classify them into the following three layers:

� System (TS): the software products which are used
to support the system running on the mobile devices.

� Library (TL): the applications that developed by
third-party vendors and offer common functionalities.

� Application (TA): the third-party applications for
specific functionalities.

Therefore, the research defines the products as:
, ,j j j jp pn pt pv�� � (1)

where jpn refers to the name of the product, jpv is the
released version and { , , , , , , }jpt NK NL NF NA TS TL TA�
refers to different types of the products.

2) Vulnerability:

Figure 3. Metadata Model for Android MobileVulnerability Market.

To study the evolution pattern in AMVM, we consider
how each vulnerability transfers between different lifecycle
stages, how serious the vulnerability is, what type the

5 https://source.android.com/devices/tech/security/index.html, Last
accessed: 2015/4/22

vulnerability belongs to, and how vulnerability is fixed. In
more detail, we build a metadata model for the Android
Mobile Vulnerability Market as shown in Figure 3. This
model builds a measurement gauge for our network analysis
to be described in Section III and IV.

Therefore, we defines the vulnerability as follow:
, , , ,i i i i i iv vn vt vl vf vs�� � (2)

where ivn is the name of the vulnerability; ivt is the
vulnerability's type; ivl is the lifecycle of the vulnerability;

ivf refers to the vulnerability's solutions and ivs refers to the
severity of the vulnerability.

As the vulnerability discovered date is often unavailable
to the public and the product released date rt is not straightly
related to the vulnerability, the research only considers the
disclosure date dt , the exploit date et and the solved date st .

, ,d e svl t t t�� � (3)
To evaluate the vulnerability's risk severity, the study

employs the widely used Common Vulnerability Scoring
System (CVSS)6, which is a real number between 0 and 10.
The larger the score is, the higher the severity the
vulnerability is. Specifically, it reflects the following six
factors:

� Access Vector ({ , ,AV Local Adjacent Network�
}Network): indicates the way to exploit the vulnerability.

� Access Complexity ({ , , }AC Low Medium High�):
indicates the complexity level to attack the software product
through the vulnerability.

� Authentication ({ , , }AU None Single Multiple�)
indicates the number of times the hacker must authenticate to
a target in order to exploit the vulnerability.

� Confidentiality Impact ({ , ,CI None Partial�
}Complete) indicates the impact on confidentiality of a

successfully exploited vulnerability.
� Integrity Impact ({ , , }II None Partial Complete�)

indicates the impact on integrity of a successful exploitation.
� Availability Impact ({ , ,AI None Partial�

}Complete) indicates the impact on the availability of a
successful exploitation.

Hence, the severity of the vulnerability can be defined as:
, , , , , ,vs cvss AV AC AU CI II AI�� � (4)

III. DATA HARVEST & OVERVIEW
A. Data Harvest

The vulnerability disclosure can effectively promote the
vendors to improve the software security. Many agencies
such as NVD, OSVDB, CERT-VN, BID and SCP have been
built to collect vulnerability information.

As this research focuses on the Android mobile
vulnerability market, we first collect the relevant records

6 https://www.first.org/cvss/cvss-guide

184

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:32:31 UTC from IEEE Xplore. Restrictions apply.

from NVD using "android" as the query content. For each
vulnerability, we parse the website to extract information
including the CVE-ID, the description, the CVSS severity,
the effected products, the vulnerability type, the effected
products as well as the reference resources. Then we collect
the data from OSVDB to get the CVE-ID, the time line
information such as the disclosed date, the patching date as
well as the exploit date. Furthermore, we collect the
Android-relevant records from CERT-VN, and extract
information such as the CVE-ID, vendor information,
disclosed date, discovered date and patching date. We also
get the vulnerable product's types from the SCP website7.
Additionally, we obtain the patching information from the
software vendors and the specific countermeasures such as
the security focus (BID), the Google MISC etc. to enrich the
data set. Finally, we aggregate all the fetched data by the
CVE-ID to construct the data set for our study.

B. Overview
Based on the collected data, we constructed the LPV

heterogeneous network using the information metadata
model described in Section II. Table I reports the basic
statistics and Figure 3 is the overview generated by
Cytoscape [12].

TABLE I. BASIC STATISTICS OF COLLECTED DATASET
#CVE Records 1943

#Vulnerable Product Lines* 1658

#Vulnerable Products* 6449

#Vendors 1304

#Vulnerability Records 19711

#Components 1277

Average Vendor Degree 4.946

Average Product Vulnerability 3.056

Average Vulnerability Affected products 10.145
*Product lines refer to all the products with the same product name and

vendor name but different product versions. Software products with different
versions are considered as different products.

1) Component Analysis:
As shown in Figure 4, we found that most components

(86.6%=1109/1277) are atomic modules consisting of one
vendor, one product and one vulnerability. There are
products lines in the third-party application level. Only four
connected sub-components contain more than 100 nodes.

For the component-a, the vendors are "Apple," "Linux,"
"Google," "Adobe," "Android," "Microsoft," "Openssl,"
"Redhat" and so on. These vendors are core in the Android
vulnerability market and their products are the native
products. In addition, the vendor "Google" has the largest
degree and betweeness in the component. This finding is
reasonable because Google is the centrality in the ecosystem.

For the component-b, it contains only one vendor
"Mozilla" and three product lines "Thunderbird," "Firefox"

7 http://android.scap.org.cn/index.html

and "Seamonkey." They are all popular third-party
applications in the Android ecosystem.

For the component-c, it contains three different vendors
"Qualcomm," "Codeaurora" and "Motorola." "Qualcomm"
and "Motorola" are well-known leaders in the mobile
technologies. The vendor "Codeaurora" is hosted by the
Linux Foundation. It serves the mobile wireless industry and
supports upstream projects such as the Linux Kernel and the
Android system. These products belong to the native kernel
or the third-party system.

For the component-d, it contains only one vendor
"Kernel" and one vulnerability "CVE-2009-1185" relevant to
all the different versions of the product line "UDEV." They
are all native-kernel products.

The vulnerabilities in different components are obviously
related to the different layers of the Android ecosystem.

Figure 4. Overview of LPV Network. Red ellipse represents the

vulnerability; blue diamond is the product; black triangle is the vendor.

2) Modular Analysis
Based on Figure 4, we can observe two relation modular

between vulnerability, product and vendor:
� Star Modular: Each product released by a vendor

owns one or more unique vulnerabilities.
� Spindle Modular: All the products released by the

same vendor share the same vulnerabilities.
For the star modular, the products released by the same

vendor have different vulnerabilities. Each vulnerability
requires a specific patching. However, for the spindle
modular, the products share the same vulnerability. It can be
seen from Figure 4 that most of the vendor-product-
vulnerability relations for the main sub-components belong

(c)

(b)

(a)

(d)

185

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:32:31 UTC from IEEE Xplore. Restrictions apply.

to the spindle modular. One reason is that these products are
developed based on the same foundational framework/
platform. Therefore, if the product is released by the same
vendor based on the same vulnerable framework/platform, it
has a large possibility to inherit the same vulnerability.
Therefore, we can employ this feature to predict the potential
vulnerability for the new released products.

(a) Star Modular (b) Spindle Modular
Figure 5. Modular in the Vulnerability-Product-Vendor Network.

3) Degree Distribution Analysis:
We define the following three degree distributions for the

generated network:
� Vendor degree distribution: it refers to how many

vendors have the given number of vulnerable products.
� Product degree distribution: it refers to how many

products are with the given number of vulnerabilities.
� Vulnerability degree distribution: it refers to how

many vulnerabilities are within the given number of products.

100 101 102 103 104100

101

102

103

104
Vendor Degree Distribution

(a) 100 101 102 103100

101

102

103

104
Product Degree distribution

(b) 100 101 102 103 104100

101

102

103

104
Vulnerability Degree Distribution

(c)
Figure 6. Degree Distribution for vulnerability-product-vendor network.

As shown in Figure 6, the vendor degree distribution fits
the power-law distribution but with a long tail; the product
degree distribution is similar to the truncated power-law;
while the vulnerability degree distribution cannot fit the scale
free property. There is, however, a significant power-law
phenomenon when the whole vulnerability market is taken
into account [13]. Therefore, it can conclude that the
Android mobile vulnerability market is different from that of
the whole industry [2, 13]. It is necessary to analyze its
patterns specifically, which is one motivation of this research.

IV. GENERAL TREND ANALYSIS
This section examines our study of the evolution of the

vulnerabilities in the Android mobile vulnerability market.

A. Vulnerability Disclosure Trend
To evaluate the evolution of the disclosed vulnerability,

we get the disclosure date of each CVE vulnerability, and
then calculate the disclosed vulnerabilities each year since
2008. Furthermore, we fetch all the vulnerabilities disclosed
in NVD and then calculate the percentage of Android mobile
vulnerabilities per year. As shown in Figure 7, the disclosed
Android-relevant vulnerabilities increased from 2008 to

2012. After a slight reduction in 2013, there was an outbreak
of vulnerabilities in 2014. The outbreak owed to the fact that
multiple Android software products failed to properly
validate SSL certificates provided by HTTPS connections.
The 10 tested library products are all vulnerable and 23.2%
(=320/1379) of the tested Android applications are due to the
vulnerability of the library.

Meanwhile, the percentage of the Android vulnerabilities
has been increasing since 2008. Therefore, it can conclude
that the security situation in the Android ecosystem is
worsening over year. One possible reason is that the number
of applications released for consumption is increasing with
the rapid development of mobile Internet, but most of the
developers are not professional enough [14]. Additionally,
the Android ecosystem is creating tremendous revenues that
it attracts increasing attentions from the security community.

2008 2009 2010 2011 2012 2013 2014
0

50

100

150

200

250

300

350

400
Vulnerability Disclosure Trend Per Year

0.01

0.02

0.03

0.04
#Android-aware Vulnerability Per Year
Android-aware Vulnerability Percent 1598

Figure 7. Vulnerability Disclosure Trend Per Year.

B. Vulnerability Type Trend

Figure 8. Vulnerability Type Taxonomy for android-aware vulnerability.

For the Android vulnerabilities, we identify 25 different
types of vulnerabilities based on the CWE. Then considering
these CWE types as the leaf nodes, we construct the sub-tree
structure based on the hierarchical relations among CWEs.
Finally, we can get the vulnerability taxonomy, as shown in
Figure 8. The boxes with red color refer to the vulnerability
types for the Android-aware vulnerabilities and the other
refers to the relevant CWEs generated based on their
relations. The vulnerabilities above the dash line are from the
weaknesses found in software products' functionality such as
data processing or time and state management. Here we
name them as functional vulnerability for describe

186

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:32:31 UTC from IEEE Xplore. Restrictions apply.

convenience. The vulnerabilities below the dash line are not
from the functionality but from the improper management of
the codes or the security features, and we name them as
management vulnerability.

We also calculate the percentage of the vulnerabilities
with different CWEs in each month, to explore their
evolution patterns over time (as shown in Figure 9). The
timeline can be separated into three periods:

� Period A (2008/1~2010/8): most vulnerabilities are
the functional vulnerabilities. This is because the Android-
aware ecosystem was still in its early stage and the
vulnerability market was focusing on the functionality.

� Period B (2010/9~2013/12): the management
vulnerabilities begin to appear, especially the "CWE264"
(Permissions, Privileges, and Access Control). The
functional vulnerabilities, however, still dominate.

� Period C (2014/1~2015/1): the management
vulnerabilities become the mainstream, especially the
"CWE264" and "CWE310." Both belong to the security
features.

2008/1 2009/1 2010/1 2011/1 2012/1 2013/1 2014/1 2015/1
CWE-362
CWE-200
CWE-189
CWE-19

CWE-119
CWE-22
CWE-59
CWE-20
CWE-89
CWE-94
CWE-79
CWE-78

CWE-287
CWE-310
CWE-352
CWE-255
CWE-264
CWE-284
CWE-254
CWE-399
CWE-16
CWE-17

NVD-CWE-noinfo
NVD-CWE-Other

null
Vulnerability Type Evolution

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b) (c)
Figure 9. Vulnerability Type Evolution over time.

Therefore, it is reasonable to conclude that the types in
the Android vulnerability market are transferring from the
functional vulnerabilities to the management vulnerabilities.

C. Vulnerability Severity Trend
To analyze the vulnerability severity pattern in the

market, we have studied the following two cases:
� ALL Market: all the vulnerabilities in the software

industry are taken into account.
� Android Market: only the 1,943 Android relevant

vulnerabilities are used.
We have identified three corresponding categories based

on the CVSS score:
� High: 7CVSS �
� Medium: 4.0 7CVSS� �
� Low: 4CVSS �
Figure 10 shows the comparison of the severity trend

between the whole market and the Android market from
2008/1 to 2014/8. Note that we did not consider the
vulnerabilities from 2014/9 to 2015/1, because the outbreak
happened in 2014/9 and 2014/10, which made the result

meaningless.

1) CVSS score evolution:
As shown in Figure 10(a), the average risk score for the

Android market is higher than that of the whole market for
most of the time. The average risk score for the Android
market is higher than 7, which lies in the high risk range. The
average risk score for the whole market is between 6 and 7,
which is in the medium area and it is decreasing over time.
Furthermore, as shown in Figure 10 (b), the percentage of the
high risk vulnerabilities of the Android market is
substantially higher than those of the whole market most of
the time. Hence, it can be concluded that the security
situation for the Android market is worse than that of the
whole market.

2) Exploitability Analysis:
The exploitability subscore of the CVSS is an indicator

of "likelihood to be exploited" of a vulnerability [15] in
terms of the access vector, access complexity and the
authentication. As shown in Figure 10(c), the remotely
exploitable vulnerabilities for the whole market are around
90% with a slight decrease over time. The Android market
vulnerabilities that are exploited through network, however,
are increasing over time and more than 90% vulnerabilities
are remotely exploitable since January 2012. For the access
complexity, the low complexity vulnerabilities for the whole
market are decreasing, indicating that hackers have to use
more sophisticated techniques to exploit the vulnerabilities.
On the contrary, the percentage of the low complexity
vulnerabilities in the Android market is increasing.
Furthermore, the percentage of the exploitable vulnerabilities
without authentication for the whole market is decreasing.
Almost all of the vulnerabilities in the Android market,
however, can be exploited without authentication.

Hence, it can be concluded that the vulnerabilities in the
Android market are more exploitable and easier to exploit
over time than those in the whole market. The most effective
methodology to secure the Android market is to strengthen
the authentication mechanism.

3) Impact Analysis:
The impact subscore of the CVSS evaluates the impact to

the system if the vulnerability is successfully exploited by
hackers, including the confidentiality impact referring to the
scope that attackers can access, the integrity impact referring
to the scope of what attackers can affect, and the availability
impact referring to the affection to the accessibility of the
information resources. For the vulnerabilities in the Android
market, most of them own a complete confidentiality impact,
a complete integrity impact and the availability impact. This
is because that almost all the software products require all
the access authorities whatever the authorities are needed or
not. The percentage of the vulnerabilities with a complete
impact is higher than that of the whole market. Hence, the
impact of the vulnerability exploitation in the Android
market is worse than that of the whole market.

187

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:32:31 UTC from IEEE Xplore. Restrictions apply.

2008/1 2009/1 2010/1 2011/1 2012/1 2013/1 2014/1
0

1

2

3

4

5

6

7

8

9

(a)

Average Risk Score

Average Risk Score for ALL
Average Risk Score for Andoid

High

Medium

Low

2008/1 2009/1 2010/1 2011/1 2012/1 2013/1 2014/1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b)

CVSS Serverity Category

CVSS Score < 4 for Android
CVSS Score < 7 for Android
CVSS Score <= 10 for Android
CVSS Score < 4 for ALL
CVSS Score < 7 for ALL
CVSS Score <= 10 for ALL

2008/1 2009/1 2010/1 2011/1 2012/1 2013/1 2014/1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)

Access Vector

LOCAL-Android
ADJACENT NETWORK-Android
NETWORK-Android
LOCAL-ALL
ADJACENT NETWORK-ALL
NETWORK-ALL

2008/1 2009/1 2010/1 2011/1 2012/1 2013/1 2014/1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(d)

Access Complexity

Low-Android
Medium-Android
High-Android
Low-ALL
Medium-ALL
High-ALL

2008/1 2009/1 2010/1 2011/1 2012/1 2013/1 2014/1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e)

Authentication

None-Android
Single-Android
None-ALL
Single-ALL

 2008/1 2009/1 2010/1 2011/1 2012/1 2013/1 2014/1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f)

Confidentiality Impact

NONE-Android
PARTIAL-Android
COMPLETE-Android
NONE-ALL
PARTIAL-ALL
COMPLETE-ALL

2008/1 2009/1 2010/1 2011/1 2012/1 2013/1 2014/1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(g)

Integrity Impact

NONE-Android
PARTIAL-Android
COMPLETE-Android
NONE-ALL
PARTIAL-ALL
COMPLETE-ALL

 2008/1 2009/1 2010/1 2011/1 2012/1 2013/1 2014/1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(h)

Availability Impact

NONE-Android
PARTIAL-Android
COMPLETE-Android
NONE-ALL
PARTIAL-ALL
COMPLETE-ALL

Figure 10. Vulnerability Severity Evolution over Time. "ALL" means considering all the vulnerabilities in the vulnerability market while "Android" means
only the Android-aware vulnerabilities are taken into account. For (b)~(h), the two lines in the same color refers to the same category in the two cases. For

the authentication, as the percent of the multiple authentications for both cases are nearly 0 that we don't draw them in the figure.

Therefore, the vulnerabilities in the Android market are
more exploitable than in the whole market; and the
exploitation impact is also more serious based on the
analysis of the vulnerability CVSS. Furthermore, though the
security environment in the whole market has been
improving, the Android market has been deteriorating
recently. The possible methodologies to secure the Android
market are to strengthen the authentication mechanism,
especially for the remotely assessment, and to limit the
unnecessary requirements of access authorities for the
software products.

D. Vulnerable Product Type

NA NF NL NK N TA TL TS T
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

Severity for Different Product Types

High Severity
Medium Severity
Low Severity

 NA NF NL NK N TA TL TS T
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Patching Percent

High Severity
Medium Severity
Low Severity

Figure 11. Vulnerability Frequency and Patching Percent for different
product types with different severity level. "N" refers to all the native

products including "NA","NF","NL","NK"; "S" refers to all the third-party
products including "TA","TF","TS".

Without considering the outbreak vulnerabilities owed to
Android SSL verification, we classify the vulnerabilities into
different groups based on the vulnerable product's type. We
then get the vulnerability number and patching percentage of

different groups. As shown in Fig 11(a), the percentage of
high severity risk in third-party products is larger than the
one in native products. More than 90% of the vulnerabilities
in TL are in high severity risks. The community in third-
party, however, is more activated. 86.68% high risk
vulnerabilities of the community in third-party are fixed,
while only 46.34% high risk vulnerabilities for the native
products are fixed. Additionally, patches are available for
73.92% of the third-party vulnerabilities, while only 53.41%
of the native vulnerabilities are dealt with.

V. RELATED WORK
To support the development of vulnerability discovery

models, some work has been conducted to understand the
patterns of the vulnerability disclosures in software.

Frei etc. [16] examine how vulnerabilities are discovered,
disclosed, exploited, and patched since 1995 till 2005.
Telang and Wattal [17] investigate the relations between the
disclosed vulnerability and the vendor's stock price.
Dumitras studies the vulnerabilities patterns and identifies
the potential zero-day vulnerabilities [7]. Based on the study
of the vulnerability's patching and exploited, Shahzad etc.
conclude that the response of vendors has been improving
[2]. Algarni etc. [4] identify the whole software vulnerability
market and study the motivation and methods of discoverers.
Our previous work discusses the scale-free property in the
software vulnerability market [13].

All these papers, however, consider the software
vulnerability market as a whole and most of them only
examine the popular software products such as Microsoft or

188

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:32:31 UTC from IEEE Xplore. Restrictions apply.

Adobe. The mobile ecosystem is somehow overlooked. Due
to the differences between the mobile ecosystem and the
general software products in terms of growing pattern,
ecosystem structure and consumer's behavior patterns, the
conclusions of these papers cannot be directly applied in the
mobile ecosystem. Therefore, this paper focuses on the
Android mobile vulnerability market to uncover the unique
vulnerability patterns for the Android mobile ecosystem.

VI. DISCUSSIONS & CONCLUSIONS
Android mobile ecosystem has been playing an important

role in consumers' daily life. The security situation in the
ecosystem plays an increasingly important role in the current
business environment. In order to investigate the patterns of
the Android mobile vulnerability to promote the ecosystem's
security, we have introduced an information metadata model
comprising two major components: a life cycle model based
on the vulnerable status transaction and a heterogeneous
network model which represents the relationships between
vulnerabilities, products and vendors. We have presented a
test bed of Android mobile vulnerability data collected from
a variety of sources, including the NVD, OSVDB, VN-
CERT, BID, SCP as well as vendors' websites. On the
established test bed, we have conducted an empirical
analysis to analyze the evolution patterns in the Android
mobile vulnerability market (AMVM). Our preliminary
findings reveal that the AMVM is significantly different
from the whole industry from four significant aspects:

� The Android vulnerabilities are increasing over year
and the AMVM attracts more and more attentions from the
community;

� The dominant type of vulnerability in AMVM is
transferring from the functional vulnerability into the
management vulnerability. Hence the developers need to
take additional steps to enhance the security features such as
Permissions, Privileges, and Access Control;

� The severity of vulnerabilities in AMVM is higher
than that of the whole industry. The vulnerabilities in the
Android market are also more exploitable than those of the
whole market and the vulnerabilities in android market are
becoming easier to exploit over time. The most effective
methodology to secure the Android market is to strengthen
the authentication mechanism, especially for the remote
assessment, and to limit the unnecessary requirements of
access authorities for the software products.

� Comparing with the native products, the
vulnerabilities for the third-party products are worse. The
third-party community, however, is more activated than the
native one and the third-party community also has more
available patches for the disclosed vulnerabilities.

Based on the observations discussed above, our future
research intends to study the patching and systematically
exploit patterns and behaviors in AMVM, to predict potential
vulnerabilities for the new released products and to identify
the unnecessary access authorities to improve the security of
the ecosystem.

ACKNOWLEDGMENT
This work is supported by the National Natural Science

Foundation of China grant 61070202, 61173155 and
National High-Tech Research and Development Program of
China grant 2013AA013204.

REFERENCES:
[1] A. Ghose and S. P. Han, "Estimating demand for mobile applications

in the new economy," Management science: journal of the Institute
for operations research and the management sciences, vol. 60, pp.
1470-1488, 2014.

[2] M. Shahzad, M. Z. Shafiq and A. X. Liu, "A large scale exploratory
analysis of software vulnerability life cycles," in Proceedings of the
34th International Conference on Software Engineering, Zurich,
Switzerland, 2012, pp. 771-781.

[3] S. Ransbotham, S. Mitra and J. Ramsey, "Are markets for
vulnerabilities effective?" MIS Quarterly, vol. 36, pp. 43-64, 2012.

[4] A. Algarni and Y. Malaiya, "Software vulnerability markets:
Discoverers and buyers," International Journal of Computer,
Information Science and Engineering, vol. 8, pp. 71-81, 2014.

[5] R. Anderson and T. Moore, "The economics of information security,"
Science, vol. 314, pp. 610-613, 2006.

[6] A. Arora, R. Krishnan, R. Telang, and Y. Yang, "An empirical
analysis of software vendors' patch release behavior: impact of
vulnerability disclosure," Information Systems Research, vol. 21, pp.
115-132, 2010.

[7] T. Dumitras, "Before we knew it: an empirical study of zero-day
attacks in the real world," in Proc. of the 2012 ACM conf. on
Computer and communications security, pp. 833--844, 2012.

[8] T. August and M. F. Niculescu, "The Influence of Software Process
Maturity and Customer Error Reporting on Software Release and
Pricing," Management Science, vol. 59, pp. 2702-2726, 2013.

[9] Y.S. Baker, R. Agrawal and S. Bhattacharya, "Analyzing security
threats as reported by the United States Computer Emergency
Readiness Team (US-CERT)," in Intelligence and Security
Informatics (ISI), 2013 IEEE International Conference on, Seattle,
WA, 2013, pp. 10-12.

[10] Y. Wu, H. Siy and R. Gandhi, "Empirical results on the study of
software vulnerabilities (NIER track)," in Proceedings of the 33rd
International Conference on Software Engineering, Waikiki,
Honolulu, HI, USA, 2011, pp. 964-967.

[11] A. S. Yuksel, A. H. Zaim and M. A. Aydin, "A Comprehensive
Analysis of Android Security and Proposed Solutions," International
Journal of Computer Network and Information Security, vol. 6, pp. 9-
20, 2014.

[12] M. E. Smoot, K. Ono, J. Ruscheinski, P. L. Wang, and T. Ideker,
"Cytoscape 2.8: new features for data integration and network
visualization," Bioinformatics, vol. 27, pp. 431-2, 2011-02-01 2011.

[13] K. Huang, Z. Feng, J. Li, and X. Li, "System thinking of the Software
Vulnerability Market via Complex Network Theory," in 36th IEEE
Symposium on Security and Privacy FAIRMONT, SAN JOSE, CA,
2015.

[14] I. J. Mojica, B. Adams, M. Nagappan, S. Dienst, T. Berger, and A. E.
Hassan, "A large-scale empirical study on software reuse in mobile
apps," Software, IEEE, vol. 31, pp. 78-86, 2014.

[15] M. Bozorgi, L. K. Saul, S. Savage, and G. M. Voelker, "Beyond
heuristics: learning to classify vulnerabilities and predict exploits," in
Proceedings of the 16th ACM SIGKDD international conference on
Knowledge discovery and data mining, Washington, DC, USA, 2010,
pp. 105-114.

[16] S. Frei, M. May, U. Fiedler, and B. Plattner, "Large-scale
vulnerability analysis," in Proceedings of the 2006 SIGCOMM
workshop on Large-scale attack defense, Pisa, Italy, 2006, pp. 131-
138.

[17] R. Telang and S. Wattal, "An empirical analysis of the impact of
software vulnerability announcements on firm stock price," Software
Engineering, IEEE Transactions on, vol. 33, pp. 544-557, 2007.

189

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:32:31 UTC from IEEE Xplore. Restrictions apply.

