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Abstract—Precise and real-time prediction of future network
attacks can not only prompt cloud infrastructures to fast respond
and protect network security but also prevents economic and
business losses. In recent years, neural networks, e.g., bidirec-
tional gated recurrent unit (Bi-GRU) network and temporal
convolutional network (TCN), have been proven to be suitable for
predicting time-series data. Attention mechanisms are also widely
used for the prediction of the time series of network attacks.
This work proposes a hybrid deep learning prediction method
that combines the capabilities of Savitzky–Golay (SG) filter, TCN,
multihead self-attention, and Bi-GRU (STMB) for the prediction
of network attacks. This work first adopts an SG filter to smooth
possible outliers and noise in network attack traffic data. It
applies TCN to extract abstract features from 1-D time series
to make full use of data. It then adopts multihead self-attention
to capture internal correlations among multidimensional fea-
tures, by increasing the weights of key features and reducing
those weight of non-key features, making that STMB captures
important features adaptively. Finally, this work adopts Bi-
GRU to extract bidirectional and long-term correlations in the
time series to improve the prediction accuracy. This work also
utilizes a hybrid algorithm named genetic simulated-annealing-
based particle swarm optimizer to determine the hyperparameter
setting of STMB. Experimental results with real-life data sets
show that STMB outperforms several commonly used algorithms
in terms of prediction accuracy.

Index Terms—Gated recurrent unit (GRU), multihead self-
attention, network attack prediction, Savitzky–Golay (SG) filter,
temporal convolutional network (TCN).
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I. INTRODUCTION

NETWORK attacks are offensive actions against computer
information systems, infrastructure, computer networks,

or personal computer devices [1]. As the use of cloud services
increases, a growing number of users of Web applications lead
to changes in the network infrastructure that connects devices
running on mobile operating systems, enabling network tech-
nologies to evolve [2], [3]. Current cloud infrastructures face
a growing number of network attacks with more and more
types every day, which bring big challenges to the network
security [4]. Therefore, network attacks threaten the security
of countries and global users all the time. It is important to
pay attention to the network attacks. Accurately predicting the
number of future network attacks is an effective way to provide
preventive measures for the network security in advance.

Predicting network attack traffic for a future period falls into
a category of time-series prediction. Time-series prediction
methods can be divided into two categories, including tra-
ditional methods and deep learning ones. Traditional linear
methods, such as autoregressive (AR) [5], AR moving average
(ARMA), and AR integrated MA (ARIMA) [6], are widely
adopted in the time-series data prediction. Calheiros et al. [7]
realized a cloud workload prediction module based on
ARIMA. However, ARIMA only captures linear relations in
the data, but fails to investigate nonlinear ones. To capture
nonlinear features in the time series, researchers turn their
attentions to models suitable for complex and nonlinear data.
Among them, support vector machine (SVM) is a widely
adopted. However, storage and calculation of matrices con-
sume huge memories and computing time when dealing with
large-scale data.

The data set of network attack activities has character-
istics of huge volume, large fluctuation, nonlinear changes,
etc., which limits the effect of traditional machine learning
algorithms. First, the size of the data set affects the speed
and accuracy of prediction methods. Traditional methods
cannot handle a large amount of data, resulting in lower
prediction accuracy. Second, time-series data with large fluc-
tuations require multiple time slots for analysis. Traditional
methods mainly adopt a small number of time slots for
analysis, and therefore, it is difficult to capture key features
of the data set. Finally, traditional methods often adopt
linear models and fail to capture complex nonlinear rela-
tions in the data set of network attacks, thereby yielding
larger prediction errors. Compared with traditional methods,
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deep learning methods have significant advantages in network
attack prediction. First, deep learning methods can better
capture the nonlinear relationship in the network attack data.
Second, they have the capability of large-scale data processing
and analysis. Third, they can be better generalized to analyze
the new data, which means they are more stable in the
network attack prediction over different time periods or in
different network environments. Therefore, a deep learning-
based method is highly needed to predict future network
attacks. Recurrent neural networks (RNNs) are widely used to
predict the time-series data by mining temporal information
in the data. Long short-term memory (LSTM) is one of the
variants of RNNs, and it can alleviate gradient disappearance
problems. As another variant of RNNs, gated recurrent units
(GRUs) are suitable for building larger networks and have
only two gates, thus providing efficient computing. Despite the
popularity of RNNs, convolutional neural networks (CNNs)
have better performance and accuracy than RNNs in some
cases. In recent years, temporal convolutional network (TCN),
which combines characteristics of RNNs and CNNs, has
become an important method for the time-series prediction.
Wang et al. [8] adopted TCN for short-term and composite
forecasting of industrial users. TCN extracts the time relation-
ship between historical time series and features in a long-time
range, thereby yielding better performance. Models based on
transformer [9] also show better advantages in time-series data.
It adopts a self-attention mechanism to analyze the time-series
data, from which complex dependencies of different lengths
can be learned.

This work proposes a hybrid method named STMB based
on a Savitzky–Golay (SG) filter, a TCN, a multihead self-
attention, and a bidirectional GRU (Bi-GRU) network. To
integrate these components, the best model combination of
TCN, multihead self-attention, and Bi-GRU is determined.
First, the data filtered by the SG filter is 1-D time-series data,
and it cannot be directly processed by the multihead self-
attention. Thus, feature decomposition is required to ensure
that the data dimension in the multihead self-attention is
divisible by the number of heads. Second, the convolution
operation in TCN is suitable to extract abstract features in
the 1-D time series because it decomposes 1-D data into
multidimensional data. Third, the dimensional input of the
multihead self-attention is met by TCN, and the multihead
self-attention captures internal correlations among multiple
features. Then, the weights of key features are increased
while those of non-key features are reduced. Finally, Bi-GRU
is used to capture bidirectional, long-term, and short-term
dependence among different features to realize the prediction.
In addition to this, we adopt genetic simulated annealing-based
particle swarm optimization (GSPSO) [10] to optimize the
hyperparameter settings of STMB. Experimental results show
that STMB is superior to the most advanced baseline models
on prediction accuracy. The main contributions of this work
can be summarized into two aspects.

1) A raw sequence is logarithmically processed to approxi-
mate a normal distribution, and further used to eliminate
strong noise with an SG filter. After the data pre-
processing stage, short-term local features are first

extracted using TCN, then intrinsic connections among
features are captured using multihead self-attention, and
finally, the bidirectional and long-term correlations in
the sequence are extracted by using Bi-GRU.

2) Combining TCN and multihead self-attention with Bi-
GRU, an excellent hybrid prediction model, STMB, is
designed for network attack prediction. It is charac-
terized by extracting abstract features from 1-D time
series, assigning different weights to different features,
and capturing bidirectional, long and short-term depen-
dencies between different features. STMB provides a
new mechanism that integrates noise removal, capturing
internal correlations of abstract features, bidirectional
and long-term ones of network attack time series,
thereby yielding higher prediction accuracy. In addition,
this work designs a novel algorithm named GSPSO to
optimize the hyperparameter settings of STMB. Through
the experiments on two real-life data sets, STMB is
proven to consistently outperform its updated peers.

For clarity, we note major differences between the current
one and our prior work [11] as follows.

1) The study in [11] adopts a bidirectional LSTM (Bi-
LSTM) model to extract bidirectional and long-term
correlations in the sequences. Bi-GRU has no gated for-
getting units and owns fewer parameter updates during
the training, making it less computationally intensive
and faster to train. Thus, this work adopts Bi-GRU to
improve the convergence speed and prediction accuracy
of STMB.

2) The study in [11] determines the setting of the number
of previous time steps only by a limited number of trials.
GSPSO automatically determines the hyperparameter
setting of STMB according to the characteristics of the
data, which avoids the low prediction accuracy caused
by manually fixed parameters. Thus, this work adopts
GSPSO to optimize it for finding the best setting in its
given range, thereby yielding higher prediction accuracy.

3) The study in [11] only adopts a single type of data set.
Different from it, this work adopts two types of different
data sets to demonstrate the prediction performance and
robustness of our proposed STMB. Two types of dif-
ferent data sets have different periodic changes, noises,
and outliers. The experimental results demonstrate that
STMB yields better prediction results than several state-
of-the-art prediction models given two data sets.

The remainder of the work is organized as follows. We
describe the related work in Section II and show the proposed
method in Section III. The experimental results and discus-
sions are presented in Section IV. Finally, conclusions are
drawn in Section V.

II. RELATED WORK

Accurate and real-time prediction of network attacks sig-
nificantly reduces the loss of network facilities, and effective
actions can be taken. Current studies about the prediction of
network attacks can be mainly divided into classical network
attack methods and deep learning-based network attack ones.
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A. Classical Network Attack Methods

Classical network attack methods aim to predict and
detect different network attacks separately with machine
learning methods like Markov stochastic processes and
Bayesian networks to obtain the intent of network attackers.
Moudoud et al. [12] proposed a Markov stochastic process-
based security model for predicting and detecting network
attacks. Due to the limitation of Markov randomness, it is only
suitable for short-term prediction and its effect of medium and
long-term prediction is not good. Huang et al. [13] involved
Bayesian networks for attack prediction in a framework.
However, there are no improvement in the prediction method
itself and it cannot make long-term prediction. Data from
honeypots are used by Bar et al. [14] for modeling of attack
propagation with Markov chains, and they observed several
frequent patterns of attack propagation. However, it cannot
predict the scale of future network attacks.

In addition to the above prediction methods, there is another
class of methods to predict network attacks by using the
time-series data with machine learning methods like AR and
ARIMA. Werner et al. [15] adopted ARIMA to predict the
number of network attacks in the coming day. However, its
data is not preprocessed and ARIMA only captures linear
relations in the data, but fails to investigate nonlinear ones.
Okutan et al. [16] designed a network attack prediction system.
It adopts a set of signals predicted by ARIMA to improve
the prediction performance. However, ARIMA cannot capture
nonlinear features of the sequence only by the approximate
linear fitting. Bi et al. [17] proposed a method that combines
wavelet decomposition and ARIMA to predict network tasks.
However, ARIMA is highly sensitive to local outliers, and the
prediction results are significantly affected.

Different from them, this work predicts the number of
network attacks in the future by using time-series data with
deep learning methods to prepare for dealing with network
attacks in advance. Deep learning methods capture non-
linear features in the sequence and achieve higher predict
performance.

B. Deep Learning-Based Network Attack Methods

Due to improved computing power and the emergence
of optimization algorithms, deep learning methods have
become popular in predicting and detecting network attacks.
Lu et al. [18] proposed a deep belief network detection method
based on total extreme value optimization to detect network
attacks. However, its training requires a large number of data
samples, and the process is more complicated, requiring a
long time of training and optimization. Al-Abassi et al. [19]
proposed an attack detection model that adopts a deep neural
network and a decision tree classifier to detect cyber-attacks
from new representations. However, this method is trained on
a single data set, and it is difficult to extend to other network
environments. Ganesh et al. [20] designed a layered long and
short-term memory model to process raw data streams from
relevant online cyber–physical system sensors and continu-
ously monitor embedded signals in the data to detect and
characterize attacks. However, the modeling ability of this

TABLE I
LIST OF ABBREVIATIONS

method for long sequences is weak. Current deep learning-
based methods are mainly about detecting and identifying
incoming network attacks. In the face of such increasingly
intelligent, complex, and massive network attacks, traditional
methods cannot accurately predict malicious intrusion network
attacks. Thus, it is equally important to predict the number of
network attacks in the future moment.

Different from these studies, we innovatively combine TCN
and Bi-GRU and add a multihead self-attention mechanism
into the model to further improve the prediction accuracy
of future network attacks based on past network attack
traffic. Specifically, after the processing by the SG filter,
TCN extracts short-term and local features in the sequence,
and the multihead self-attention mechanism captures intrinsic
correlations of features. Finally, Bi-GRU captures bidirectional
and long-term correlations in the sequence to realize the final
prediction.

III. PROPOSED METHODOLOGY

This section introduces the details of STMB. To fully exploit
their advantages, we combine four parts into a novel hybrid
model to further improve the prediction accuracy. First, the
sequence problem is described in Section III-A. Second, we
introduce the details of the SG filter, TCN, the multihead self-
attention, and Bi-GRU, respectively, in Sections III-B–III-E.
And the details of the overall framework of STMB are given
in Section III-F. Third, we present the GSPSO used in the
experiment to optimize the hyperparameter setting and its
specific steps. Finally, we introduce our training procedure in
Section III-H. For clarity, a list of abbreviations of our method
is summarized in Table I.
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A. Problem Definition

Sequence modeling in the time-series forecasting has been
widely used. X = {x1, . . . , xt, . . . , xT} denotes the time series
and the length of the time series is T . xt denotes the number
of network attacks in time slot t. X̄ = {x̄1, . . . , x̄t, . . . , x̄T}
denotes a sequence with the length of T , processed by the
SG filter. X̂ = {x̂1, . . . , x̂t, . . . , x̂T} denotes a sequence with
the length of T after the feature extraction phase with TCN.
˜X = {̃x1, . . . , x̃t, . . . , x̃T} denotes a sequence with the length
of T after the feature selection phase with the multihead self-
attention. ŷT and yT denote the predicted value with the step
length of 1 and its ground-truth value, respectively. The data
in previous T time steps is used to predict the value at the
time step T +1. Our goal is to minimize the prediction error to
acquire the nonlinear mapping from the input to the predicted
result. Thus, a nonlinear function of SM(·) is defined as

ŷT = SM(X). (1)

B. Savitzky–Golay Filter

Time-series data can be predicted more accurately by
smoothing and de-noising the original sequence [21]. We adopt
the SG filter [22] to achieve this because it ensures that the
shape and width of the data remain constant while filtering
noise. A subsequence of X with a window size of n = 2m + 1
is expressed as

{xs−m, . . . , xs, . . . , xs+m}, s ∈ [m + 1, T − m]. (2)

The R-order polynomial p(i) adopted to fit data points
within the window is defined as

p(i) =
R

∑

v=0

aviv, i ∈ [−m, m] (3)

where av denotes the vth coefficient of the SG filter.
Then, we adopt the least-square method to minimize the

following error ε, which is defined as:

ε =
m

∑

i=−m

(p(i) − xs+i)
2. (4)

Then, the best fitting p(0) of the window center point xs

is obtained by calculating a0. By translating the window,
each point in X is a center point in the window. Finally, the
smoothed sequence X̄ is obtained.

C. Temporal Convolutional Network

TCN is a special 1-D fully CNN [23], which includes
causal convolution, dilated one, and residual block. Causal
convolution ensures that the value in time step t in the upper
layer depends only on those in time step t and before in
the lower layer. For a one-dimension input l and a filter
f : {0, 1, . . . , k − 1}, the 1-D casual convolutional layer is
expressed as

F(lt) = (l � f )(t) =
k−1
∑

j=0

fjlt−j (5)

sequence = (F(l1), F(l2), . . . , F(lT)) (6)

where sequence denotes an output sequence, F(·) denotes a
convolutional operation, and k denotes the convolutional kernel
size.

The dilated convolution skips a part of the input with
hyperparameters. Thus, the filter can operate at a range larger
than itself. When it is combined with the causal convolution,
the dilated convolution of the rth layer is defined as

F(lt) = (

l �dr f
)

(t) =
k−1
∑

j=0

fjlt−drj (7)

sequence = (F(l1), F(l2), . . . , F(lT)) (8)

where dr denotes a dilation factor of layer r, which can be
set to 2r−1. More details about (7) can be found in previous
studies [11]. Equation (8) represents a temporal convolutional
layer, and TCN is constructed by stacking multiple layers.

The temporal convolutional layers are combined into blocks
and residual connections are placed among the blocks. Each
residual block has two dilated convolution layers, which have
a rectified linear units (ReLUs) function. In addition, TCN
realizes the regularization by adding dropout [24] to each
residual block after the dilated convolution.

D. Multihead Self-Attention

This work adopts the multihead self-attention [25] as
an attention module. The input is the sequence X̂ =
{x̂1, . . . , x̂t, . . . , x̂T} after TCN’s feature extraction. Inside the
module, there are three matrices, query (Q), key (K), and
value (V). Q, K, and V are linearly transformed from the input
matrix. First, they are projected linearly onto Q′, K′, and V ′.
Furthermore, they are divided into multiple heads to extract the
related information from different features. Each head in Q, K,
and V is denoted by Q′

h, K′
h, and V ′

h, where h ∈ {1, 2, . . . , H}
and H denotes the number of heads. In query Q′

h, the weight
distribution over the entire sequence is calculated based on the
similarity between the query (Q′

h) and the key (K′
h). For each

query, the compact and dynamic representation brings more
related information into the sequence by adding weights to the
value (V ′

h). We adopt a scaled dot operation to measure the
similarity, which is given as

Attention
(

Q′
h, K′

h, V ′
h

) = SoftMax

⎛

⎝

Q′
hK′

h
√

dK′
h

⎞

⎠V ′
h (9)

where SoftMax(·) denotes a softmax function, and dK′
h

denotes
the dimension of a vector in K′

h.
Then, we combine multiple attentions by concatenating

these head vectors. Finally, the combined attention enters a
linear layer to obtain new representations. Here, Q = K = V

headh = Attention
(

Q′
h, K′

h, V ′
h

)

(10)

Multihead = Concat(head1, . . . , headh)W. (11)

E. Bi-GRU

The yielded result after the multihead self-attention is
˜X = {̃x1, . . . , x̃t, . . . , x̃T}. ˜X is adopted as the input of the
Bi-GRU to learn the mapping from x̃t to ht at time step t. ht−1
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and ht denote the hidden states of Bi-GRU at time steps t − 1
and t, respectively. ht is obtained as

ht = f (ht−1, x̃t). (12)

The nonlinear function f (·) is a GRU. To model long
and short-term behaviors, Bi-GRU includes a forward GRU
network and a backward one [26], thereby properly keeping
and forgetting the past information. The cell unit structure of
a GRU network consists of two gates, i.e., a reset gate and
an update one. The reset gate decides how much information
from a previous state to forget. The update gate is used to
control how much information from the previous state (from
previous time steps) needs to be passed to the current state
and the future, and it decides to copy the past information
and eliminate a risk of the problem of vanishing gradient. The
calculation formulas of GRU from the input to the output are
obtained as

rt = σ
(

Wr · [

ht−1, x̃t
])

(13)

zt = σ
(

Wz · [

ht−1, x̃t
])

(14)

h̃t = tanh
(

Wh̃t
· [

rt ∗ ht−1, x̃t
]

)

(15)

ht = (1 − zt) ∗ ht−1 + zt ∗ h̃t (16)

yt = σ(Wo · ht) (17)

where r, z, ht, and h̃ denote a reset gate, an update one,
the hidden state at time step t, and a candidate activation
vector, respectively. Wr, Wz, and Wh̃t

denote their weight
matrices. σ(·) and tanh(·) denote sigmoid and hyperbolic
tangent functions, respectively. ∗ denotes the operation of
matrix multiplication.

F. STMB

Our proposed STMB integrates four components, including
the SG filter, TCN, multihead self-attention, and Bi-GRU.
First, the 1-D time-series data is first filtered by the SG
filter. Second, the 1-D data is decomposed by TCN to yield
multidimensional data, thus extracting abstract features in
the sequence. Third, the multihead self-attention component
captures internal correlations among multiple abstract features.
In this way, the weights of key features are increased, and
ones of non-key features are reduced. Fourth, Bi-GRU is
used to capture the bidirectional, long-term, and short-term
dependence among different features to realize the prediction.
Fig. 1 illustrates a framework of STMB.

First, the SG filter is adopted to denoise X and yield the
smoothed result X̄, which is given as

X̄ = SG(X, n, R) (18)

where SG(·) denotes a function for the SG filter, n denotes its
window size, and R denotes its polynomial order.

Second, X̄ is extracted by TCN that has two residual blocks.
The first block is composed of two causal dilated convolution
layers. The kernel size is set to 9, the dilation factor is set to
1, and the number of filters is set to 10. In the second block,
the kernel size is set to 9, the dilation factor is set to 2, and

Fig. 1. Framework of our proposed STMB.

the filter number is set to 10. The output of the TCN layer is
given as

L = ResB
(

X̄, 9
)

(19)

where ResB(·) denotes a residual block function, and L
denotes the output after the residual block.

Third, we take L̃ as the input to the multihead self-attention
mechanism to identify useful features. Q, K, and V are
obtained from the input. The output of the attention is

˜X = Multihead(L, nh) (20)

where nh denotes the number of heads.
Fourth, this work takes ˜X as the input to the Bi-GRU layer to

extract bidirectional and long-term correlations in the sequence
and acquire the output hT at time step T . hT is inputted into
a fully connected layer to acquire the output zT , which is
defined as

zT = ReLU(vhT + b) (21)

where ReLU(·), v, and b denote a ReLU activation function,
a weight matrix, and a bias vector, respectively.

Finally, zT is inputted into an output layer to acquire ŷT at
the next time step

ŷT = Linear(uzT + q) (22)

where Linear(·) denotes a linear function, u denotes a weight
parameter of a fully connected layer, and q is a bias parameter.

G. GSPSO

PSO [27] has fast convergence and simple implementa-
tion, which is suitable for real-valued processing. However,
it fails to handle well discrete optimization problems and
tends to fall into local optima. In addition, the Metropolis
acceptance rule in simulated annealing [28] allows accepting
certain deteriorated solutions, thereby enabling to search more
solutions in the solution space. However, its convergence speed
is very slow. In addition, genetic operations in the genetic
algorithm [29] can automatically acquire and accumulate
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Fig. 2. Main steps of GSPSO.

knowledge about the search space, and adaptively control the
search process to obtain the best solution, thereby improving
the accuracy and efficiency of global search. The motivation
of combining PSO and GA is given as follows. Genetic
operators in GA can generate exemplars from which particles
in PSO learn. In addition, the historical search information
of particles in PSO provides guidance to the evolution of
the exemplars. By realizing crossover, mutation, and selection
on the historical information of particles in PSO, yielded
exemplars are highly qualified and well diversified. Under such
guidance, GSPSO’s global search ability and efficiency are
both improved. Thus, GSPSO integrates the advantages of the
above three basic algorithms, providing a high convergence
speed and strong global search capability. Fig. 2 shows the
main steps of GSPSO.

Specifically, the position and velocity of each particle are
initialized randomly, and their fitness values are updated. Then,
the parameters of GA, SA, and PSO are initialized, and
GA performs a single-point crossover to produce offspring.
Afterward, GA performs mutation on each bit of each off-
spring with a certain probability and performs selection on
each particle. Then, GSPSO updates the velocity of each par-
ticle in PSO and updates their position with SA’s Metropolis

acceptance criterion. In addition, GSPSO updates the locally
best solution for each particle as well as the globally best
solution in the current population. Furthermore, the current
temperature and inertia weight are linearly decreased. Finally,
the percentage of particles with the same fitness value is
changed to determine if the termination criteria are met. If
so, the globally best solution is obtained; otherwise, GA’s
single-point crossover and subsequent operations are repeated
until the termination criteria are met. This work optimizes the
hyperparameter setting of STMB with GSPSO. The loss value
of STMB is used as the fitness value of each individual in
GSPSO, and the hyperparameters of STMB are designed as
decision variables in GSPSO. In this way, GSPSO determines
the optimal hyperparameter setting that minimizes the training
loss of the proposed STMB.

H. Training Procedure

To obtain better prediction accuracy, this work adopts the
root-mean-square logarithmic error (RMSLE) [30], [31] as a
loss function to minimize the difference between the ground-
truth value yT and the predicted one ŷT . The loss function is
defined as

loss =
√

√

√

√

1

n

n
∑

i=1

(

log
(

ŷi + 1
) − log(yi + 1)

)2
. (23)

The rationale is that the magnitude of data may be relatively
large. When there is a large difference between a small number
of predicted values and the ground-truth ones in the data, the
log function can reduce the influence of these predicted ones
on the overall errors. During the training process of STMB,
there are some crucial parameters for learning performance
and efficiency. This work adopts a widely adopted Adam
optimizer with fast convergence [32] to optimize the loss
function of STMB.

IV. EXPERIMENTAL EVALUATION

STMB is implemented on a computer with RTX3060 GPU,
16G memory, and Intel Core i7-11800H CPUs with 8-core
2.30-GHz processors.

A. Data Set Description

The network attack data is collected from 1 June 2021 to
30 August 2021 from two different cities in the Industrial
Intelligent Cloud System (INDICS). Each dot in the x-axis rep-
resents a sample in each time slot, and each sample represents
the number of attacks in the website within 10 min. In total,
we have 13 200 samples in data set 1, and 12 644 samples in
data set 2, and the ratio of the training set and the test one is
9:1. Fig. 3 shows the number of network attacks in each time
slot in data set 1, and Fig. 4 shows that in data set 2.

B. Experimental Procedure

First, the SG filter is used to remove the noise in the
original data. The max–min normalization is used to normalize
the de-noised data. A sliding window mechanism is used to
transform it into the supervised data, which is predicted by
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TABLE II
DIFFERENT WINDOW SIZES OF RMSLE WITH DIFFERENT FILTERS

Fig. 3. Network attack time series in data set 1.

Fig. 4. Network attack time series in data set 2.

STMB. The prediction model integrated with TCN, multihead
self-attention, and Bi-GRU is obtained after iterative training
with super parameters. GSPSO is used to adjust and optimize
super parameters to obtain the final STMB model. The final
selection of super parameters in the model is shown in
Sections IV-D and IV-E. Finally, the final model after training
is used to predict the number of future network attacks, and
the predicted value is reversely normalized, thus obtaining
the predicted number of future network attacks. The predicted
value is compared with its ground truth, and error analysis and
performance evaluation are carried out.

C. Baseline Algorithms

We compare STMB with its typical peers, including
ARIMA, SVR [33], BPNN [34], TCN, LSTM, Bi-LSTM [35],
and TCN+LSTM (T-LSTM) [36]. We apply the SG filter to
each baseline method to eliminate noise from the data, thus
resulting in S-ARIMA, S-SVR, S-BPNN, S-TCN, S-LSTM,
and ST-LSTM, respectively. Furthermore, we combine TCN,
multihead self-attention, and Bi-GRU (TMB) to obtain an
improved benchmark. Three metrics are adopted to evaluate
the prediction accuracy of network attacks, i.e., RMSLE, a

Fig. 5. Smoothed time series of data set 1 (log).

determination coefficient R2, and the mean absolute error
(MAE) [39], which are given as

RMSLE =
√

√

√

√

1

n

n
∑

i=1

(

log(ŷi + 1) − log(yi + 1)
)2 (24)

R2 = 1 −
∑n

i=1

(

yi − ŷi
)2

∑n
i=1(yi − ȳ)2

(25)

MAE = 1

n

n
∑

i=1

|ŷi − yi| (26)

where ŷ denotes the predicted value, y denotes the real one,
and ȳ denotes the average one of the real values.

D. Noise Filter Tuning

As shown in Figs. 3 and 4, the raw data has high-order
and nonlinear characteristics. Thus, the logarithmic operation
is adopted to make the data approximately obey the normal
distribution. Fig. 3 shows that it has obvious noise and several
peak points at the beginning, and Fig. 4 also shows that the
raw data has obvious noise and several peak points. Thus,
we need to choose a suitable filter to eliminate noise, which
has two important hyperparameters, i.e., the window size
(n) and the polynomial order (R). The median filter and
the MA one are widely adopted and compared with the SG
filter. The window size is selected from {5, 7, 9, 11}. From
Table II, it is shown that among three filters, the SG filter
achieves the best filtering performance. The reason is that
the SG filter can keep the shape and width of the signal
unchanged while eliminating noise. This demonstrates that the
SG filter effectively eliminates the noise. Figs. 5 and 6 show
the smoothed time series of data sets 1 and 2 with the SG
filter.
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Fig. 6. Smoothed time series of data set 2 (log).

Fig. 7. Loss value for each optimizer.

E. Parameter Tuning

The setting of hyperparameters greatly affects the
performance of STMB. Hyperparameters in STMB mainly
include the optimizer, the kernel size, the number of attention
heads, the number of neurons in Bi-GRU, and the output
activation function of TCN residual blocks. This work also
adopts GSPSO to optimize the size of previous time steps.
Similar to previous studies [37], the parameter selection of
GSPSO is realized by using a grid search method [38].
Specifically, the main parameters of GSPSO are set as follows.
The coefficients of individual and social acceleration are both
set to 0.5. The acceleration coefficient of each superior particle
is 1.5. The starting temperature is 108. The cooling rate of
temperature is 0.95. The upper limit of inertia weight is 0.95
and the lower one is 0.4. In addition, we add a limit to the
size of previous time steps from 30 to 90, and finally set it to
60 according to GSPSO for yielding better prediction results.

The optimizer is very important, and we compare four
candidates including Adaptive delta (Adadelta), Adaptive gra-
dient algorithm (Adagrad), stochastic gradient descent (SGD),
and Adaptive moment estimation (Adam). Fig. 7 shows that
compared with other peers, Adam has the fastest convergence
speed and the minimum loss value for data set 1. The SGD
optimizer uses a small amount of data for each parameter
update, resulting in a large oscillation amplitude during gradi-
ent update. The AdaGrad optimizer can automatically update
different learning rates for different parameters. However, with
the increase of time steps, the learning rate cannot be updated
effectively. The AdaDelta optimizer in the early and middle
training, the acceleration effect is good. However, in the late
training period, it repeatedly shakes around the local minima.
The Adam optimizer integrates the advantages of Adagrad

TABLE III
COMPARISON OF DIFFERENT KERNEL SIZES IN STMB

Fig. 8. Prediction results with STMB with data set 1.

and Momentum to alleviate the gradient shock problem. Thus,
Adam is selected as the optimizer in STMB.

A properly specified convolution kernel helps to learn
more features in the data. Table III shows that when the
convolutional kernel size is set to 9, R2 is the largest, and
RMSLE and MAE are the smallest. A larger kernel size leads
to a larger receptive field of TCN. If the kernel size is too
large, TCN degenerates into a full connection layer. Therefore,
the kernel size cannot be too large or too small. Thus, it is set
to 9. In the multihead self-attention mechanism, each head is
an independent attention, and finally, all of them are integrated
to prevent the overfitting. It is important to choose a suitable
number of heads. If the number of heads is too large, it adds a
huge amount of computation. If it is too small, it degenerates
into a normal self-attention mechanism. Table IV shows that
when it is set to 4, STMB achieves the best result. Thus, it is
set to 4.

The suitable number of neurons in Bi-GRU has an important
influence on the prediction accuracy. It is set to 32, 64, 72, and
128, respectively, and we choose the best number of neurons
in Bi-GRU. Table V shows that RMSLE and MAE are the
smallest, and R2 is the largest, when it is set to 64. Regarding
TCN, the ReLU activation function is adopted after each
residual block. Table VI demonstrates the comparison of five
activation functions including ReLU, LeakyReLU, Sigmod,
Tanh, and Softplus. Experimental results show that among
five activation functions, ReLU achieves the best result. The
ReLU activation function can avoid gradient disappearance in
back propagating. Compared with Sigmod and Tanh activation
functions, the ReLU activation function can also save a lot
of computation. The final parameter setting of STMB is
summarized in Table VII.

F. Prediction Results

In this work, 90% of the network attack time-series data
is adopted as the training set and the remaining 10% as
the test set. Figs. 8 and 9 show that the predicted value
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TABLE IV
COMPARISON OF DIFFERENT NUMBERS OF HEADS IN STMB

TABLE V
COMPARISON OF DIFFERENT HIDDEN SIZES IN STMB

TABLE VI
COMPARISON OF DIFFERENT ACTIVATION FUNCTIONS IN STMB

TABLE VII
PARAMETER SETTING OF STMB

Fig. 9. Prediction results with STMB with data set 2.

has the same increasing and decreasing trends as the ground
truth.

To further evaluate the effectiveness and robustness of
STMB, RMSLE, MAE, and R2 are adopted to compare STMB
with 16 benchmark models in Table VIII. Each model in the
top half of Table VIII does not add the SG filter, and each
model in the bottom half applies it. It is shown that STMB
achieves the best results. When the SG filter is not adopted,

TABLE VIII
PERFORMANCE COMPARISON OF DIFFERENT METHODS

RMSLEs of TMB, T-BiLSTM, and T-LSTM are higher than
that is adopted in both two data sets. It is shown that the noise
in the time series of network attacks is effectively eliminated
by the SG filter. Furthermore, the prediction accuracy of
TMB is improved. ARIMA and SVM belong to traditional
methods, which cannot capture complex, hidden, and nonlinear
features among sequences in the series data of network attack,
and their experimental results are worse than those of deep
learning methods. Both TCN and LSTM have the ability to
capture nonlinear features, and therefore, their experimental
results are also similar. Our STMB not only has the ability to
capture nonlinear features but also assigns different weights
to different features, enabling it to better capture correlations
in the data. Thus, STMB’s prediction accuracy is the
highest.
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Fig. 10. Prediction results without the SG filter with data set 1.

Fig. 11. Prediction results without the SG filter with data set 2.

Fig. 12. Prediction results with the SG filter with data set 1.

Fig. 13. Prediction results with the SG filter with data set 2.

The predicted and ground-truth values of T-LSTM,
T-BiLSTM, and TMB are shown in Figs. 10 and 11. It is
shown that the predicted result with TMB and the ground-
truth one has the highest fit. During most of the time slots,
the predicted values of TMB have smaller errors than other
methods and they are closer to the ground-truth values.
Figs. 12 and 13 show the predicted values of ST-LSTM, ST-
BiLSTM, and STMB. Figs. 14 and 15 show the enlarged
prediction results. The results show that three models have

Fig. 14. Enlarged parts of Fig. 12.

Fig. 15. Enlarged parts of Fig. 13.

higher precision after the smooth processing. During most of
the time slots, the predicted value of STMB is closer to the
ground-truth one. Thus, STMB achieves the highest prediction
accuracy among all models.

V. CONCLUSION

Accurate prediction of network attacks is important for
computer network security, network resource management,
financial security, etc. However, the number of network
attacks exhibits volatile and nonlinear characteristics, making
it challenging to predict. This work puts forward a hybrid
prediction model called STMB for the first time, which combines
the SG filter, TCN, multihead self-attention, and a Bi-GRU
network. Specifically, the SG filter is first adopted to remove
the noise in the network attack time series. TCN is employed
to extract local sequence features. The multihead self-attention
is then utilized to capture intrinsic connections among features.
Finally, Bi-GRU is adopted to extract bidirectional and long-
term correlations in the sequence. Experimental results based
on two real-life data sets show that STMB achieves better
prediction performance than several state-of-the-art prediction
models.

Our future work plans to extend our current work along the
following two directions. First, we intend to improve our filter
to better handle the curve of a network attack sequence and
to eliminate its noise data. Second, we intend to adopt more
efficient neural networks [40] to reduce the execution time and
consumed memories during the model training.
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