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Accurate and real-time prediction of water quality not only helps to assess the environ-
mental quality of water, but also effectively prevents and controls water quality emergen-
cies. In recent years, neural networks represented by Bidirectional Long Short-Term
Memory (BiLSTM) and Encoder-Decoder (ED) frameworks have been shown to be suitable
for prediction of time series data. However, traditional statistical methods cannot capture
nonlinear characteristics of the water quality, and deep learning models often suffer from
gradient disappearance and gradient explosion problems. This work proposes a hybrid
water quality prediction method called SVABEG, which combines a Savitzky-Golay (SG) fil-
ter, Variational Mode Decomposition (VMD), an Attention mechanism, BiLSTM, an ED
structure, and a hybrid algorithm called Genetic Simulated annealing-based Particle
Swarm Optimization (GSPSO). SVABEG first adopts the SG filter and VMD to remove noise
and deal with nonlinear features in the original time series, respectively. Then, SVABEG
combines BiLSTM, the ED structure and the attention mechanism to capture bi-
directional long-term correlations, realize dimensionality reduction and extract key infor-
mation, respectively. Furthermore, SVABEG adopts GSPSO to optimize its hyperparameters.
Experimental results with real-life datasets demonstrate that the proposed SVABEG out-
performs current state-of-the-art algorithms in terms of prediction accuracy.

� 2023 Elsevier Inc. All rights reserved.
1. Introduction

With the development of cities and the acceleration of urbanization, the healthy circulation of urban water is an impor-
tant basis for the healthy development of cities. It is also a basic condition for maintaining a good urban water environment
and the necessary premise for maintaining a healthy urban ecological environment [1]. The quality of water quality is closely
related to the safety of people’s lives and properties. For a long time, the water environment has been a special concern in
China. The lack of water resources in China further reflects the necessity of water resources protection. Therefore, it is very
necessary to establish an accurate water quality prediction system to improve water quality. In fact, water quality prediction
is a time series prediction problem [2]. In recent years, with the rapid development of Internet of Things technologies and
artificial intelligence, water quality detection sensors with excellent performance, good stability and small delay emerge. By
and the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2022.12.091&domain=pdf
https://doi.org/10.1016/j.ins.2022.12.091
https://doi.org/10.1016/j.ins.2022.12.091
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins


J. Bi, L. Zhang, H. Yuan et al. Information Sciences 625 (2023) 65–80
collecting the water quality information of various water quality sensors, we can obtain various water quality monitoring
indicators in a real-time manner [3].

However, how to perceive change trends of water quality in advance to predict the quality of water has become a chal-
lenge [4]. Through the multi-indicator time series data collected by high-frequency water quality sensors and its correlation
by mathematical models, we can extract the characteristics of time series and analyze the change trend of water quality.
However, it is difficult to effectively extract characteristics of multivariate time series data for the water quality prediction
[5]. At the same time, more prediction steps are needed to improve the prediction accuracy. Traditional water quality pre-
diction methods need huge and complex parameters, and the deviation of any parameter leads to low-accuracy prediction
result [6].

At present, time series forecasting methods are mainly divided into traditional statistical methods and deep learning
ones. Traditional statistical methods extract linear relations of the data, and develop many excellent models. For example,
Support Vector Machine (SVM) is widely used in time series forecasting due to fast speed and small amount of calculation
[7]. Yet, it is difficult to cope with large-scale training samples. AutoRegressive Integrated Moving Average (ARIMA)[8] com-
bines the advantages of linear and nonlinear models, and extracts nonlinear relations in time series. However, water quality
changes are affected by many factors, and its time series is complex and nonlinear. Thus, traditional statistical methods alone
cannot capture subtle changes in the water quality. Emerging deep learning techniques are widely applied to solve time ser-
ies forecasting problems. Recurrent Neural Networks (RNNs) capture long-term correlations [9]. As a typical variant, long
short-term memory (LSTM) solves problems of gradient disappearance and gradient explosion during long-sequence train-
ing [10]. Yet, it cannot derive causes of given outcomes. Artificial neural network models are also commonly used for time
series forecasting [11], but it requires a large number of parameters and long learning time.

Although LSTM has good performance in time series prediction, it is shown that bidirectional LSTM (BiLSTM) performs
better in time series prediction in some cases [12]. In addition, the Encoder-Decoder (ED) [13] provides a effective encoding
and decoding mechanism to process long-term sequences and reduce their dimensionality. In addition, an attention mech-
anism [14] focuses on the key information in the time series and filters out useless information. Furthermore, a Savitzky-
Golay (SG) filter [15] can smooth the data to remove noise in the sequence, and a variational modal decomposition
(VMD) method has excellent performance in reducing and decomposing highly complex and strongly nonlinear time series
into relatively stable subsequences [16]. Besides, there are many hyperparameters that affect the prediction performance,
and they need to be carefully selected. Existing studies show that meta-heuristic optimization algorithms can be applied
to adjust hyperparameters of training models, e.g., particle swarm optimization (PSO) [17]. The prediction performance of
other state-of-the-art algorithms is relatively low due to their relatively simple structures. In our algorithm, the SG filter
and the VMD method are used to preprocess it to make the data have more feature dimensions. We innovatively combine
BiLSTM into the ED structure to capture bidirectional dependence. Besides, Genetic Simulated annealing-based Particle
Swarm Optimization (GSPSO) is used to greatly reduce the tedious process of manual parameter setting, and the attention
mechanism is further used to process the data, thus forming a prediction model of water quality time series with higher pre-
cision. Therefore, to improve the prediction accuracy of the water quality time series, this work proposes a hybrid model

called SVABEG, which combines the SG filter, VMD, the Attention mechanism, BiLSTM, the ED structure, and GSPSO. Main
contributions of this work are summarized as:

(1) SVABEG adopts the SG filter to denoise the data to realize the data preprocessing. Then, SVABEG adopts the VMD
method to handle non-stationary time series. Specifically, the time series is decomposed with VMD to yield relatively
stable subsequences.
(2) SVABEG combines merits of the attention mechanism, BiLSTM, ED and GSPSO, serving as capturing key information,
investigating long-term dependencies, realizing feature extraction and dimensionality reduction, and optimizing hyper-
parameters, respectively.
(3) Real-life data-based experimental results demonstrate that our proposed SVABEG outperforms its several typical
peers in terms of prediction accuracy.

For clarity, we summarize major differences between this work and our prior one [18] as follows.

1. Different from [18], in this work, the noise signal in the time series is further smoothed locally, and the SG filter is adopted
to perform weighted filtering on the original data in sliding windows, which effectively retains the change information of
the original signal while maintaining the smoothness.

2. Different from [18], after the linear layer and the BiLSTM one, this work further adds the attention mechanism to extract
the key features in the time series.

3. The work in [18] only adopts a type of water quality data from the Merced River of San Joaquin River, USA. Different from
it, this work adopts two types of real-world datasets from multiple automatic stations in rivers of the Beijing-Tianjin-
Hebei region and the Merced River of the San Joaquin River, USA, to demonstrate the prediction performance of the pro-
posed SVABEG. For each dataset, we combine the characteristics of the time series data as the input.
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The remainder of the work is organized as follows. We describe the related work in Section 2 and propose the proposed
method in Section 3. The experimental results and discussions are presented in Section 4. Finally, Section 5 draws the
conclusion.
2. Related Work

2.1. Classical Prediction Methods

Accurate water quality prediction plays an important role in protecting and maintaining the health of the water environ-
ment. Recent studies have shown that traditional time series forecasting methods have been widely used in various fields.
They predict linear relations among data by analyzing and extracting data. Typical models such as ARIMA, support vector
regression (SVR), logistic regression (LR) and back propagation (BP). The study in [19] realizes short-term passenger flow
forecasting in the subway. It considers linear characteristics of the time series by combining dynamic fluctuations and
ARIMA to obtain the expected passenger flow. However, it assumes that the time series data has to be stable, and relations
among fluctuating time series data cannot be captured because ARIMA only captures linear relations among data.

To capture nonlinear characteristics in the time series data, several studies have shown that nonlinear models that deal
with more complex data are widely used to forecast nonlinear time series. Among them, SVR, LR and BP are representative
and have been widely used in various fields. The study in [20] first adopts a time series data decomposition method called
Ensemble Empirical Mode Decomposition (EEMD). It then puts the decomposed data into the SVR model for training, and
finally applies the gray wolf optimization algorithm (GWO) to optimize the parameters of SVR. Then, a hybrid model called
GWO-SVR is proposed to predict the remaining useful life of lithium-ion batteries. In addition, the study in [21] adopts the
SVR model optimized by the artificial bee colony algorithm to further predict the remaining service life of lithium-ion bat-
teries, and the experiments demonstrate that the prediction accuracy is greatly improved. The study in [22] proposes a neg-
ative stacking framework that utilizes LR models to train weak learners in drugs, and combines them together to predict new
samples, thereby improving the utilization of negative samples in drug targets. The study in [23] first obtains the individual
numerical interval of the time series, and adopts a linear extraction method to obtain the change trend in the time series
data. Finally, the change trend is then processed by a BP neural network for training to realize the long-term prediction
of the time series. However, although above-mentioned prediction methods deal with nonlinear features in the time series
data, they still do not perform well in the processing of the large-scale time series data.
2.2. Deep Learning Methods

Due to emerging technologies of big data and artificial intelligence, deep learning [24] has become an important tool to
analyze data with its powerful feature extraction and data-driven abilities. Deep learning-based models are also increasingly
adopted in the time series forecasting, such as Convolutional Neural Networks (CNN), Gated Recurrent Unit (GRU), RNN and
LSTM models. They are widely used for prediction in various areas, such as trajectory prediction, wind speed prediction,
water level prediction, signal prediction, etc.

The study in [25] proposes a three-dimensional CNN structure characterized by spatial pyramid pooling, which not only
solves a variable length problem in the time series, but also makes complex relations in patient medical records easier to
capture, thereby more effectively predicting patient risks. The study in [26] integrates an improved GRU model with a
resource separator module. It takes advantage of GRU’s ability to effectively suppress gradient disappearance, and has
low computational complexity. Then, a predictive framework is formed to further predict future resource requests. The study
in [27] adopts RNN as the Encoder and Decoder in the ED structure, respectively, and adds an attention mechanism. The
model adopts a sequence-to-sequence learning mechanism in the time series data to provide earthquake early warning with
historical time series signals. Although RNN has excellent performance in the time series prediction, it cannot solve a prob-
lem of long-term dependence in the time series data because it only has short-term memory. As one of its variants, LSTM
combines short-term and long-term memories through a special gate structure, which solves a problem of gradient disap-
pearance to a certain extent. The study in [28] adopts LSTM as the Encoder and Decoder in the ED structure, respectively. It
makes full use of the advantages of both of them, which are used to predict dynamic network links. The study in [29] pro-
poses a hybrid model that adopts LSTM for feature extraction. Then, it adopts stacked autoencoders to encode the time series
data, and adopts a multi-task learning mechanism to extract dynamic relations in the time series, thereby finally predicting
the level of urban PM 2.5. The study in [30] applies LSTM for the global training, and combines multi-season decomposition
techniques to propose a decomposition-based prediction framework. However, a problemwith modeling with LSTM is that it
cannot capture bidirectional semantic dependencies.

Different from the above studies, we innovatively combine the attention mechanism, BiLSTM and the ED structure.
Specifically, we adopt BiLSTM as the encoder and decoder of the ED structure, and make full use of their respective advan-
tages to improve the prediction accuracy of the time series.
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3. Proposed Methodology

This section gives the details of our SVABEG model. First, we introduce the SG filter in 3.1 and the VMD decomposition
method in 3.2. We then describe our proposed model in detail in 3.3. Finally, we present the hyperparameter tuning with
GSPSO in 3.4. A loss function used in the training process is described in 3.5.

3.1. SG Filter

The SG filter is a filtering technique that adopts a fit of polynomial least squares in the time domain. It can smoothly
denoise time series signals while preserving their original features. Specifically, it fits continuous subsets of adjacent data
points through the process of convolution. The SG filter has two extremely important parameters, i.e., the filter window size
[31] and the polynomial fitting order. The window size is affected by the number of convolution coefficients in the convo-
lution operation. It is assumed that a signal sample z n½ � is a sub sequence with a window size of 2mþ 1, i.e., n ¼ 2mþ 1 [32].
Then, the N-order polynomial q nð Þ used to fit data points in the window is defined as:
q nð Þ ¼
XN
m¼0

amnm ð1Þ
where am denotes the m-th coefficient of the filter.
We minimize the following function value as much as possible, i.e.,
d̂ nð Þ ¼
Xm
n¼�m

q nð Þ � z n½ �ð Þ2 ð2Þ
The output value of the polynomial is adopted as the output of the filter. Then, the data samples in the window are
updated by changing a sample, and this operation is repeated to determine the next output value of the filter, which is
described as:
y mð Þ ¼
Xm
n¼�m

�wnzm�n ¼
Xm
n¼�m

�wm�nzn ð3Þ
where �wn denotes the fixed impulse response of the SG filter.
Different polynomial coefficients correspond to different values of d̂ nð Þ. To determine the best coefficients of q nð Þ, we set

the derivative to 0. It is represented by nþ 1 equations and nþ 1 unknown coefficients.
XN
n¼0

Xm
n¼�m

niþmam

 !
¼
Xm
n¼�m

niz n½ �; i ¼ 0;1; � � � ;N ð4Þ
The matrix form of (4) is expressed as:
ATA
� �

â ¼ ATz ð5Þ
where â denotes a polynomial coefficient vector, which consists of â ¼ â0; â1; . . . ; ân½ �T. z denotes an input sample vector,

which consists of z ¼ z�m; . . . ; z�1; z0; z1; . . . ; zm½ �T. The matrix A is represented as:
A ¼

1 �m �mð Þ2 � � � �mð Þn

..

. ..
. ..

. ..
.

1 0 0 � � � 0
..
. ..

. ..
. ..

.

1 m mð Þ2 � � � mð Þn

2666666664

3777777775
ð6Þ
Therefore, the coefficient vector â is expressed as:
â ¼ eAz ð7Þ
where eA ¼ ATA
� ��1

AT. eA is only affected by the window size and the order of the filter.

3.2. VMD

The water quality time series is relatively complex and extremely unstable, and therefore, it is difficult to predict it
directly. Thus, we adopt a time series decomposition method to decompose it into several simpler subsequences. Traditional
decomposition methods such as empirical mode decomposition (EMD) [33] lacks a rigorous mathematical theory that suffers
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from mode aliasing problems. It is shown that EEMD [34] can solve such problems. However, its calculation of multiple
EMDs leads to high computational complexity. To solve above problems, this work first adopts the VMD method to decom-
pose the original time series. It decomposes the original complex sequence into multiple relatively stable sub-sequences
with a non-recursive processing strategy, thereby reducing noise interference and facilitating further prediction. As an adap-
tive time–frequency analysis method, VMD [35] is widely used for nonlinear and non-stationary signal decomposition. It
combines the Wiener filtering algorithm, the Hilbert transform and the frequency aliasing. It can reduce fluctuations in non-
linear and noisy time series, and avoid multimodal mixing problems. Compared with other signal decomposition methods,
the number of its decomposed modal components can be dynamically adjusted. These components are sparse and fluctuate
widely around the center frequency, and the signal stability is achieved by minimizing the sum of the bandwidths of each
modal component. The steps of calculating signal bandwidth of each modal component are given as follows.

3.2.1. Determining unidirectional spectrum
For each mode, the relevant analysis signal is calculated by the Hilbert transform to obtain the unidirectional spectrum. K

denotes the number of mode components. n0k tð Þ denotes a unidirectional spectrum of the k-th k ¼ 1;2; . . . ;Kð Þ mode compo-
nent, which is given as:
n0k tð Þ ¼ d tð Þ þ j
pt

� �
� uk tð Þ ð8Þ
where d tð Þ denotes a Dirichlet function and � denotes a convolution operation. j
pt denotes the result of the Fourier transform

after convolving the original signal with another one. uk tð Þ denotes the k-th bandwidth-limited eigenmode function with
tighter constraints.

3.2.2. Generating baseband
Each mode is mixed with the exponential frequency, and it is tuned to the corresponding estimated center frequency to

move the spectrum of the mode to the baseband.
nk tð Þ ¼ d tð Þ þ j
pt

� �
� uk tð Þ

� �
exp �jxktð Þ ð9Þ
where xk denotes an instantaneous center frequency of the k-th mode and nk tð Þ denotes a modulated modal function.

3.2.3. Calculating total bandwidth
The bandwidth of each modal component signal is estimated by the Gaussian smoothness of the demodulated signal, i.e.,

the square norm of the gradient. The total bandwidth of all modal component signals is calculated. The variational constraint
problem of VMD is given by:
min
uk tð Þf g xk tð Þf g

X
k

jj@t d tð Þ þ j
pt

� �
� uk tð Þ

� �
exp �jxktð Þjj22

( )
ð10Þ

s:t:
XK
k

uk tð Þ ¼ x tð Þ ð11Þ
where @t denotes a partial derivative operation, x tð Þ denotes an original signal, and jj22 denotes the L2-norm.

3.3. Proposed Model

ED is a commonly used framework for realizing time series prediction, which is composed of an encoder and a decoder.
The encoder treats the input sequence as a vector with semantics, and the decoder adopts the vector as the input to decode
the target sequence. For the input vector X;Yh i, our goal is to predict the target Y through the ED framework, which is the
predicted value given the input sequence of X. In the ED framework, other models, e.g., RNN and LSTM, can also be adopted as
encoders and decoders.

RNN models often suffer from gradient disappearance and gradient explosion problems due to the difficulty of training
long-term sequences [36]. LSTM can solve the problems generated by RNN to a certain extent through its unique gate struc-
ture. Thus, it is often adopted as the encoder and decoder in the ED framework. An LSTM consists of three gates and a cell

memory state. The hidden vectors are represented by l1;l2; � � � ;lv

n o
. The calculation of a cell state is given as:
g ¼ ls�1

ks
ð12Þ

�s ¼ f C� � gþ #�ð Þ ð13Þ
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bs ¼ f Cb � gþ #b

� 	 ð14Þ
os ¼ f Co � gþ #oð Þ ð15Þ
js ¼ �s � js�1 þ bs � tanl Cj � gþ #jð Þ ð16Þ
ls ¼ os � tanl jsð Þ ð17Þ
where C�;Cb, and Co are weight matrices, and #�; #b; #o are the biases of the LSTM cell during training, which are regarded as
parameters of the input, forget and output gates, respectively. f denotes the sigmoid function and � denotes the element-
wise multiplication. ks denotes the word embedding and ls denotes the hidden vector.

However, LSTM cannot capture the reverse relationship in the input information, resulting in the lack of some key infor-
mation in the actual prediction. To solve this problem, we adopt BiLSTM that consists of two separate LSTMs in the forward
and reverse directions. In BiLSTM, at time s, the forward LSTM computes the hidden vector �ls based on the previous hidden
vector �ls�1 and the input word embedding ks. The reverse LSTM computes the hidden vector wls based on the opposite
hidden vector wls�1 and the input word embedding ks. Finally, �ls and wls are merged into the final hidden vector, ls,
which is given as:
ls ¼ �ls;wls

 � ð18Þ
BiLSTM cannot only model contextual information in natural language processing tasks, but also effectively solve the
reverse encoding problem of LSTMs. It can capture bidirectional semantic dependencies and achieve better performance
on finer-grained classification tasks.

It is worth noting that when the input time series is very long, it is difficult to learn the reasonable vector representation.
The attention mechanism can break the restriction that the ED structure relies on a vector with fixed length in the encoding
and decoding. Thus, it is widely adopted in deep learning, and plays a prominent role in the improvement of time series
learning. It enables neural networks to focus their limited attentions on the important information of the sequence. In this
way, it extracts the most representative features of the time series, and pays less attention to the irrelevant information in
the sequence. By adding the attention mechanism into the ED framework, the time series data can be weighted and trans-
formed for improving the system performance.

Generally, a neural network system presents data as a set of numerical vectors with the same weight, weakening the dif-
ferences among features in the data. Different from it, the attention mechanism assigns different weights to different fea-
tures, and it ranks data according to their relevance [37]. Its main principle is to calculate the weight of the input
element, and the element with a higher grade is assigned to a higher weight. The attention layer consists of three parts,

i.e., an alignment layer, the attention weight and the context vector. First, for the encoding vector ĥ ¼ ĥ1; ĥ2; � � � ; ĥn

n o
and

the vertex one v̂ , we calculate their alignment score. Then, we adopt the function of softmax to normalize ĥn and calculate

its probability distribution �ai i ¼ 1;2; � � � ; nð Þ. A larger value of �ai indicates a larger weight, i.e., the information provided by ĥi

is more important. Finally, the weighted sum of all elements in ĥ is calculated, which is the output O of the attention
mechanism.
�ai ¼
exp ĥ0

iv̂
� �

Xn
j¼1

exp ĥ0
jv̂

� � ð19Þ
where ĥ0
i and ĥ0

j denote two different encoding vectors.
O ¼
Xn
i¼1

�aiĥi ð20Þ
To take full advantages of ED, BiLSTM and the attention mechanism, this work chooses BiLSTM as encoder and decoder,
and adds the attention mechanism, thus forming the SVABEGmodel. The structure diagram of the SVABEGmodel is shown in
Fig. 1. In Fig. 1, f 1; f 2; � � � ; f hf g denotes the water quality time series data, which are smoothed by the SG filter, and then the
processed data are decomposed into relatively stable subsequences with VMD. The data dimension is then changed by a lin-
ear layer. The processed time series data are denoted by f 01; f

0
2; � � � ; f 0h

� 

, and an encoder composed of BiLSTM is used to yield

the encoded sequence data f 001; f
00
2; � � � ; f 00h

� 

, which are then decoded by the decoder composed of BiLSTM. Then, the attention

mechanism is added, and a fully connected layer is used to combine the data features obtained in the above process. Finally,
prediction results of the water quality time series data are yielded.
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Fig. 1. Structure diagram of SVABEG. f 0h denotes the input at time step h in the Encoder, and f 00h denotes that at time step h in the Decoder.
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3.4. GSPSO

There are a large number of hyperparameters in our proposed model, and they include the number of layers, the batch
size, the learning rate, the dropout rate, the weight decay, the number of epochs, and the sequence length. To make the pre-
diction accuracy higher, a large number of studies have proven that adjusting the hyperparameters with PSO can increase the
prediction accuracy. This work selects an improved version of PSO called GSPSO to optimize the hyperparameters.

PSO finds the optimal solution through cooperation and information sharing among individuals in the swarm. Its advan-
tages are simplicity and easy implementation. At present, it has been widely used in neural network training, fuzzy system
control and other application fields. In standard PSO, each particle learns from its own individual extremum and the global
extremum found by the entire particle swarm to update its velocity and position. Vi ¼ v i;1;v i;2; � � � ;v i;D


 �
and

Li ¼ li;1; li;2; � � � ; li;D

 �

denote the velocity and position of the ith particle (i = 1,2,� � � ;M), where M denotes the population size,
respectively. Pi ¼ pi;1; pi;2



, . . ., pi;D� denotes the individual extremum of particle i, and G ¼ g1; g2; . . . ; gD½ � denotes the global

extremum of the whole particle swarm. v i;d and li;d denote the dth entries of Vi and Li, respectively, and they are obtained as:
v i;d ¼ b̂ � v i;d þ c1 � r1;d � pi;d � li;d
� 	þ c2 � r2;d � gd � li;d

� 	 ð21Þ

li;d ¼ li;d þ v i;d ð22Þ

b̂ ¼ bmax � bmax � bmin

amax
� a ð23Þ
where b̂ denotes the inertia weight, c1 and c2 are acceleration coefficients that determine the relative importance of Pi and G,

and r1;d and r2;d are random numbers uniformly selected in (0,1). bmax and bmin are maximum and minimum values of b̂,
respectively. a and amax denote the current iteration number and its maximum limit, respectively.

Each particle learns from both Pi and G, but if both Pi and G are in the same local optimum, it may trap into the same
solution all the time, which may lead to premature convergence. To solve this problem, GSPSO constructs a phenotypic com-
bination sample Ei ¼ ei;1; ei;2; � � � ; ei;D


 �
for each particle i to guide particles. ei;d is a linear combination of pi;d and gd, which is

used to change the velocity of each particle as follows.
v i;d ¼ b̂ � v i;d þ c � rd � ei;d � li;d
� 	 ð24Þ

ei;d ¼
c1 � r1;d � pi;d þ c2 � r2;d � gd

c1 � r1;d þ c2 � r2;d ð25Þ
For example, the fully informed particle swarm optimization algorithm [38] guides a particle to learn from all its neigh-
bors, and a sample vector includes linear combinations of all locally best individuals in the neighbors. In addition, in com-
prehensive learning PSO [39], ei;d is set to pi;d within a predefined probability range.

3.5. Training Procedure

The loss function is used to calculate the difference between the predicted value and the ground truth one. In SVABEG, to
increase the prediction accuracy, the mean square error (MSE) [40] is used as the loss function to reduce the difference
between the ground truth value ya and the predicted one ŷa. Smaller MSE means higher prediction accuracy of SVABEG.
MSE is defined as:
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MSE ¼ 1
Q

XQ
a¼1

ya � ŷað Þ2 ð26Þ
where Q denotes the number of training samples.
4. Experimental Evaluation

4.1. Dataset Description

We adopt two real-life datasets to evaluate the accuracy of our proposed SVABEG. The first dataset includes the data of
ammoniacal nitrogen (AM), which is collected from rivers in multiple automatic platforms of the Beijing-Tianjin-Hebei
region from Sept. 2018 to Dec. 2021. The second dataset includes the data of Dissolved Oxygen (DO), which is provided
by the National Water Information System of the U.S. Geological Survey in the Merced River of San Joaquin River in Newman,
California from May 2012 to Aug. 2020.

In the first dataset, we have a total of 7,100 pieces of samples. We choose the AM data of the Wucun platform as the
ground truth value, and that of other platforms as the features. For the second dataset, there are 70,000 samples in total.
It has strong periodicity, and therefore, we add the time dimension as an input feature, and divide it into three granularities,
i.e., month, day, and hour. Then, we have four features including month, day, hour and the amount of DO to predict the future
DO in the water quality. Sensors usually collect samples at intervals of 15 to 60 min, and the data in each time interval
denotes the amount of DO in this time period. For two datasets, their ratios of training, validation and test sets are set to
8:1:1.
4.2. Data Preprocessing

First, we normalize the AM and DO time series data and keep them in a unified range of (0,1) without destroying their
data distribution. The formula for the normalization is shown in (27). Then, the processed data is smoothed by the SG filter,
and the data is reconstructed by adjusting two important parameters, i.e., the window size (w) and the order (R), thereby
removing the noise in the original time series data while retaining good local characteristics. Among them, the value of w
has great influence on the filtering results. Too large w makes the filtering result smooth but deviated from the ground truth
value to some extent. Too small w makes the filtering result closer to the ground truth value, but it leads to relatively high
noise. Similarly, the choice of R has to be reasonable. Too small R leads to fast convergence with poor steady-state perfor-
mance while too large R leads to slow convergence with good steady-state performance.
eZ ¼ Z � Zmin

Zmax � Zmin
ð27Þ
where eZ denotes the normalized data, Z denotes the original data, and Zmin and Zmax denote the minimum and maximum
values of Z, respectively.

Thus, we first fix R to observe the loss of the time series after smoothing data with different w. Then, we fix w to observe
that with different R. The optimal w and R in the SG filter are determined compared with the original time series. According
to Figs. 2 and 3, when w ¼ 7 and R ¼ 5, the loss of the smoothed time series is the smallest, and therefore, we take such set-
ting of w and R for the final SG filter when predicting the AM time series. Fig. 4 shows the final AM time series after denois-
ing, which is taken as the ground truth value in its prediction. Similarly, according to Figs. 5 and 6, whenw ¼ 9 and R ¼ 5, the
loss of the smoothed time series is the smallest, and therefore, we take such setting of w and R for the final SG filter when
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Fig. 5. The smoothed DO time series with different w.
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predicting the DO time series. Fig. 7 shows the final DO time series after denoising, which is taken as the ground truth value
in its prediction.
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4.3. Evaluation Metrics

To evaluate the prediction ability of SVABEG and other models on time series data, we adopt four metrics to evaluate the
difference between the predicted value and the ground truth one. The evaluation metrics include mean absolute percentage
error (MAPE) [41], mean absolute error (MAE) [42], root mean square error (RMSE) [43] and R-squared (R2) [44]. They are
given as:
MAPE ¼ 100%
Q

XQ
a¼1

ŷa � ya
ya

���� ���� ð28Þ

MAE ¼ 1
Q

XQ
a¼1

ŷa � yaj j ð29Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Q

XQ
a¼1

ŷa � yað Þ2
vuut ð30Þ
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R2 ¼ 1�

XQ
a¼1

ya � ŷað Þ2

XQ
a¼1

ya � �yað Þ2
ð31Þ
where �ya denotes the mean of the ground truth values in the sample.

4.4. Baseline Methods

This work compares the BiLSTM-ED model with several typical baseline methods including SVR, LSTM, and LSTM-ED. We
compare the 5-step prediction errors of SVR, LSTM, LSTM-ED and BiLSTM-ED with respect to MAPE, MAE, RMSE and R2.
Tables 1 and 2 show experimental results of two datasets, respectively. Results show that the BiLSTM-ED model achieves
higher prediction accuracy for each time series.

4.5. Parameter Tuning

Following the above BiLSTM-ED model, we adopt the SG filter to denoise the original data, decompose it with VMD, and
introduce the attention mechanism. The batch size (i), the data dimension of output of the linear layer (.) and the data
dimension of LSTM output (/) are three very important parameters in this model. Too large i;. and / lead to easy conver-
gence to local optima, while too small i;. and / lead to extremely slow network training speed without convergence. There-
fore, it is essential to determine appropriate values of i;. and /. In the experiment, we set .=/. Then, we compare the loss
when i 2 16;32;64;128f g and .=/ 2 32;64;128;256f g in terms of MAPE, MAE, RMSE and R2, respectively. Tables 3 and 5
show that in the AM dataset, the loss is the smallest when i=128, and .=/=64. Tables 4 and 6 show that in the DO dataset,
the loss is the smallest when i=64, and .=/=64. Thus, we choose them as the final setting of training parameters.

To improve the prediction accuracy, we adopt GSPSO to optimize other hyperparameters of our model. Here, we select
three important hyperparameters including the number of layers (,), the dropout rate (-) and the sequence length (W),
which are optimized by GSPSO. Finally, in the AM dataset, , is 1, - is 0.73, and W is 30. In the DO dataset, , is 2, - is
0.21, and W is 50. In addition, we also compare the loss with hyperparameters optimized by GSPSO with those predicted
by other settings of hyperparameters. Table 7 and Table 8 shows the experimental results after selecting six different com-
bination hyperparameters for the AM dataset and the DO dataset, respectively. It is shown that the setting of hyperparam-
eters optimized by GSPSO has the highest prediction accuracy among all different combinations of hyperparameters.

The optimizer continuously reduces the loss by updating parameters according to their gradients. We compare four typ-
ical optimizer algorithms, i.e., Stochastic Gradient Descent (SGD), Adaptive Delta (Adadelta), Adaptive Gradient (Adagrad),
and Adaptive Moment Estimation (Adam). Fig. 8 shows the comparison of loss values for each optimizer as the number
of training iterations increases. It is shown that Adam reduces loss values and increases the convergence speed. Therefore,
Adam is finally chosen as the optimizer in SVABEG.

4.6. Comparison Of Prediction Models

According to the parameter settings, we establish the SVABEG model and fit our training samples. Fig. 9 shows the pre-
diction results of SVABEG in the first dataset. It is shown that there is a good fit between the predicted AM and the ground
truth one. In addition, we further verify the accuracy of SVABEG with the second dataset. Fig. 10 shows its predicted results
of DO. The prediction results and execution speeds of other comparison algorithms are given in the supplementary file.

To further verify the effectiveness and robustness of SVABEG, we adopt MAPE, MAE, RMSE, and R2 to compare it with SVR,
BP, LSTM, BiLSTM, EMDLSTM [45], EMDBiLSTM, STLLSTM [46] and STLBiLSTM. Tables 9 and 10 show the prediction error
results of above models for the AM and DO datasets, respectively. These evaluation indicators reflect the estimation of
the overall deviation between the predicted value and the ground truth one. It is shown that SVABEG achieves higher pre-
ison of multi-step prediction of SVR, LSTM, LSTM-ED and BiLSTM-ED for the AM dataset.

iction steps SVR LSTM LSTM-ED BiLSTM-ED

MAPE MAE RMSE R2 MAPE MAE RMSE R2 MAPE MAE RMSE R2 MAPE MAE RMSE R2

1 513.47 1.11 0.13 0.63 79.45 0.08 0.11 0.92 25.56 0.06 0.09 0.92 16.23 0.05 0.07 0.93
2 514.65 1.15 0.14 0.63 95.21 0.08 0.13 0.90 33.48 0.06 0.09 0.91 16.69 0.05 0.07 0.91
3 515.29 1.17 0.14 0.61 104.56 0.09 0.13 0.85 41.29 0.07 0.10 0.88 17.20 0.07 0.08 0.91
4 517.37 1.18 0.18 0.60 112.35 0.10 0.16 0.83 48.57 0.08 0.11 0.85 17.64 0.08 0.09 0.90
5 519.05 1.21 0.19 0.59 119.15 0.10 0.17 0.82 55.29 0.10 0.13 0.82 18.54 0.09 0.09 0.90

rage value 515.97 1.16 0.16 0.61 102.14 0.09 0.14 0.86 40.84 0.07 0.10 0.88 17.26 0.07 0.08 0.91
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Table 2
Comparison of multi-step prediction of SVR, LSTM, LSTM-ED and BiLSTM-ED for the DO dataset.

Prediction steps SVR LSTM LSTM-ED BiLSTM-ED

MAPE MAE RMSE R2 MAPE MAE RMSE R2 MAPE MAE RMSE R2 MAPE MAE RMSE R2

1 15.13 1.30 1.50 0.70 10.71 0.91 1.15 0.82 6.92 0.56 0.79 0.83 4.11 0.37 0.58 0.86
2 14.34 1.22 1.41 0.68 10.96 0.94 1.18 0.82 7.07 0.57 0.80 0.82 4.21 0.38 0.60 0.85
3 13.61 1.16 1.33 0.68 11.34 0.97 1.22 0.81 7.21 0.59 0.81 0.82 4.39 0.40 0.62 0.85
4 13.05 1.10 1.26 0.65 11.77 1.01 1.27 0.80 7.28 0.62 0.83 0.81 4.62 0.42 0.66 0.84
5 12.53 1.05 1.19 0.65 12.20 1.05 1.32 0.77 7.35 0.64 0.83 0.80 4.91 0.45 0.70 0.82

Average value 13.73 1.17 1.34 0.67 11.40 0.98 1.23 0.80 7.17 0.60 0.81 0.82 4.45 0.40 0.63 0.84

Table 3
Prediction accuracy under different values of i for
the AM dataset.

i MAPE MAE RMSE R2

16 20.34 0.12 0.16 0.84
32 19.73 0.10 0.15 0.88
64 19.23 0.12 0.16 0.87
128 18.82 0.05 0.11 0.90

Table 5
Prediction accuracy under different values of . and
/ for the AM dataset.

.(/) MAPE MAE RMSE R2

32 17.94 0.06 0.11 0.85
64 17.47 0.05 0.09 0.85
128 18.32 0.14 0.21 0.76
256 18.53 0.17 0.20 0.83

Table 4
Prediction accuracy under different values of i for
the DO dataset.

i MAPE MAE RMSE R2

16 4.93 0.27 0.32 0.85
32 4.82 0.31 0.31 0.84
64 4.29 0.23 0.30 0.86
128 4.37 0.29 0.34 0.84

Table 6
Prediction accuracy under different values of . and
/ for the DO dataset.

.(/) MAPE MAE RMSE R2

32 4.33 0.20 0.24 0.85
64 4.17 0.14 0.15 0.87
128 4.25 0.19 0.20 0.86
256 4.29 0.17 0.21 0.86

Table 7
Comparison of different combinations of hyperparameters for the AM dataset.

Combinations , - W MAPE MAE RMSE R2

Combination 1 1 0.73 12 16.72 0.10 0.12 0.84
Combination 2 1 0.06 30 17.64 0.09 0.15 0.82
Combination 3 2 0.73 30 17.29 0.09 0.12 0.82
Combination 4 1 0.06 12 16.59 0.10 0.15 0.80
Combination 5 2 0.06 30 16.84 0.11 0.17 0.75
Combination 6 2 0.06 12 17.26 0.09 0.14 0.83
Combination by GSPSO 1 0.73 30 15.78 0.03 0.04 0.89
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Table 8
Comparison of different combinations of hyperparameters for the DO dataset.

Combinations , - W MAPE MAE RMSE R2

Combination 1 1 0.41 32 4.35 0.09 0.08 0.87
Combination 2 1 0.41 50 4.37 0.10 0.06 0.86
Combination 3 2 0.41 32 4.34 0.09 0.08 0.86
Combination 4 2 0.41 50 4.36 0.13 0.10 0.88
Combination 5 1 0.21 50 4.37 0.10 0.07 0.89
Combination 6 2 0.21 32 4.33 0.11 0.06 0.90
Combination by GSPSO 2 0.21 50 4.14 0.05 0.05 0.93
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Fig. 9. AM prediction result of SVABEG.
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diction accuracy than other models in terms of MAPE, MAE, RMSE and R2. The reason is that the SG filter and VMD are used to
denoise and decompose the data respectively, the attention mechanism is used to capture key information, and GSPSO is
used to adjust the hyperparameters of SVABEG.

5. Conclusions and future work

Accurate prediction of water quality is of great significance to the water environment protection and health maintenance.
However, water quality time series shows strong instability and nonlinear characteristics. Therefore, it cannot be accurately
predicted by traditional statistical methods and a single deep learning model. To tackle this challenge, this work for the first

time proposes a comprehensive prediction model named SVABEG, which combines a Savitzky-Golay (SG) filter, Variational

Mode Decomposition (VMD), an Attention mechanism, Bidirectional Long Short-Term Memory (BiLSTM), an Encoder-

Decoder (ED) framework, and a hybrid algorithm named Genetic Simulated annealing-based Particle Swarm Optimization
(GSPSO). Specifically, we first adopt the SG filter and VMD to denoise and deal with nonlinear characteristics of the water
quality time series data, respectively. Then, the attention mechanism, BiLSTM and the ED structure are adopted to retain
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Fig. 10. DO prediction result of SVABEG.

Table 9
Comparison of different prediction models for the AM dataset.

ModelsEvaluation Metrics MAPE MAE RMSE R2

SVR 471.23 0.18 0.22 0.87
BP 502.26 0.16 0.25 0.85
LSTM 60.42 0.09 0.14 0.89
BiLSTM 59.45 0.08 0.14 0.89
EMDLSTM 50.23 0.20 0.27 0.92
EMDBiLSTM 48.10 0.22 0.33 0.93
STLLSTM 55.20 0.07 0.14 0.94
STLBiLSTM 53.27 0.07 0.13 0.92
SVABEG 15.64 0.03 0.04 0.96

Table 10
Comparison of different prediction models for the DO dataset.

ModelsEvaluation Metrics MAPE MAE RMSE R2

SVR 13.29 0.10 0.12 0.70
BP 15.96 0.09 0.10 0.68
LSTM 11.21 0.08 0.06 0.82
BiLSTM 12.14 0.07 0.07 0.84
EMDLSTM 11.40 0.05 0.08 0.89
EMDBiLSTM 10.35 0.06 0.08 0.89
STLLSTM 11.27 0.05 0.07 0.88
STLBiLSTM 11.23 0.05 0.06 0.90
SVABEG 4.02 0.03 0.04 0.94
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the important information in the time series, capture the long-term dependencies, and reduce dimension, respectively.
Finally, GSPSO is adopted to adjust hyperparameters in SVABEG to achieve higher prediction accuracy. Experimental results
based on two different real-world datasets demonstrate that compared with other typical prediction models, the proposed
SVABEG obtains the best prediction results in terms of the prediction accuracy.

Currently, we assume that the data acquisition equipments have no errors and provide complete and comprehensive
data. Yet in practice, they suffer from failure of data sensors, which results the data missing and affects the prediction accu-
racy of our model. However, in the future, we will adopt processing strategies such as interpolation to complement the data.
Besides, we also plan to study more advanced time series decomposition methods to deal with nonlinear features in the time
series, thereby further improving the accuracy of the prediction.
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