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Abstract 
Recommender systems such as those used in e-
commerce or Video-On-Demand systems generally 
show users a list of “similar items.” Many algorithms 
exist to calculate item-item similarity and we wished to 
evaluate how users perceive these numerically 
expressed similarity. In our experiment, we performed 
a user study with four similarity algorithms to evaluate 
perceived correctness in item-item similarity as it 
relates to movies. We implemented three algorithms: 
collaborative filtering with Pearson, collaborative 
filtering with cosine, and content-filtering with TF-IDF. 
A pre-generated similarity list from TheMovieDB.org 
(TMDb) was used as the baseline. Our experiment 
showed that TMDb has the highest perceived similarity, 
followed by cosine and TF-IDF, while Pearson was 
practically unusable for users. A by-product of our 
experiment was a set of similar movie pairs, which we 
intend to use for offline evaluation.  
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Introduction 
Research in the area of recommender systems has had 
great strides in recent years, especially since the Netflix 
Prize in 2006. One of the more common approaches to 
recommendations uses Collaborative Filtering (CF), 
where the users’ opinion of an item is considered as 
input to the recommender. Two most common forms of 
CF are user-user CF [6] and item-item CF. The intuition 
behind user-user CF specifically is that users of a 
similar taste prefer similar items. It is therefore 
possible to enumerate user-A’s taste based on her 
consumption history, then to find another user, say 
user-B with similar consumption, then recommend 
items that were consumed by user-B to user-A.  

User-user CF is commonly used to recommend items to 
a user. Recommender systems are also known to 
implement item-item recommendations [7], which can 
be done with item-item CF or through content-based 
filtering. In item-item CF, two items item-X and item-Y 
are adjudged to be similar if they are frequently 
consumed together, or by the same users. In content-
based filtering, items are adjudged to be similar if they 
share the same genres, directors, or writers. Item-item 
recommendations in general are known for being less 
resource intensive and highly scalable [5]. In addition, 
unlike CF approach, it is possible to recommend items 
to a new or anonymous user whose consumption 
behavior is unknown. This is often seen on websites 
such as Amazon, Netflix, or Google Play, usually under 
the heading “Items similar to this…” or “People who 
liked X also liked…” followed by the list of similar items.  

Algorithms that perform user-user recommendations 
are easier to validate, as there is a set of ground-truth 
in the form of user ratings, thus allowing for cross-

validation. In contrast, item-item algorithms are harder 
to evaluate, as it is difficult to know if two items are in 
fact similar. No known dataset has a pair of items and 
it’s perceived similarity for cross-validation. From a 
machine-learning perspective, we think of user-user 
recommendations as a supervised learning problem, 
and item-item recommendations as an unsupervised 
learning problem, or clustering problem. So the 
question is: which algorithms’ notion of similarity best 
matches the users’ perception?  

In this paper we evaluated users’ perception of 
similarity against item-item similarity algorithms with 
an experiment, and we showed that users disagree with 
the algorithmic notion of similarity almost half the time. 
During this process, we also collected labels from the 
users regarding their perception of similarity, through 
which we intend to change the problem from an 
unsupervised learning problem into a supervised 
learning problem. 

Related Works 
Von Ahn and Dabbish released a game-with-a-purpose 
called ESP [2] in 2004. Here, two anonymous users 
apply labels to an image, and both players are awarded 
a point each if there is consensus on the labels. The 
authors proposed the game be used to improve image 
recognition using the supplied labels. Google later 
licensed the game for use in their Image Labeller, likely 
for this very purpose. ESP was the primary inspiration 
for our project, but we differ in a few ways. Our system 
was not intended to be a two-player game for fun. 
Instead we explicitly wanted to evaluate existing 
algorithms and to collect labels for offline evaluation in 
the future. In this sense, our work was closer in 
philosophy to the Open Mind Initiative [1]. 

 

Figure 1 An example of item-
item similarity that could be used 
in practice, with a UI inspired by 
the Google Play Movies and TV. 
When a user selects a movie (in 
this case the movie Big Buck 
Bunny from 2008), movies that 
are adjudged to be similar are 
shown below. 
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GroupLens Research from the Department of Computer 
Science and Engineering at the University of Minnesota 
maintains a publicly accessible website MovieLens.org, 
where users can submit movie ratings between 1 to 5 
stars. The dataset collected is made public and often 
used in recommender systems research. Unlike the ESP 
game, there is no known entertainment value to using 
MovieLens. It does suffer from under-contribution, but 
it has been shown that users tend to contribute more 
when they are aware that their contributions help 
others [3].  

The researchers at GroupLens have also released 
LensKit [4], a set of libraries that implements 
algorithms for recommender systems. We used the 
item-item collaborative filtering algorithms in our 
experiments with cosine and Pearson methods from 
LensKit. Amazon.com reported good performance and 
high quality recommendations with the cosine method. 
However, we are unaware of any user study that shows 
the exact definition of “high quality.” 

Data set, Similarities, and Algorithms 
Our database was seeded with the MovieLens 20M 
dataset, which contained approximately 27,000 movies. 
This dataset was augmented with movie metadata from 
The Open Movie Database (OMDB)1 to add relevant 
information such as cast, credits, posters, and plot 
details. We used additional metadata from The Movie 
Database (TMDb)2 for movie revenue, as well as 
posters when it was not obtainable from OMDB.   

                                                   
1 http://omdbapi.com 
2 https://www.themoviedb.org 

For our evaluation, we built four sets of movie-movie 
similarity models. Three sets were generated 
algorithmically and 1 was obtained from 
TheMovieDB.org. Of the three generated sets, two used 
Collaborative Filtering and another used Content 
Filtering techniques. Our three algorithms compared all 
movies against all movies for similarity (27k X 27k). 
But only the top 20 similar movies were later in the 
database to reduce database size. Implementation and 
details of the algorithms are provided below.  

The Movie Database 
TMDb has a list of similar movies on their website, 
which is also obtainable through their API. We 
considered this a “gold standard” in our evaluation and 
representative of movie-movie similarity in existing 
systems. TMDb’s similarity algorithm was unknown to 
us and therefore treated as a black box. The similar 
items in the list did not contain any numeric value 
indicating the degree of similarity. We are therefore 
unaware if the list is sorted.  

Item-item Collaborative Filtering 
We presented the intuition behind this method in brief 
earlier: item-A is considered similar to item-B because 
users who liked item-A also liked item-B. Collaborative 
filtering therefore requires user input to measure the 
distance between items. The MovieLens 20M dataset 
contains about 20 million ratings over 27,000 movies.  

The above describes the general intuition behind item-
item CF. However specific methods are required to 
actually calculate the similarities. For which we used 
two different algorithms: Pearson Correlation and 
Cosine Similarity, both from the LensKit framework. 

 

Figure 2 A section of the 
evaluation front-end, where the 
selected movie is on the left, 
while the movies judged to be 
similar are placed in the two rows 
on the right. Movies can be 
judged to be similar, not similar, 
or the users can skip if they are 
unsure. Details provided to the 
users were sparse to encourage 
them to use preexisting 
knowledge to infer similarity, 
rather than making a decision 
based on contextual cues such as 
plot line. 
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Content Filtering  
Content filtering uses item metadata to infer similarity. 
Some types of metadata available from movies include 
the name, production year, plot, cast, crew and genre. 
We examine the intuition behind content filtering with 
this example: if movie-A and movie-B are both 
romantic comedies, then they must be somewhat 
similar. If movie-C is also a romantic comedy and is 
written by the same writer as that of movie-A then 
movie-C is more similar to movie-A than movie-B. The 
benefit of a pure content filtering approach is that it 
requires no prior user input. This could especially be 
useful in a new system where little or no user-input 
exists, which would make any form of collaborative 
filtering impossible.  

Various approaches exist for content filtering. We 
specifically used TD-IDF [8] with the bag-of-words 
approach [9]. Our implementation was done with 
Lucene3, where we used dot product as a similarity 
measure and weighted sum as aggregation function.  

We tried a few ways to tune this algorithm, and decided 
on the following based on a naïve eyeball test of the 
generated results. The metadata was weighted as 
follows: movie title 0.25, genres 0.2, cast 0.2 writer 
0.15, director 0.1, and plot 0.1. Proper nouns were 
removed from the plot using the Stanford Named Entity 
Recognizer library4, as they affected results. 

Methodology 
The experiment consisted of 14 graduate students 
(F=4) with a mean age of 25, and in a within-groups 
                                                   

3 http://lucene.apache.org 
4 http://nlp.stanford.edu/software/CRF-NER.shtml 

experiment design. The experiment was conducted in a 
40-minute block, but participants were allowed to start 
and finish whenever they wanted. Participants were 
given a pseudorandom username and password for the 
system so that no personally identifiable information 
was collected. Brief training was provided to expose 
participants to the features of the system, after which 
they performed as many tasks as they liked. A task 
consisted of selecting a movie, and then evaluating the 
displayed movies for similarity. Each selected movie 
(and therefore each task) allowed up to 20 evaluations. 
After completing the tasks, participants filled up an exit 
survey consisting of 8 questions on a five-point Likert 
scale and one free-form question requesting for any 
feedback they had about the experiment.  

User Interface 
The participants could select a movie to evaluate from 
either one of the popular movies category, the random 
movies category, or by searching for the movie using 
the search box. The popular movies category was 
static, and sorted by highest revenue with data 
obtained from TMDb. The random movies category 
showed a list of 12 randomly selected movies from a 
pool of the 200 most rated movies in the MovieLens 
dataset. We initially attempted to show a truly random 
set, but it appeared to frequently show movies that 
were not at all familiar to the users.  

After selecting a movie, participants were presented 
with a list of eight movies to evaluate. They then 
decided if the movie is similar, not similar, or to skip in 
case they were not familiar with the movie. After any 
input from the user, the evaluated movie is visibly 
removed from the list and replaced with a new option if 
one exists.  

 

Figure 3 Absolute values of user 
evaluation per model. 

 Total TP+FP 

TMDb 1035 994 

CF-Cosine 1218 1197 

Content 1149 1062 

CF-Pearson 1091 988 

Sum 4493 4241 

Table 1 Total evaluations (TP + 
FP + Skipped) and condition 
positive (TP +FP) for each model. 
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Model Fairness and Balancing 
We balanced the pairwise evaluations to ensure that 
each model was evaluated an equal number of times 
per task. Each model generated 20 candidates, which 
were selected for inclusion in the front-end in real time 
depending on user input. This was done to give equal 
opportunity to all models. Participants were not made 
aware of the fact that there were different models. 

Model Evaluation 
An evaluation consists of a participants input for a 
movie-movie pair. It is possible for a pair to be 
generated by more than one model, in which case the 
evaluation is added to all models that produced it.  

Results 
The experiment produced a total of 3802 responses 
from the users. As some pairs were generated by 
multiple models, this resulted in a total of 4493 data 
points (Table 1), 6% of which were “skip”. A total of 
1416 distinct movies were evaluated. Participants 
performed an average of 15.7 tasks (stdev=5.3), 272 
evaluations (stdev=97) and supplied 321 data points 
(stdev=93). On average, it took 2.8 minutes per task.  

Algorithm Evaluation 
We define True Positives (TP) to be any pair produced 
by a model that the user believe is similar, and False 
Positive (FP) as any pair produced by a model and the 
user believes to be dissimilar. Models were evaluated 
by precision and false discovery rate (FDR). Precision 
was defined as TP/(TP+FP). False Discovery Rate on 
the other hand was calculated by including skipped 
items: FDR=TP/(TP+FP+Skip). The intuition behind 
FDR is to increase the possibility of a type-1 error in 
favor of higher statistical power. This is contextualized 

by the smaller difference between CF-Cosine and 
content in FDR (Figure 5) than precision (Figure 4).  

We found that TMDb has the highest precision, while 
Pearson had the lowest. A Chi-squared test showed 
that this difference was significant (p>0.001). A Chi-
squared post-hoc analysis with FDR adjustment showed 
a significant difference between all pairs except CF-
Cosine and Content. These results validated our 
assumption of TMDb as the baseline for comparison. It 
also highlighted the fact that the CF-Pearson algorithm 
was especially bad for item-item similarity.  

Perception of Similarity Among Users 
The results showed that 62% of the evaluation pairs 
had complete consensus, in that no participant 
disagreed on their similarity. In the rest, there was at 
least one who disagreed. This showed us that perceived 
similarity is definitely not universal; an item that is 
perceived to be similar to one person may not be 
similar to another. However, there is a good chance 
that most people would agree in most cases: 62% 
absolute agreement shows a high number. In the 
feedback, one participant noted that they understood 
why some people might think that a recent Superman 
movie is “similar” to the older ones, but they didn’t 
agree with it. This showed us that different people 
might have different criteria in defining similarity.  

Algorithmic Selection Bias 
A Chi-squared test showed unequal representation from 
each model, despite our attempts (p<0.01). The 
differences were however not particularly large (23%-
28%). It is possible this bias could be reduced if the 
models were balanced globally across all users and 
tasks, instead of per task.  

 

Figure 4 Precision per model, 
where higher is better. Precision 
is defined as TP / (TP + FP). 

 

 

Figure 5 FDR per model, where 
lower is better. FDR is defined as 
FP / (TP + FP + Skip).  
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Model Overlap 
We investigated if there were overlaps between the 
top-20 similar movies generated by the models. It 
appeared that only 9% of the pairs generated by one 
model was also generated by another model. We 
hypothesized that a large number of overlapping items 
could lead to an ensemble algorithm, and will be further 
investigated, possibly by increasing the number of 
similar movies generated per model from 20 to 30.  

User Behavior 
More than half the tasks completed with the participant 
submitting all 20 evaluations. We believe this could 
mean it is possible for future work to request more 
than 20 evaluations per task. The search feature was 
used a total of 80 times, which represents 36% of all 
tasks. No search term was used more than twice, and 
most search terms were distinct.  

User Feedback 
After the tasks, participants were asked to complete an 
exit survey, and all 14 participants obliged. The results 
showed a positive experience towards the user 
interface of the system. We noted that participants 
seemed to especially like the fact that movies that were 
rated were immediately replaced with new ones. One 
participant noted that they discovered new movies, and 
added it to their watch list. This could be relevant in 
providing future users motivation to contribute.  

Participants apparently prefer more information such as 
metadata to help them in deciding which movies are 
similar. This was in fact debated during the design 
stages, and we decided to give very little information 
about the movies; only a short version of the plot was 
provided. We hypothesized that the plot could steer the 

participants in making a biased decision, rather than 
based on their preexisting knowledge of both movies.  

Another interesting finding was that a majority of the 
participants claim to prefer the search function over the 
random set, however the random set was actually used 
more. We believe this is because users exhaust the 
random list, before moving on to the search feature.  

Conclusions and Future Work 
In this experiment, we showed that it is possible to 
evaluate different item-item similarity algorithms or 
models with a user study. Our study has managed to 
show which algorithms are more useful than others, 
and there is a high enough consensus among 
participants to believe that these results are valid. We 
showed that participants disagreed with approximately 
43% of the algorithmically generated similar items, 
which shows a clear reason why human-driven research 
is required in this field. We need to better understand 
why people perceive items to be similar. After which we 
can focus on algorithms that model this behavior. 

We propose that a public website that collects user’s 
opinion of similarity, like that used in the experiment, 
can (and needs to) exist. We deduce that people will be 
motivated to contribute evaluations to help others, as 
well as to discover movies for themselves. Assuming an 
average of 2.8 minutes per task, it would be possible to 
collect similarity evaluations for all 27000 movies 
against a list of 20 similar movies in 1260 man-hours.  

Until then, the relatively small amount of data collected 
from this experiment could be useful as labels or 
ground-truth to improve and evaluate algorithms 
offline. This will be the next step of our research.  

 

Figure 6 Each horizontal bar 
represents one participant and 
the number of evaluations 
supplied. An evaluation consists 
of one movie-movie pair and 
perception of similarity. Total 
evaluations: 3802, mean: 271.6, 
stdev: 93.4, median: 258. 
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