

Evaluating Item-Item Similarity
Algorithms for Movies

Abstract
Recommender systems such as those used in e-
commerce or Video-On-Demand systems generally
show users a list of “similar items.” Many algorithms
exist to calculate item-item similarity and we wished to
evaluate how users perceive these numerically
expressed similarity. In our experiment, we performed
a user study with four similarity algorithms to evaluate
perceived correctness in item-item similarity as it
relates to movies. We implemented three algorithms:
collaborative filtering with Pearson, collaborative
filtering with cosine, and content-filtering with TF-IDF.
A pre-generated similarity list from TheMovieDB.org
(TMDb) was used as the baseline. Our experiment
showed that TMDb has the highest perceived similarity,
followed by cosine and TF-IDF, while Pearson was
practically unusable for users. A by-product of our
experiment was a set of similar movie pairs, which we
intend to use for offline evaluation.

Author Keywords
Recommender Systems; Item-item similarity;
Algorithm Evaluation.

ACM Classification Keywords
H.3.3 Information Search and Retrieval: Relevance
feedback.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
CHI'16 Extended Abstracts, May 07-12, 2016, San Jose, CA, USA
ACM 978-1-4503-4082-3/16/05.
http://dx.doi.org/10.1145/2851581.2892362

Lucas Colucci
Prachi Doshi
Kun-Lin Lee
Jiajie Liang
Yin Lin
Ishan Vashishtha
Jia Zhang
Carnegie Mellon University
Silicon Valley
Moffett Field, CA, USA
lucas.colucci@sv.cmu.edu
prachi.doshi@sv.cmu.edu
kun.lin.lee@sv.cmu.edu
jiajie.liang@sv.cmu.edu
yinlin@cmu.edu
ishan.vashishtha@west.cmu.edu
jia.zhang@sv.cmu.edu

Alvin Jude +
Ericsson Research
San Jose, CA, USA
alvinjude@acm.org

+ Corresponding Author

Late-Breaking Work: Interaction in Specific Domains #chi4good, CHI 2016, San Jose, CA, USA

2141

mailto:lucas.colucci@sv.cmu.edu
mailto:prachi.doshi@sv.cmu.edu
mailto:kun.lin.lee@sv.cmu.edu
mailto:jiajie.liang@sv.cmu.edu
mailto:yinlin@cmu.edu
mailto:ishan.vashishtha@west.cmu.edu
mailto:jia.zhang@sv.cmu.edu
mailto:alvinjude@acm.org
http://crossmark.crossref.org/dialog/?doi=10.1145%2F2851581.2892362&domain=pdf&date_stamp=2016-05-07

Introduction
Research in the area of recommender systems has had
great strides in recent years, especially since the Netflix
Prize in 2006. One of the more common approaches to
recommendations uses Collaborative Filtering (CF),
where the users’ opinion of an item is considered as
input to the recommender. Two most common forms of
CF are user-user CF [6] and item-item CF. The intuition
behind user-user CF specifically is that users of a
similar taste prefer similar items. It is therefore
possible to enumerate user-A’s taste based on her
consumption history, then to find another user, say
user-B with similar consumption, then recommend
items that were consumed by user-B to user-A.

User-user CF is commonly used to recommend items to
a user. Recommender systems are also known to
implement item-item recommendations [7], which can
be done with item-item CF or through content-based
filtering. In item-item CF, two items item-X and item-Y
are adjudged to be similar if they are frequently
consumed together, or by the same users. In content-
based filtering, items are adjudged to be similar if they
share the same genres, directors, or writers. Item-item
recommendations in general are known for being less
resource intensive and highly scalable [5]. In addition,
unlike CF approach, it is possible to recommend items
to a new or anonymous user whose consumption
behavior is unknown. This is often seen on websites
such as Amazon, Netflix, or Google Play, usually under
the heading “Items similar to this…” or “People who
liked X also liked…” followed by the list of similar items.

Algorithms that perform user-user recommendations
are easier to validate, as there is a set of ground-truth
in the form of user ratings, thus allowing for cross-

validation. In contrast, item-item algorithms are harder
to evaluate, as it is difficult to know if two items are in
fact similar. No known dataset has a pair of items and
it’s perceived similarity for cross-validation. From a
machine-learning perspective, we think of user-user
recommendations as a supervised learning problem,
and item-item recommendations as an unsupervised
learning problem, or clustering problem. So the
question is: which algorithms’ notion of similarity best
matches the users’ perception?

In this paper we evaluated users’ perception of
similarity against item-item similarity algorithms with
an experiment, and we showed that users disagree with
the algorithmic notion of similarity almost half the time.
During this process, we also collected labels from the
users regarding their perception of similarity, through
which we intend to change the problem from an
unsupervised learning problem into a supervised
learning problem.

Related Works
Von Ahn and Dabbish released a game-with-a-purpose
called ESP [2] in 2004. Here, two anonymous users
apply labels to an image, and both players are awarded
a point each if there is consensus on the labels. The
authors proposed the game be used to improve image
recognition using the supplied labels. Google later
licensed the game for use in their Image Labeller, likely
for this very purpose. ESP was the primary inspiration
for our project, but we differ in a few ways. Our system
was not intended to be a two-player game for fun.
Instead we explicitly wanted to evaluate existing
algorithms and to collect labels for offline evaluation in
the future. In this sense, our work was closer in
philosophy to the Open Mind Initiative [1].

Figure 1 An example of item-
item similarity that could be used
in practice, with a UI inspired by
the Google Play Movies and TV.
When a user selects a movie (in
this case the movie Big Buck
Bunny from 2008), movies that
are adjudged to be similar are
shown below.

Late-Breaking Work: Interaction in Specific Domains #chi4good, CHI 2016, San Jose, CA, USA

2142

GroupLens Research from the Department of Computer
Science and Engineering at the University of Minnesota
maintains a publicly accessible website MovieLens.org,
where users can submit movie ratings between 1 to 5
stars. The dataset collected is made public and often
used in recommender systems research. Unlike the ESP
game, there is no known entertainment value to using
MovieLens. It does suffer from under-contribution, but
it has been shown that users tend to contribute more
when they are aware that their contributions help
others [3].

The researchers at GroupLens have also released
LensKit [4], a set of libraries that implements
algorithms for recommender systems. We used the
item-item collaborative filtering algorithms in our
experiments with cosine and Pearson methods from
LensKit. Amazon.com reported good performance and
high quality recommendations with the cosine method.
However, we are unaware of any user study that shows
the exact definition of “high quality.”

Data set, Similarities, and Algorithms
Our database was seeded with the MovieLens 20M
dataset, which contained approximately 27,000 movies.
This dataset was augmented with movie metadata from
The Open Movie Database (OMDB)1 to add relevant
information such as cast, credits, posters, and plot
details. We used additional metadata from The Movie
Database (TMDb)2 for movie revenue, as well as
posters when it was not obtainable from OMDB.

1 http://omdbapi.com
2 https://www.themoviedb.org

For our evaluation, we built four sets of movie-movie
similarity models. Three sets were generated
algorithmically and 1 was obtained from
TheMovieDB.org. Of the three generated sets, two used
Collaborative Filtering and another used Content
Filtering techniques. Our three algorithms compared all
movies against all movies for similarity (27k X 27k).
But only the top 20 similar movies were later in the
database to reduce database size. Implementation and
details of the algorithms are provided below.

The Movie Database
TMDb has a list of similar movies on their website,
which is also obtainable through their API. We
considered this a “gold standard” in our evaluation and
representative of movie-movie similarity in existing
systems. TMDb’s similarity algorithm was unknown to
us and therefore treated as a black box. The similar
items in the list did not contain any numeric value
indicating the degree of similarity. We are therefore
unaware if the list is sorted.

Item-item Collaborative Filtering
We presented the intuition behind this method in brief
earlier: item-A is considered similar to item-B because
users who liked item-A also liked item-B. Collaborative
filtering therefore requires user input to measure the
distance between items. The MovieLens 20M dataset
contains about 20 million ratings over 27,000 movies.

The above describes the general intuition behind item-
item CF. However specific methods are required to
actually calculate the similarities. For which we used
two different algorithms: Pearson Correlation and
Cosine Similarity, both from the LensKit framework.

Figure 2 A section of the
evaluation front-end, where the
selected movie is on the left,
while the movies judged to be
similar are placed in the two rows
on the right. Movies can be
judged to be similar, not similar,
or the users can skip if they are
unsure. Details provided to the
users were sparse to encourage
them to use preexisting
knowledge to infer similarity,
rather than making a decision
based on contextual cues such as
plot line.

Late-Breaking Work: Interaction in Specific Domains #chi4good, CHI 2016, San Jose, CA, USA

2143

Content Filtering
Content filtering uses item metadata to infer similarity.
Some types of metadata available from movies include
the name, production year, plot, cast, crew and genre.
We examine the intuition behind content filtering with
this example: if movie-A and movie-B are both
romantic comedies, then they must be somewhat
similar. If movie-C is also a romantic comedy and is
written by the same writer as that of movie-A then
movie-C is more similar to movie-A than movie-B. The
benefit of a pure content filtering approach is that it
requires no prior user input. This could especially be
useful in a new system where little or no user-input
exists, which would make any form of collaborative
filtering impossible.

Various approaches exist for content filtering. We
specifically used TD-IDF [8] with the bag-of-words
approach [9]. Our implementation was done with
Lucene3, where we used dot product as a similarity
measure and weighted sum as aggregation function.

We tried a few ways to tune this algorithm, and decided
on the following based on a naïve eyeball test of the
generated results. The metadata was weighted as
follows: movie title 0.25, genres 0.2, cast 0.2 writer
0.15, director 0.1, and plot 0.1. Proper nouns were
removed from the plot using the Stanford Named Entity
Recognizer library4, as they affected results.

Methodology
The experiment consisted of 14 graduate students
(F=4) with a mean age of 25, and in a within-groups

3 http://lucene.apache.org
4 http://nlp.stanford.edu/software/CRF-NER.shtml

experiment design. The experiment was conducted in a
40-minute block, but participants were allowed to start
and finish whenever they wanted. Participants were
given a pseudorandom username and password for the
system so that no personally identifiable information
was collected. Brief training was provided to expose
participants to the features of the system, after which
they performed as many tasks as they liked. A task
consisted of selecting a movie, and then evaluating the
displayed movies for similarity. Each selected movie
(and therefore each task) allowed up to 20 evaluations.
After completing the tasks, participants filled up an exit
survey consisting of 8 questions on a five-point Likert
scale and one free-form question requesting for any
feedback they had about the experiment.

User Interface
The participants could select a movie to evaluate from
either one of the popular movies category, the random
movies category, or by searching for the movie using
the search box. The popular movies category was
static, and sorted by highest revenue with data
obtained from TMDb. The random movies category
showed a list of 12 randomly selected movies from a
pool of the 200 most rated movies in the MovieLens
dataset. We initially attempted to show a truly random
set, but it appeared to frequently show movies that
were not at all familiar to the users.

After selecting a movie, participants were presented
with a list of eight movies to evaluate. They then
decided if the movie is similar, not similar, or to skip in
case they were not familiar with the movie. After any
input from the user, the evaluated movie is visibly
removed from the list and replaced with a new option if
one exists.

Figure 3 Absolute values of user
evaluation per model.

 Total TP+FP

TMDb 1035 994

CF-Cosine 1218 1197

Content 1149 1062

CF-Pearson 1091 988

Sum 4493 4241

Table 1 Total evaluations (TP +
FP + Skipped) and condition
positive (TP +FP) for each model.

Late-Breaking Work: Interaction in Specific Domains #chi4good, CHI 2016, San Jose, CA, USA

2144

Model Fairness and Balancing
We balanced the pairwise evaluations to ensure that
each model was evaluated an equal number of times
per task. Each model generated 20 candidates, which
were selected for inclusion in the front-end in real time
depending on user input. This was done to give equal
opportunity to all models. Participants were not made
aware of the fact that there were different models.

Model Evaluation
An evaluation consists of a participants input for a
movie-movie pair. It is possible for a pair to be
generated by more than one model, in which case the
evaluation is added to all models that produced it.

Results
The experiment produced a total of 3802 responses
from the users. As some pairs were generated by
multiple models, this resulted in a total of 4493 data
points (Table 1), 6% of which were “skip”. A total of
1416 distinct movies were evaluated. Participants
performed an average of 15.7 tasks (stdev=5.3), 272
evaluations (stdev=97) and supplied 321 data points
(stdev=93). On average, it took 2.8 minutes per task.

Algorithm Evaluation
We define True Positives (TP) to be any pair produced
by a model that the user believe is similar, and False
Positive (FP) as any pair produced by a model and the
user believes to be dissimilar. Models were evaluated
by precision and false discovery rate (FDR). Precision
was defined as TP/(TP+FP). False Discovery Rate on
the other hand was calculated by including skipped
items: FDR=TP/(TP+FP+Skip). The intuition behind
FDR is to increase the possibility of a type-1 error in
favor of higher statistical power. This is contextualized

by the smaller difference between CF-Cosine and
content in FDR (Figure 5) than precision (Figure 4).

We found that TMDb has the highest precision, while
Pearson had the lowest. A Chi-squared test showed
that this difference was significant (p>0.001). A Chi-
squared post-hoc analysis with FDR adjustment showed
a significant difference between all pairs except CF-
Cosine and Content. These results validated our
assumption of TMDb as the baseline for comparison. It
also highlighted the fact that the CF-Pearson algorithm
was especially bad for item-item similarity.

Perception of Similarity Among Users
The results showed that 62% of the evaluation pairs
had complete consensus, in that no participant
disagreed on their similarity. In the rest, there was at
least one who disagreed. This showed us that perceived
similarity is definitely not universal; an item that is
perceived to be similar to one person may not be
similar to another. However, there is a good chance
that most people would agree in most cases: 62%
absolute agreement shows a high number. In the
feedback, one participant noted that they understood
why some people might think that a recent Superman
movie is “similar” to the older ones, but they didn’t
agree with it. This showed us that different people
might have different criteria in defining similarity.

Algorithmic Selection Bias
A Chi-squared test showed unequal representation from
each model, despite our attempts (p<0.01). The
differences were however not particularly large (23%-
28%). It is possible this bias could be reduced if the
models were balanced globally across all users and
tasks, instead of per task.

Figure 4 Precision per model,
where higher is better. Precision
is defined as TP / (TP + FP).

Figure 5 FDR per model, where
lower is better. FDR is defined as
FP / (TP + FP + Skip).

Late-Breaking Work: Interaction in Specific Domains #chi4good, CHI 2016, San Jose, CA, USA

2145

Model Overlap
We investigated if there were overlaps between the
top-20 similar movies generated by the models. It
appeared that only 9% of the pairs generated by one
model was also generated by another model. We
hypothesized that a large number of overlapping items
could lead to an ensemble algorithm, and will be further
investigated, possibly by increasing the number of
similar movies generated per model from 20 to 30.

User Behavior
More than half the tasks completed with the participant
submitting all 20 evaluations. We believe this could
mean it is possible for future work to request more
than 20 evaluations per task. The search feature was
used a total of 80 times, which represents 36% of all
tasks. No search term was used more than twice, and
most search terms were distinct.

User Feedback
After the tasks, participants were asked to complete an
exit survey, and all 14 participants obliged. The results
showed a positive experience towards the user
interface of the system. We noted that participants
seemed to especially like the fact that movies that were
rated were immediately replaced with new ones. One
participant noted that they discovered new movies, and
added it to their watch list. This could be relevant in
providing future users motivation to contribute.

Participants apparently prefer more information such as
metadata to help them in deciding which movies are
similar. This was in fact debated during the design
stages, and we decided to give very little information
about the movies; only a short version of the plot was
provided. We hypothesized that the plot could steer the

participants in making a biased decision, rather than
based on their preexisting knowledge of both movies.

Another interesting finding was that a majority of the
participants claim to prefer the search function over the
random set, however the random set was actually used
more. We believe this is because users exhaust the
random list, before moving on to the search feature.

Conclusions and Future Work
In this experiment, we showed that it is possible to
evaluate different item-item similarity algorithms or
models with a user study. Our study has managed to
show which algorithms are more useful than others,
and there is a high enough consensus among
participants to believe that these results are valid. We
showed that participants disagreed with approximately
43% of the algorithmically generated similar items,
which shows a clear reason why human-driven research
is required in this field. We need to better understand
why people perceive items to be similar. After which we
can focus on algorithms that model this behavior.

We propose that a public website that collects user’s
opinion of similarity, like that used in the experiment,
can (and needs to) exist. We deduce that people will be
motivated to contribute evaluations to help others, as
well as to discover movies for themselves. Assuming an
average of 2.8 minutes per task, it would be possible to
collect similarity evaluations for all 27000 movies
against a list of 20 similar movies in 1260 man-hours.

Until then, the relatively small amount of data collected
from this experiment could be useful as labels or
ground-truth to improve and evaluate algorithms
offline. This will be the next step of our research.

Figure 6 Each horizontal bar
represents one participant and
the number of evaluations
supplied. An evaluation consists
of one movie-movie pair and
perception of similarity. Total
evaluations: 3802, mean: 271.6,
stdev: 93.4, median: 258.

Late-Breaking Work: Interaction in Specific Domains #chi4good, CHI 2016, San Jose, CA, USA

2146

References
1. David G. Stork. 2000. Open data collection for

training intelligent software in the open mind
initiative. In Proceedings of the Engineering
Intelligent Systems (EIS’00).

2. Luis von Ahn and Laura Dabbish. 2004. Labeling
images with a computer game. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems (CHI '04). ACM, New York, NY,
USA, 319-326.
DOI=http://dx.doi.org/10.1145/985692.985733

3. Yan Chen Harper, F. Maxwell, Joseph Konstan, and
Sherry Xin Li. 2010. Social comparisons and
contributions to online communities: A field
experiment on movielens. The American economic
review: 1358-1398.

4. Michael D. Ekstrand, Michael Ludwig, Joseph A.
Konstan, and John T. Riedl. 2011. Rethinking the
recommender research ecosystem: reproducibility,
openness, and LensKit. In Proceedings of the fifth
ACM conference on Recommender systems (RecSys
'11). ACM, New York, NY, USA, 133-140.
DOI=http://dx.doi.org/10.1145/2043932.2043958

5. Greg Linden, Brent Smith, and Jeremy York. 2003.
Amazon. com recommendations: Item-to-item
collaborative filtering. Internet Computing,
IEEE 7.1: 76-80.

6. David Goldberg, David Nichols, Brian M. Oki, and
Douglas Terry. 1992. Using collaborative filtering to
weave an information tapestry. Commun. ACM 35,
12 (December 1992), 61-70.
DOI=10.1145/138859.138867
http://doi.acm.org/10.1145/138859.138867

7. Badrul Sarwar, George Karypis, Joseph Konstan,
and John Riedl. 2001. Item-based collaborative
filtering recommendation algorithms. In
Proceedings of the 10th International Conference
on World Wide Web (WWW '01). ACM, New York,

NY, USA, 285-295.
DOI=http://dx.doi.org/10.1145/371920.372071

8. Michael J. Greg, and Daniel Billsus. 2007. Content-
based recommendation systems. In The adaptive
web. Springer Berlin Heidelberg, 325-341.

9. Alexandrin Popescul, David M. Pennock, and Steve
Lawrence. 2001. Probabilistic models for unified
collaborative and content-based recommendation
in sparse-data environments. In Proceedings of the
Seventeenth conference on Uncertainty in artificial
intelligence (UAI'01), Jack Breese and Daphne
Koller (Eds.). Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 437-444.

Late-Breaking Work: Interaction in Specific Domains #chi4good, CHI 2016, San Jose, CA, USA

2147

	H.3.3
	OLE_LINK54
	OLE_LINK53

