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Abstract—Currently, cloud computing service providers face big
challenges in predicting large-scale workload and resource usage
time series. Due to the difficulty in capturing nonlinear features,
traditional forecasting methods usually fail to achieve high pre-
diction performance for resource usage and workload sequences.
Besides, there is much noise in original time series of resources
and workloads. If these time series are not de-noised by smoothing
algorithms, the prediction results can fail to meet the providers’ re-
quirements. To do so, this work proposes a hybrid prediction model
named VAMBIG that integrates Variational mode decomposition,
an Adaptive Savitzky-Golay (SG) filter, a Multi-head attention
mechanism, Bidirectional and Grid versions of Long and Short
Term Memory (LSTM) networks. VAMBIG adopts a signal decom-
position method named variational mode decomposition to decom-
pose complex and non-linear original time series into low-frequency
intrinsic mode functions. Then, it adopts an adaptive SG filter as
a data pre-processing tool to eliminate noise and extreme points in
such functions. Afterwards, it adopts bidirectional and grid LSTM
networks to capture bidirectional features and dimension ones,
respectively. Finally, it adopts a multi-head attention mechanism
to explore importance of different data dimensions. VAMBIG aims
to predict resource usage and workloads in highly variable traces in
clouds. Extensive experimental results demonstrate that it achieves
higher-accuracy prediction than several advanced prediction ap-
proaches with datasets from Google and Alibaba cluster traces.

Index Terms—Cloud data centers, deep learning, LSTM,
adaptive Savitzky-Golay filter, attention mechanisms.
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1. INTRODUCTION

VER the past few decades, cloud computing is gradu-
O ally being widely adopted by many large-scale compa-
nies and organizations. The world’s leading Internet compa-
nies such as Google, Amazon, and Facebook have built their
own cloud data centers (CDCs) [1], [2]. These CDCs provide
users with computing, storage and network resources on de-
mand through a shared resource pool. Users of CDCs may
be individual users or companies. Therefore, resource requests
range from short-term resource-intensive tasks to long-running
user-oriented services. Dramatic changes in workloads cause
over or under-provisioning of resources. Cloud service providers
(CSPs) need to quickly determine resource allocation strategies
to avoid violation of service level agreements [3]. Therefore,
adaptive and accurate prediction of workloads and resource
usage is highly pressing and essential for CSPs. However,
workloads in CDCs are highly variable and fluctuate frequently.
Resource usage also changes continuously during the execu-
tion of tasks. According to [4], the average CPU usage of
entire clusters in Alibaba CDCs ranges from 10% to 80%
with high fluctuations. When users’ requests arrive at the same
time, workloads increase dramatically, thereby leading to a
shortage of available resources. On the contrary, if the work-
loads stay at a low level, idle clusters result in huge waste of
resources.

The problem of workload prediction has attracted consider-
able studies in cloud computing. Several forecasting methods
have been used for resource usage or workloads time series.
Traditional prediction methods include linear regression [5],
neural networks [6], Autoregressive Integrated Moving Aver-
age (ARIMA) [7] and Artificial Neural Network [8]. How-
ever, most of them require workloads with obvious regularity.
Besides, these methods cannot efficiently capture non-linear
characteristics of time series. Due to excellent sequence pro-
cessing capability, recurrent neural network (RNN) models and
its variants [9], [10], [11] have been widely used for highly
variable workload prediction in recent years. However, they
usually neglect the denoising process of the original time series.
In addition, they only adopt a single deep learning network
model, and cannot efficiently extract long-term dependencies or
different dimension information in workload or resource usage
data.

2377-3782 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 15:10:04 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-4610-0141
https://orcid.org/0009-0000-9357-6751
https://orcid.org/0000-0001-8475-419X
https://orcid.org/0000-0003-2148-0923
mailto:bijing@bjut.edu.cn
mailto:mahaisen@emails.bjut.edu.cn
mailto:haitao.yuan@njit.edu
mailto:jiazhang@smu.edu
https://doi.org/10.1109/TSUSC.2023.3259522

376 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 8, NO. 3, JULY-SEPTEMBER 2023

To address it, this work proposes a hybrid prediction model
named VAMBIG that integrates the Variational mode decom-
position (VMD) [12], the Adaptive Savitzky-Golay (SG) fil-
ter, the Multi-head attention mechanism, BiLSTM [13] and
GridLSTM [14]. Main contributions are three-fold:

1) VAMBIG innovatively adopts two signal processing meth-
ods in the data prepricessing stage. It applies VMD to
extract low-frequency and high-frequency features from
the original sequences. It also applies an adaptive noise
reduction method by dynamically changing critical pa-
rameters of an SG filter.

2) After data preprocessing, a hybrid LSTM-based deep
learning model combining bidirectional LSTM (BiL-
STM), grid LSTM (GridLSTM) and attention mecha-
nisms is proposed to achieve highly accurate prediction
of workloads and resource usage. In this way, long-term
dependencies and intricate characteristics in time series
are learnt.

3) Extensive experiments are conducted with real-world
workloads and resource usage to verify VAMBIG. The
results demonstrate that VAMBIG outperforms typical
benchmark methods and several RNN-based models in
terms of prediction accuracy.

For clarity, we note major differences between the current one

and our prior work [15] as follows.

1) Different from [15], this work further extracts non-linear
features of time series data, and adopts VMD to de-
compose complex and non-linear original workload and
resource usage time series into low-frequency and intrinsic
mode functions with different characteristics.

2) Different from [15], this work investigates the importance
of different output nodes of hidden layers by integrating
the attention mechanism after the layers of GridLSTM and
BiLSTM.

3) The work in [15] only adopts a single type of a dataset
from the Google cluster. Different from it, this work adopts
two types of real-world datasets from Google and Alibaba
clusters to demonstrate both robustness and prediction
performance of VAMBIG. For each dataset, we consider
three different types of the time series data including
workload, CPU usage, and RAM usage.

The rest of this work is organized as follows. Section II
introduces the related work on time series prediction. Section III
describes the model framework of VAMBIG. Section IV evalu-
ates VAMBIG via experiments with real-world workload traces
data. Finally, Section V concludes this work.

II. RELATED WORK

This section mainly introduces prediction methods for time
series, which are mainly classified into traditional prediction
methods and deep learning-based prediction ones.

A. Traditional Time Series Prediction Methods

Several classical forecasting methods are widely used in time
series forecasting and workload prediction in cloud comput-
ing. In previous studies, an autoregressive integrated moving

average (ARIMA) model is used to predict future workload
according to historical real traces of requests to web servers
in [16]. However, ARIMA has poor performance in capturing
nonlinear characteristics of time series data in a complex CDC
environment. Besides, they only adopt a single data type of web
servers. Yunus et al. [17] propose a modified ARIMA model to
simulate wind speed time series data. It adopts a decomposition
approach to split data into high-frequency and low-frequency
parts and models these two parts, respectively. Yet, it assumes
that the transformed wind-speed data is stationary, and it has less
data fluctuation than the workload data in our work. A support
vector regression (SVR)-based method is presented in [18] to
implement the long-term prediction of energy consumption.
However, it partially ignores potential features derived from
the data, especially when considering highly non-stationary and
non-linear sequences. To improve the performance of SVR, an
empirical mode decomposition (EMD) method is exploited to
extract local trends characterizing the data in the preprocessing.
Lu et al. [6] combine a K-means clustering algorithm and a
backpropagation neural network (BPNN) to predict the future
workload trend of CDCs. However, the initial value of K is dif-
ficult to determine and BPNN suffers from a vanishing gradient
problem.

In summary, most of traditional time series prediction meth-
ods are based on heuristic algorithms, traditional neural net-
works or regression methods. Yet, they require regularity or
obvious trends in the original sequence data. Different from these
methods, we concatenate two deep learning prediction models
(BiLSTM and GridLSTM) based on recurrent neural networks
to predict highly variable and non-linear workload data in CDCs.
Besides, this work considers three different types of time series
data including CPU, RAM usage and the number of arriving
tasks.

B. Deep Learning-Based Prediction Methods

Due to limitations caused by traditional forecasting methods
on data characteristics, many studies have adopted deep learning
methods to realize time series forecasting. Among them, RNN's-
based approaches have shown great success in the time series
prediction. Over the past few years, LSTMs have been adopted
to solve challenges of workload forecasting in CDCs. Huang
et al. [19] propose an RNN-LSTM model to forecast the work-
load and performance of web servers. However, combining
LSTMs into RNN structures does not guarantee improved per-
formance in the long-term prediction. A hybrid model integrat-
ing convolutional neural network (CNN) and LSTM is adopted
in [20] for the multivariate workload data prediction including
the CPU, memory, and network usage. The CNN layer extracts
spatial features of data and the LSTM one is suitable for mod-
eling temporal information. However, it does not adopt filtering
algorithms in the preprocessing stage to reduce the noise in
the raw data, thereby reducing the prediction accuracy. Chen
et al. [21] propose a gate recurrent unit (GRU)-based method
to achieve the workload prediction. Due to its different gate
structures, GRU converges more easily with fewer parameters.
However, regardless of LSTM or GRU, the prediction model
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TABLE I
DIFFERENCE BETWEEN THIS WORK AND RELATED WORKS

Predication technique ~ Non-linearity =~ Large dataset = Decomposition method — Data filtering  Attention mechanism  References
RNN-LSTM X X X X X [19]
CNN-LSTM X X X X X [20]
ARIMA v X X X X [16]
SVR X X v X X [18]
K-RVLBPNN v v X X X [6]
L-PAW v v X X X [21]
SABG v v X v X [15]
Our work v v v v v
only extracts the correlation information in the forward direction I, I, ..., I,,,—1, I),). I is used to forecast the number of ar-

between the time series data. To solve this issue, bidirectional
RNNSs are used to train their parameters in both forward and
backward directions to understand the sequence context. Ko et
al. [22] adopt BiLSTM for the wind power forecasting. However,
the wind power data adopted in their work tends to be less
volatile than the workload data from CDCs. Li et al. [23] propose
a framework based on a sparrow search algorithm (SSA) and
bidirectional GRU (BiGRU) for the oil rate forecasting. The SSA
is chosen to find appropriate hyperparameters and the BiGRU is
adopted to extract the bidirectional sequence information from
the oil rate time series.

Overall, most of deep learning-based prediction methods
adopt only one variant of RNN or LSTM. In addition to this,
these methods fail to adopt a suitable algorithm for the noise re-
duction of the original data during the data preprocessing stage.
Different from above-mentioned studies, our proposed VAM-
BiG is a novel model that integrates BILSTM, GridLSTM and
the attention mechanism to perform more accurate prediction for
large-scale and non-linear resource usage and workload data in
CDCs. BiLSTM and GridLSTM capture bidirectional features
and different dimension information, respectively. Besides, in
the data preprocessing stage, our model adopts the VMD to
extract non-linear characteristics and the adaptive SG filter to
achieve better denoising performance under low-distortion con-
ditions. The experimental results demonstrate that our proposed
VAMBIG outperforms several typical deep learning prediction
models, e.g., LSTM, BiLSTM, and GridLSTM. Table I presents
the difference between our proposed work and related works in
a holistic set of metrics: non-linearity, handling large data set,
decomposition method, data filtering, and attention mechanism.

III. MODEL FRAMEWORK

The details of VAMBIG are described, and they inlcude data
preprocessing and data prediction.

A. Problem Definition

This work addresses a problem of predicting the amount of
resource usage and the number of arriving tasks in a CDC.
The previous m time slots are the input sequence I (I =

riving tasks or the amount of resource usage ¥,,+1 at time slot
m-+1. The relation between I and ¢,, 41 is given as:

aIm—hIm)- (1)

The training objective is to minimize the error between the
predicted value 4,,,+1 and the ground-truth one /,,, 1.

Umy1 = ([, 1o, . ..

B. Long Short Term Memory (LSTM)

Compared with traditional RNNs, LSTM [24] improves the
memory capacity of network models by designing memory cells.
The memory cell is formulated as:

fe=0 Wy [hi-1+ae] + by)

i = 0 (W; - [he_y 4] + by)

¢ = tanh (Wz - [hy—1 + 2] + bz)
et =frco1+i -G

or =0 (Wy - [hi—1 + ] + by)

hi = oy - tanh (¢t) . 2)

where i, f and o denote the input, the forget, and the output
gate units. ¢ denotes a state of the LSTM cell. = denotes the
input of the LSTM cell. h;_1 denotes the output result of the
LSTM memory cell at time t—1. W denotes the weight matrix
and b denotes the bias. o(+) and tanh(-) denote the sigmoid and
hyperbolic tangent functions, respectively.

C. Signal Decomposition

Ordinary forecasting methods may lead to the loss of local
transient information of the series due to non-linear and non-
stationary characteristics of workload time series in CDCs. To
analyze local characteristics of non-linear sequences, the time
series can be regarded as signals, which can be decomposed at
multiple scales with signal decomposition methods to obtain a
simpler set of sub-signals. The features can be extracted more
easily with these sub-signals are more easily for improving final
prediction results.

VMD is an adaptive and non-recursive signal decomposition
algorithm [12]. It can be used to decompose the input time series
data into R discrete mode functions [25]. For each mode, central
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pulsation and bandwidth are determined in the VMD decompo-
sition process. To obtain the bandwidth, there are three steps
to be completed. In step one, a unilateral frequency spectrum is
obtained by the Hilbert transform for each mode. In step two, the
central frequency of each mode is evaluated by exponential tuned
to transform it into the baseband. In step three, the bandwidth
of each mode is estimated by adopting the Gaussian smoothing.
The variational problem with constraints is generalized as:

Milly,, 4, {ZR: O, Ka(t) + j) *ur(t)] oiwnt z}

r=1 L
s.t. Z ur(t) = s( 3)

where s(t) is the original input, w, denotes the r-th mode, w,
denotes the r-th mode center frequency. R denotes the number
of modes. ||||% denotes the squared L?-norm. ¢ denotes the time
step, and §(t) denotes the Dirac distribution.

To make the problem unconstrained, the augmented La-
grangian item combined with quadratic penalty and Lagrangian
multiplier A is given as:

; 2
L (ur, wy, 1) O [(5(t) + 7516) * ur(t)} e Jwrt i
R 2 R
+[s(t) = D_u(®)|| + <k(t),8(t) — Zur(t)> &)
r=1 2 r=1

The original minimization problem is solved by an alternate
direction method of multipliers (ADMM). Then, the modes
u,(t) and w, are updated by ADMM, which is given as:

s(w) — Y, g ui(w) + 202

u"H(w) =
) 14 20 (w —wy)?

wn+1 fO |UT | dw (5)
' fo |ur(w | dw

where s(w), u(w), and A(w) are the Fourier transform of s(t),
ut) and A(t), respectively.

The modes divided from the original data by utilizing VMD
are also called intrinsic mode functions (IMFs). Compared with
the original input data, the non-stationarity of IMFs is reduced.
Each IMF contains the information of a separate part of the
original time series.

D. Adaptive SG Filter

The SG filter is a widely used data smoothing and denoising
algorithm [26]. It estimates the sequence data locally within a
moving window by polynomial fitting of fixed orders. By choos-
ing a symmetric window of 2m+1 (m denotes the half length of
window) samples centered at n = 0 in a time series X [n], the
fitting polynomial is denoted by p(n), which is obtained as:

N

p(n) = Zaqnq nel—m,m). (6)

k=0

where N denotes a given polynomial order, and a, denotes the
qth coefficient of the polynomial.

Mean square error (MSE), ¢, is minimized to obtain the
optimal coefficients (aj) by the least square method, i.e.,

€= Z (p(n)— Z (Zaqnq Xn ) .

n=-—m n—=—m

The smoothed data is obtained by p(n) at the central time
step n = 0 as p(0) = ap. The above procedure is repeated for
each data point. However, the fixed coefficients of the typical SG
filter lack adaptability when time series data changes rapidly. To
improve denoise performance under low distortion conditions,
the adaptive SG filter [27] is used to dynamically change the
order of fitting polynomial according to time series. For one-
dimensional time series data, discrete curvature is introduced
to represent the fluctuation of the number of arriving tasks or
resource usage. The time series data can be considered as planar
curves. The polynomial order is adaptively selected according
to the estimation of the discrete curvature of each data point. An
estimation method of one dimensional discrete curvature based
on standard estimation methods [28] is used for the time series
data.

First, we estimate discrete curvature by the variation of tan-
gent, which is approximated by forward and backward longest
digital straight segment (DSS) of each data point. For both sides
of each data point, two DSSs and their tangents are estimated.
We compute curvature by variation between two tangents. Con-
sidering each point p;=(t;, x;) of the time series, we compute
the centered slope angle variation of p; as:

_ Ty — Ti—k
6., =t L N e e i)
ik = tan (l P——— |

Oie = Oic1 e —0i-1 k- (8)

where ¢ denotes the ith time step, k denotes the searching length
of DSS, and 6; ;, is slope of the tangent line at p;.

Besides, the forward (f; ;) and backward (b; ) searching
vectors are defined as:

fi,k = Pi—DPi+k
bi k= Pi—Di—k- 9)

To obtain the maximum length of these two searching vectors
for a DSS, we initialize a small critical angle A and a maximum
length of searching vector k,,, as the range indicator. A repre-
sents the reasonable deviation of time series data points due to
noise. When one of central Angle variations of each data point
in the sequence is equal or less than A, the sequence is regarded
as a DSS. The maximum length of searching vector is defined
as:

kr =max{k : Vs(—A < 0j352 <A+ 1<s<k)}
ky = max{k : Vs(—A < ;_s2 <A+ 1<s<k)} (10)

where ky and k; denote the maximum length of forward and
backward searching vectors, and d; » denotes the slope angle
of the tangent line of each time series data point is calculated by
the second neighbor.
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Then, Ly (L) denotes the length of the forward (backward)
DSS, which are given as:

Ly = \/(ﬂfi — Tk )2+t — tigr, )?

Ly = /(% — 21y )2+t — tiog, )?

1 (T~ Tivk
Hf = tan 1 <7'Z+f|>
t’L tz—i—kf

T; — Ti—
0, = tan* <|Zlkb|> .
tz _tz—kb

where 0 (6,) denotes angle of forward (backward) DSS.
Finally, the discrete curvature at time step i, denoted by C},
is calculated as:

(1)

(Lo + Ly)(0p + 0f)

Ci= AL,L;

(12)

The adaptive SG filter is characterized by the adaptive se-
lection of the fitting polynomial order according to discrete
curvature values of time series data. The discrete curvature of
each data point is mapped to a sequence of orders, denoted by

Order (). Order(7) is given as:
NC; 1
+3))

Order(i) = J, fl D
rder(i) = max ( , floor ( o . T3

where floor(z) generates the largest integer less than or equal
to x, and Cpyin and Cax denote the maximum and minimum
values of discrete curvature, respectively.

Consequently, we obtain a dynamically changing sequence
of orders of each data point. For each data point, the data is
smoothed by fitting polynomials of different orders.

E. Multi-Head Attention Mechanism

Instead of applying a single and common attention func-
tion [29], this work adopts the multi-head attention [30] to
explore the importance of different output dimensions of the
GridLSTM layer in VAMBIG. The Multi-head attention follows
the ideas of CNN models with multiple convolutional kernels in
each convolutional layer. Each head performs computation of
attentions simultaneously with no sharing of parameters among
each other. Eventually, computation results of each head are in-
tegrated together. It allows models to learn relevant information
about the time series in different subspaces and can extract richer
feature information. The input of the multi-head attention layer
is the output of the GridLSTM layer. The attention module has
three matrices named query @, key K and value V. The output of
the GridLSTM layer is denoted as a global feature matrix M. M
becomes the initial value of the query matrix (), the key matrix
K, and the value matrix V. It is beneficial to linearly project
these three matrices to ', K’, and V'. Then, multiple heads
that can extract related information from different dimension
features are divided by Q’, K’, and V'. The computation of the
attention function is the dot-product attention, which is given as:

17T
@K ) V. (14)

Attention (Q', K', V') = softmax
Vdy,

ym+l

Attention Layer

BiLSTM

Muiti-head Attention Layer

Grid Grid Grid
LSTM LSTM LSTM
Grid Grid Grid
LSTM LSTM LSTM
Backward V V
“Torward” BiLSTM % BiLSTM — BiLSTM
orward
£

Adaptive Savitzky-Golay Filter

Variational Mode Decomposition

Original Data

Fig. 1. Structure of VAMBIG.

where @)’ is compared to K’ by computing their similarity. The
softmax(-) denotes the softmax function.

The multi-head attention adopts the scaled dot product at-
tention in parallel for h times and h denotes the number of
heads. Furthermore, we concatenate these head vectors. Finally,
the concatenated attention enters a linear layer to generate new
representations.

MultiHead (Q’, K', V') = Concat (heady, . .
head; = Attention (Q', K', V")

., heady) W.
(15)

F. VAMBiG

As shown in Fig. 1, this work combines BiLSTM, GridLSTM
and the attention mechanism layer to achieve better prediction
performance. BiLSTM is used to train their parameters in both
forward and backward directions to understand the sequence
context. Two-dimensional GridLSTM has recurrent connections
in the dimension of depth in addition to the temporal dimen-
sion. VAMBIG stacks a GridLSTM layer in the middle of two
BiLSTM layers. First, the VMD and the adaptive SG filter are
used in the data preprocessing to improve the feature extraction
and the denoising performance, respectively. Then, we adopt
the Min-Max scaler to lessen the scale of the raw data. Then,
the processed sequence data is inputted into the first BILSTM
layer. Furthermore, we adopt the attention mechanism after
the GridLSTM Layer and the second BiLSTM one. Finally,
the output passes through a full connection layer to yield the
prediction value.
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TABLE II
PERFORMANCE COMPARISON OF DIFFERENT FILTERS

2
Methods R RMSLE RMSE
‘Workloads CPU RAM ‘Workloads CPU RAM Workloads CPU RAM
Median filter 0.920 0.876  0.434 0.546 0.498  0.797 127.4 10.1 10.5
Average filter 0.898 0.948  0.682 1.254 0.604  0.635 143.9 6.5 7.9
ASG filter 0.979 0.964  0.919 0.508 0.429  0.496 62.5 55 3.9
IV. EXPERIMENTAL RESULTS TABLE 111

We present extensive experiments to verify the efficiency of
VAMBIG with two real-world datasets. We compare VAMBIG
with its typical peers in terms of prediction accuracy.

A. Dataset and Experimental Setup

The experiments are performed on a server with 8 GB mem-
ory, and Intel® Core™ i7-7500 U CPUs with 4-core 2.70 GHz
processor and another server with 32 GB memory, and an
Nvidia RTX2080Ti GPU. We choose the cluster-usage traces
from Google’s and Alibaba’s compute clusters to obtain char-
acteristics of actual task or resource usage data. The former
dataset includes 672,003 jobs and 25,462,157 tasks in 29 days.
In this cluster data, work arrives as the form of jobs. Each job is
comprised of multiple tasks. A task represents a Linux program
that can be run on a machine. Our work adopts VAMBIG to
predict time series sequences of workloads and resource usage.
We divide 29 days into 20,880 time slots and the length of each
time slot is two minutes. The time series data of workloads and
resource usage, e.g., CPU and Random Access Memory (RAM)
usage, are counted by analyzing the timestamp in each task.
Then, three time series are obtained, as shown in Fig. 1 in the
supplementary file, available online.

Alibaba cluster traces include static and runtime information
from 4,000 machines, 9,000 online services, and 4,000,000 batch
jobs in eight days. Users submit batch jobs, e.g., MapReduce
and machine learning ones to cluster servers. We divide eight
days into 10,097 time slots, each of which lasts for two minutes.
Finally, the workload and resource usage time series from the
Alibaba cluster are obtained and shown in Fig. 2 in the supple-
mentary file, available online.

In the data preprocessing, we adopt VMD to break down the
primary workload time series and resource usage into multiple
modes. In our experiments, the primary time series data is
divided into three modes.

Additionally, several filters are further compared to verify
the performance of the adaptive SG (ASQG) filter. This section
selects four different filters (Median filter, Average filter, ASG
filter) and three evaluation metrics. These filters are adopted
for IMFs divided from workloads and resource usage. The
prediction results with different filters are listed in Table II. It is
observed that the performance of the ASG filter is much better
than Median and Average filter.

To determine the optimal combination of VAMBIG pa-
rameters, we conduct multiple trials systemically. We choose
Google’s CPU usage (Data 1) and Alibaba’s workload
(Data 2) time series as the experimental data in the following

TRAINING RESULTS OF DIFFERENT EPOCH VALUES («x) AND BATCH SIZES ()
WITH GOOGLE’S CPU USAGE AND ALIBABA’S WORKLOAD TIME SERIES

X Data 1 Data 2

B 100 250 1000 2000 100 250 1000 2000
50 1.054  0.771 0448 0.851 0.253 0.262 0.290 0.324
100 1.403 0.603 0.501 0.633  0.260 0.241 0.306  0.288
200 0.766  0.504 0.429 0444 0305 0246 0.305 0313
500 1.042 0.832 0.574 0544 0316 0286 0.227 0.291
1000 1.633 1.012 0.518 0.571 0.322 0311 0245 0.243
2000 0922 0.523 0.601 0954 0.372 0307 0.271 0.297

TABLE IV

PERFORMANCE COMPARISON OF DIFFERENT OPTIMIZERS

. Loss Value
Optimizer
Data 1 Data 2
SGD 0.0014 0.0082
Adagrad 0.0026 0.0081
Adadelta 0.0068 0.0078
RMSprop  9.0734e-06  9.3516e-04
Adam 4.6706e-06  8.5593e-04
Nadam 6.1573e-06  8.3851e-04
TABLE V

PERFORMANCE COMPARISON OF DIFFERENT TIME STEP LENGTH

Time Step Length Loss Value

Data 1 Data 2
10 1.1202e-05 0.0025
20 4.5286e-06 0.0011
30 6.2259¢-06  8.7444¢-04
40 4.3330e-06  7.0712e-04
50 5.3996e-06  8.1668e-04
60 4.0318e-06  6.7139¢-04
70 5.0274e-06  6.7139e-04

TABLE VI

PERFORMANCE COMPARISON OF DIFFERENT ACTIVATION FUNCTIONS

Activation Function Loss Value
Data 1 Data 2
Sigmoid 6.1814e-06  9.5426e-04
Tanh 6.9580e-06  8.7588e-04
Relu 4.9472e-06  8.5664e-04
Selu 6.0155e-06  8.3274e-04
Elu 8.1068e-06  9.7584e-04
TABLE VII

FINAL SETTING OF VAMBIG PARAMETERS FOR ALIBABA’S WORKLOAD

Parameters Values Description
X 60 Network input
Y 1 Network output
Structure [60, 30, 25, 10, 1] Hidden state number
Optimizer Nadam Optimization function
Batch size 500 Number of samples
Epoch value 1000 Iteration number
R 3 Number of VMD modes
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TABLE VIII
FINAL SETTING OF VAMBIG PARAMETERS FOR GOOGLE’S CPU USAGE
Parameters Values Description
X 60 Network input
Y 1 Network output
Structure [60, 35, 45, 30, 1] Hidden state number
Optimizer Adam Optimization function
Batch size 200 Number of samples
Epoch value 1000 Iteration number
R 3 Number of VMD modes
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Fig. 2. Prediction results for workload and resource usage time series with
VAMBIG.

experiments. Since epoch value (o) and batch size (5) are
critical and adjustable during model training, we choose the
two parameters. The training results are shown in Table III.
VAMBIG achieves the best prediction accuracy when a=1000
and 5 =200 (o« = 1000 and 3 = 500) with Google’s CPU usage
(Alibaba’s workload) time series. Furthermore, we select the
optimizer of Adam and Nadam during the model training. The
comparison of six optimizers is shown in Table IV. The time
step length of the input data of VAMBIG is set to 60 when the

0.015 T
A-LSTM
= —S-GridLSTM
g -~ BGLSTM
= ‘g -~ VAMBIiG
S 0.011 q
=
S
=
@
El ;
5 0.005-
2
=]
=
0 . . . |
0 200 400 600 800 1000
Iteration Count
(a) Workloads.
0.015 :
A-LSTM
) ——S-GridLSTM
s ~BGLSTM
; -~ VAMBIiG
= 0.01 q
Q
S
=)
@
=
=0 ]
@ ¥
B ; 11
= "F*‘L‘:‘“;.x. T e
0 . w
0 200 400 600 800 1000
Iteration Count
(b) CPU.
0.015 T
A-LSTM
) - S-GridLSTM
B -—-BGLSTM
; -+ VAMBIG
0.01 | q
<«
=4
S
=
@
=
3 0.005 ﬁg 1
> i
2
S s
3 %mww%h —
0 . }
0 200 400 600 800 1000
Iteration Count
(¢) RAM
Fig. 3. Loss values of VAMBIG and other three benchmark methods for

prediction of three Alibaba cluster datasets.

loss value is lowest in Table V. The comparison of different
activation functions is listed in Table VI.

Parameter settings of VAMBIG are given in Tables VII and
VIII. X and Y denote input and output dimensions. Structure
shows the hidden state number in each layer. Optimizer shows
an optimization function to conduct gradient descent. Batch size
shows the number of samples in each batch. Epoch value is the
number of iterations. Besides, R = 3, i.e., the original sequence
is decomposed into three IMFs.

B. Benchmarks

This work selects three baseline prediction methods for com-
parison to demonstrate the prediction performance our proposed
VAMBIG.

1) LSTM. LSTM is characterized by its ability to capture

long-term dependencies of time series. The parameter
setting of LSTM is demonstrated in detail by (2).

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 15:10:04 UTC from IEEE Xplore. Restrictions apply.



382

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 8, NO. 3, JULY-SEPTEMBER 2023

TABLE IX
PERFORMANCE COMPARISON OF DIFFERENT METHODS WITH GOOGLE DATA

2
Methods R RMSLE RMSE
Workloads CPU RAM Workloads CPU RAM ‘Workloads CPU RAM

LSTM 0.912 0.887 0.648 0.851 0.819 0.517 1333 9.7 8.3

BiLSTM 0.943 0.945 0.728 0.633 0.802 0.529 107.5 6.8 7.3

GridLSTM 0.920 0.801 0.600 0.803 0.763 0.550 1739 12.9 8.9

A-LSTM 0.915 0.890 0.722 0.669 0.639 0.805 133.8 9.6 7.4

A-BiLSTM 0.948 0.920 0.833 0.630 0.502 0.612 102.5 8.2 5.7

A-GridLSTM 0.922 0.848 0.900 0.799 0.979 0.802 166.2 9.1 7.6

S-LSTM 0.949 0.922 0.885 0.580 0.661 0.516 101.3 8.0 4.7

S-BiLSTM 0.966 0.941 0914 0.577 0.561 0.527 83.2 7.1 4.8

S-GridLSTM 0.945 0.915 0.885 0.559 0.701 0.732 105.6 8.4 4.5

VAMBIG 0.979 0.964 0919 0.508 0.429  0.496 62.5 5.4 3.9

TABLE X
PERFORMANCE COMPARISON OF DIFFERENT METHODS WITH ALIBABA DATA
2
Methods R RMSLE RMSE

Workloads CPU RAM Workloads CPU RAM Workloads CPU RAM
LSTM 0.630 0.741 0.729 0.407 0.352 0.339 235.8 27496.5 123.7
BiLSTM 0.661 0.764 0.748 0.447 0.368 0.359 220.3 26256.4 119.3
GridLSTM 0.734 0.742 0.752 0.377 0.393 0.342 195.2 27427.1 118.2
A-LSTM 0.736 0.762  0.748 0.360 0359  0.337 194.4 26388.9  119.1
A-BiLSTM 0.720 0.767 0.780 0.424 0.367 0.348 199.9 26066.3 122.6
A-GridLSTM 0.732 0.749 0.759 0.314 0.353 0.346 195.7 27089.6 113.6
S-LSTM 0.883 0.862 0.891 0.330 0.301 0.298 129.0 20098.1 78.8
S-BiLSTM 0.866 0.852 0.899 0.327 0.314 0.288 138.6 16991.4 75.0
S-GridLSTM 0.862 0.864 0.887 0.355 0.319 0.294 140.5 15909.7 79.7
VAMBIG 0.913 0.917 0.909 0.227 0.357 0.277 126.7 13992.1 71.6

2) BiLSTM. As an improved variant LSTM, BiLSTM com-
bines two LSTMs as forward and backward LSTM layer.
The forward LSTM processes the time series data from
t =1 to T, the backward from ¢ = T to 1, respectively.
Thus, the BiLSTM can capture features from the past and
future information. Each LSTM cell structure of BILSTM
is the same as that of the ordinary LSTM. The forward
layer with hidden state h; is calculated based on its
previous hidden states h;_; and the input at the current
time step x;. The backward layer with hidden state h 4 is
calculated based on its future hidden states h ;4; and the
input at the current time step x;. Then, the ﬁt and %t
are concatenated into the hidden layer state of BILSTM at
time step ¢, denotes as H;. They are computed as follows:

- —
I, = LSTM ( Wy, cH) te[L, 7]
— —
h:=LSTM ( h t4+1, Tty Ct41 tE[T, 1]
—
Hy=[h¢, hyl. (16)

3) GridLSTM [14]. Unlike LSTM, GridLSTM contains re-
current neural network connections along different di-
mensions. In time series prediction, Grid LSTM has cells
along two dimensions, the temporal one of the time series
itself and the vertical one along the depth. This structure

improves learning capacity of LSTM.

C. Evaluation Metrics

There are three performance evaluation metrics used to com-
pare the prediction accuracy in our experiments, i.e., R? [31],
Root Mean Squared Logarithmic Error (RMSLE) [32], and Root
Mean Square Error (RMSE) [33]. Here, y; denotes the predicted
value and y; denotes the true one. § denotes the average value of
all the samples of true values. n denotes the number of samples.
R? denotes the goodness of fit between the predicted value and
the true one. When all the predicted values equal the true ones,
the prediction performance is perfect. In this case, R? = 1.
R%*€(—00,1] and it is given as:

Zi (Z}z‘ - yi)2

> (yi — 5)2
RMSE averages the sum of squares of the difference between

all predicted values and true ones. Then, RMSE takes the square

root of the average value. When it is closer to 0, the prediction
accuracy is higher. It ranges from 0 to +o0, and it is given as:

1 n “ 2
RMSE = \/n Zi:l (9 — i)™

RMSLE is suitable for assessing whether there are large
outliers in the predicted data. Compared with RMSE, RMSLE
is less likely to be dominated by large values in the data. It is in
the range of [0, +-00] and it is given as:

RMSLE = \/ 1
n

R*=1- (17)

(18)

[ijl (log (i + 1) = log (§: + 1))*|.
19)
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D. Prediction Results

We choose the first 70% of time series data as training data
and the remaining 30% as test one. Fig. 2(a)—(c) illustrate the
predicted results and actual ones of workloads, CPU and RAM
usage with VAMBIG, respectively.

Tables IX and X show the performance comparison of
VAMBIG and different methods including LSTM, BiLSTM,
GridLSTM, A-LSTM, A-BiLSTM, A-GridLSTM, S-LSTM,
S-BiLSTM, and S-GridLSTM. The A- means that the prediction
model adopts the attention mechanism. The S- means that the
adaptive SG filter is applied in the data preprocessing stage. It
is observed from Table IX that the adaptive SG filter improves
the prediction accuracy. Besides, the attention mechanism also
enhances the performance of prediction with respect to dif-
ferent evaluation metrics. Among all these methods, VAMBIG
achieves the best performance in terms of RMSLE. Therefore,
VAMBIG outperforms other peers by combining advantages of
the adaptive SG filter, BILSTM, GridLSTM and the attention
mechanism.

Fig. 3 compares loss values of A-LSTM, S-GridLSTM,
BGLSTM [33] and SABG for workloads, CPU, and RAM
time series, respectively. The loss values decrease as epoch
values increase. It is observed that the loss values of VAMBIG
are lower than other models after iteration 800. VAMBIG has
better modeling ability than other variants of LSTM. Therefore,
VAMBIG outperforms other variants of LSTM given the same
structure and parameter settings.

E. Discussions With Real-Time-Based Strategies

In terms of reducing energy consumption in CDCs, existing
studies has proposed a series of algorithms on task scheduling.
The simulated annealing algorithm [34] assigns each pending re-
quest to the most suitable working node of underlying resources,
which guarantees the minimum response time for each request.
The study in [35] dynamically exploits proactive and reactive
scheduling methods for scheduling real-time, aperiodic and in-
dependent tasks. In summary, these approaches develop efficient
scheduling strategies for time-sensitive and high-priority tasks
while optimizing their energy cost and quality of service. In
contrast, workload and resource prediction in our work allows
CDC providers to estimate of the number of incoming tasks and
resource usage in the future. It allows CDC providers to flexibly
and more accurately allocate resources in CDCs in advance.
Thus, the two strategies can complement each other for more
accurate and efficient usage of resources in CDCs.

V. CONCLUSION

Achieving accurate forecasting of highly variable workloads
and resource usage in a cloud data center is a critical and
challenging problem for service providers. This work first adopts
variational mode decomposition and an adaptive Savitzky-Golay
filter to extract non-linear features and achieve better denoising
performance under low distortion conditions. Then, the pro-
cessed data are input into a hybrid prediction model to obtain

the prediction results. Specifically, the model named VAM-
BiG integrates Variational mode decomposition (VMD), an
Adaptive Savitzky-Golay filter, the Multi-head attention mech-
anism, Bidirectional and Grid LSTM networks. It adopts the
attention mechanism to improve the extraction ability of im-
portant sequence information. It captures bidirectional relations
and encodes implicit information from forward data points to
backward ones with bidirectional LSTM. In addition, it explores
the dimension information of time and depth in a time series with
GridLSTM. Experimental results with real-life datasets from
Google and Alibaba cluster traces demonstrate that VAMBIG
achieves more accurate prediction results than several widely
used methods.

Our next work plans to extend our work in two aspects. Al-
though VAMBIG performs well on Google and Alibaba traces,
we should apply it to different real-world workload datasets. We
also plan to further address a prediction problem of multivariate
and high-dimensional time series.
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