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Abstract—Service recommendation plays a critical role in
fostering the growth of service ecosystems. However, existing
methods are mainly in favor of a small number of popular
services while newly emerged ones (i.e., newborn services) are
largely ignored, which hurts the systems in two aspects. First,
the potential of many services, especially the newborn ones,
is wasted. Second, service ecosystems highly depending on a
few kernel services are not diversified nor robust. To address
this issue, we propose to proactively recommend collaborative
services for newborn ones. The aim is to illuminate how to
use the newborn services and fertilize their proper usages.
While this is a cold start problem, frequent collaboration
among newborn or dissimilar services makes it more difficult.
In this situation, a Divide-and-Conquer approach is adopted
utilizing category tags and collaboration records (DCCC).
For each newborn service, the approach first produces one
ranked list of old services and one list of newborn services,
separately. DCCC then merges the two lists into one for
recommendation. Experiments over a real-world dataset from
ProgrammableWeb demonstrate that the proposed approach
achieves significant improvement in recommendation accuracy
compared with baseline methods.

Keywords-recommendation; collaboration; newborn services;
LDA; divide-and-conquer

I. INTRODUCTION

With the wide adoption of Service-Oriented Architecture

and Cloud Computing, many web service ecosystems (such

as ProgrammableWeb) have emerged in recent years [1].

Mashups are created by reusing and assembling existing web

services to meet complex functional requirements [2]. To

facilitate locating desired services, many service recommen-

dation methods have been developed and proven effective

[3], [4], [5], [6]. In spite of such encouraging facts, however,

we concern about two phenomenons, to which should be

paid great attention, in service ecosystems.

Firstly, the majority of mashup-service usage records

are related to a few kernel services [7]. Taking Pro-

grammableWeb as an example, only 10% published services

are ever used in any mashup and 3.8% published services

∗ Corresponding Author

contribute to 92.6% usage records. Such undue centralization

hurts service ecosystems in two ways. On one hand, the

potential of many services, especially the newly emerged

ones, is wasted. On the other hand, the systems are not di-

versified nor robust. For example, Yahoo Search, which was

once a popular API in ProgrammableWeb, was deprecated

in 2015. As a terrible result, 146 mashups (2% of the total

number of mashups) containing Yahoo Search were forced

to be deprecated as well.

Furthermore, existing recommendation methods may ex-

acerbate the unbalance of service usage, which aggravates

the waste of potential and the lack of robustness rather

than eliminating them. Most methods take advantage of

usage records in order to get better performance [6], [8], [9]

and they tend to recommend popular services (e.g., Google
Maps). As a result, popular services will become even more

popular while long-tail services are usually despised. Espe-

cially, newly emerged services may be completely ignored,

since they do not have any usage record.

From the perspective of service ecosystem operators, the

potential of every service should be fully exploited, and

service ecosystems should not centralize unduly. Therefore,

we propose a novel idea, to proactively recommend collab-
orative services for newborn services. Services emerged in

the latest month and unused since then, are tagged newborn
services in this paper. In more detail, for each newborn

service, we proactively recommend old services and other

newborn ones, separately. Such a recommendation process

starts once a newborn service emerges. Our core idea is to

exploit the functional potential of each newborn service in

time and to illuminate how to use it with other collaborative

services. In this way, we aim to benefit enhancing the

diversity and robustness of service ecosystems.

However, recommendation for newborn services is a dif-

ficult task and no existing methods can be directly applied

due to three significant issues. Firstly, this is obviously

a cold start problem. Secondly, newborn services could

also collaborate with other newborn ones, which means

it may become a both-side cold start problem. Thirdly,
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two collaborated services may be totally dissimilar in their

functions or descriptions, which happens frequently. For

example, location-related APIs (e.g., Google Maps) and

social network APIs (e.g., Facebook) are often combined

to realize location-aware social network mashups [10].

Most existing service recommendation methods are based

on the collaborative filtering techniques, which in general

completely ignore cold services [11]. As a result, these

methods cannot predict the collaboration among newborn

services. Some existing methods are based on content match-

ing, which recommend according to semantic similarity

[3]. They are not able to discover potential collaboration

among dissimilar services with complementary functional

descriptions. A few approaches have been proposed to learn

interactions among services. Most of them [12], [13], [14]

use the Apriori algorithm. [15] adopts a link prediction

approach, [16] mines negative rules among services, and

[10] mines the latent service co-occurrence topics. However,

all of them only examine existing service interactions. Thus,

they cannot solve our cold start problem.

To tackle the aforementioned three issues, we propose

a Divide-and-Conquer approach (DCCC) as illustrated in

Fig. 1, which takes advantage of both category tags and

collaboration records. To address the first issue on cold

start problem, category tags are utilized as a complement

to text descriptions. Since category tag is a kind of large-

granularity information, the category tags of a cold service

may have appeared several times. To address the second

issue about the collaboration among newborn services, we

divide our problem into two sub-problems. For each new-

born service, we recommend old services and other newborn

ones separately, in two ranked lists. To address the third

issue on predicting future collaboration among dissimilar

services, collaboration records are utilized as a complement

to mashup-service usage records. In a service ecosystem,

not only do services collaborate, categories also collaborate

with each other.

The main contributions of this paper are three-fold:

1) We have introduced and studied a new research

problem, recommendation for newborn services. We fully

exploit functional potential of each newborn service and

illuminate how to use it with other collaborative services,

aiming at enhancing the diversity and robustness of a service

ecosystem. As far as we know, this is the first effort in

services computing.

42) We have proposed a Divide-and-Conquer approach to

proactively recommend collaborative services for newborn

services. For better performance, we take advantage of

category tags as well as collaboration records in the process.

3) Comprehensive experiments over a real-world dataset

from ProgrammableWeb show that our approach yields

better precision than baseline methods. We confirm that

not only our divide-and-conquer strategy but also category

tags and collaboration records are helpful for solving this

Figure 1. Framework of recommendation for newborn services by divide-
and-conquer. For each newborn service, DCCC returns a ranked list of
collaborative services. Separately, future collaboration among newborn
services only is predicted by content matching, while collaboration among
newborn and old services is predicted by collaborative filtering. Finally,
those two parts are merged properly. Besides usage records, collaboration
records are taken into consideration in collaborative filtering. Meanwhile,
category tags are utilized to help solving this cold start problem. The details
are presented in Sections II, III and IV.

problem.

The rest of this paper is organized as follows. Section II

introduces fundamental definitions and formulates the prob-

lem. Model constructions and recommendation framework

are described in Sections III and IV, respectively. Section V

reports experimental results. Section VI compares with the

related work and Section VII concludes the paper.

II. PROBLEM DEFINITIONS

In this section, we first present several important defi-

nitions, and then formulate the recommendation problem:

recommendation for newborn services.

Definition 1: Time Information. Setting one month as

a particular time granularity, a sequence of timestamps

TS = {1, 2, . . . , T} represent the time information in a

service ecosystem.

Definition 2: Topology. The topology of an evolving ser-

vice ecosystem is modeled as a sequence of undirected

graphs. Specifically, at timestamp t ∈ TS, the service

ecosystem is modeled as Gt = (M t ∪ St, Et). M t ={
m1,m2, . . . ,mNt

m

}
is the set of mashups created before

timestamp t, and St =
{
s1, s2, . . . , sNt

s

}
is the set of ser-

vices emerged before timestamp t. Et ⊆M t×St represents

the mashup-service usage records, i.e., if a mashup invokes

a service, an edge exists between the two nodes.

Definition 3: Category Tags. Category tags of services

and mashups are viewed as a kind of large-granularity

information in a service ecosystem.

Many services or mashups carry tags from different cat-

egories. Assuming that there are Nca different categories

in a service ecosystem. At timestamp t ∈ TS, we have
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the corresponding Gt, in which there are N t
s services and

N t
m mashups. The categories of services are represented

by a service-category matrix SCAt = (scatij)
Nt

s×Nca

i=1,j=1 . If

service si ∈ St has a tag of category j, then scatij = 1;

otherwise, scatij = 0. Similarly, the categories of mashups

are represented by a mashup-category matrix MCAt =

(mcatij)
Nt

m×Nca

i=1,j=1 . mcatij = 1 when mashup mi ∈M t has a

tag of category j; and mcatij = 0 otherwise.

Definition 4: Recommendation for Newborn Services.

Given Gt, SCAt and MCAt, at timestamp (t+ 1),
we obtain a set of N t+1

Snew newborn services, denoted by

St+1
new, and the corresponding category matrix NSCAt+1 =(
nscat+1

ij

)Nt+1
Snew

×Nca

i=1,j=1
. If a newborn service nsp ∈ St+1

new

has a tag of category j, then nscat+1
pj = 1; otherwise,

nscat+1
pj = 0.

For a selected newborn service nss ∈ St+1
new, a ranked list

of potential collaborative services denoted by RL (nss) will

be recommended. A service with higher rank in RL (nss)
has a higher probability to collaborate with nss in the future.

The recommendation problem is thus turned into finding

RL (nss). There are two groups of services in candidate

list CL (nss): all the old services si ∈ St, i = 1, 2, . . . , N t
s

and all the other newborn services nsp ∈ St+1
new, p �= s. We

propose a divide-and-conquer approach to find the RL (nss).
As shown in Fig. 1, our approach consists of two

processes: divide-and-conquer and merging. In the pro-

cess of divide-and-conquer, we deal with old services

and other newborn ones separately. For all newborn ser-

vices except the selected one, we produce a ranked list

by description&category-based content matching (DCaCM).

For all old services, we produce another ranked list by

mashup-service-usage-records-based collaborative filtering
(MURCF) combined with collaboration-records-based col-
laborative filtering (CRCF).

In the process of merging, those two independent ranked

lists are merged into a unified one, which is the RL (nss).
Then we can recommend collaborative services for the

selected newborn one according to RL (nss).

III. MODEL CONSTRUCTIONS

In this section, we introduce the constructions of three

main components in our approach: DCaCM, MURCF and

CRCF. Potential collaboration between a selected newborn

service and other newborn ones is predicted by DCaCM.

MURCF and CRCF are designed to predict the future

collaboration between old services and the selected newborn

one.

A. Description&Category-based Content Matching

Our earlier study over ProgrammableWeb has revealed an

important observation: newborn services, which have similar

functions, tend to collaborate with each other [11]. In this

paper, both text descriptions and category tags are taken into

consideration, as small-granularity and large-granularity in-

formation respectively, for calculating the similarity between

two services.

Firstly, the similarity based on text descriptions is cal-

culated. We apply the “Latent Dirichlet Allocation” (LDA)

[17] model to obtain the topic distribution of every service

and mashup, and then calculate the similarity between two

services according to their distributions over topics.

Each service s comprises a collection of words SW (s) ={
sw1, sw2, . . . , swNW (s)

}
to describe its functional abili-

ties. Similarly, each mashup m is associated with a collection

of words MW (m) =
{
mw1,mw2, . . . ,mwNW (m)

}
to

describe its functions. We input all services and mashups

with their associated sets of words SW (s) and MW (m)
into an LDA model. Although we can obtain the distribution

over topics of all services and mashups, in DCaCM, we are

only interested in the distribution over topics of newborn

services.

Let z ∈ [1,K] be the topic indicator variable. At

time (t+ 1), the distribution over K composition topics of

N t+1
Snew newborn services can be represented by a N t+1

Snew×K
matrix Φ. In Φ, each row φp is a K-dimensional multi-

nomial distribution of a newborn service nsp with φp,z =

P (z|nsp) and
∑K

z=1 φp,z = 1. The similarity between text

descriptions of a selected newborn service nss ∈ St+1
new

and another newborn service nsp ∈ St+1
new, p �= s can be

calculated by the following equation:

simd (nss, nsp) =
φs · φp

T

‖φs‖ ‖φp‖ (1)

Secondly, the similarity based on category tags is cal-

culated. As stated in Section II, in NSCAt+1, each row

nscat+1
p represents the category vector of a newborn service

nsp. Thus, the similarity between categories of a selected

newborn service and another newborn one can be calculated

by the following equation:

simca(nss, nsp) =
nscat+1

s · nscat+1
p

T

∥∥nscat+1
s

∥∥ ∥∥nscat+1
p

∥∥ (2)

Finally, DCaCM calculates the similarity between a se-

lected newborn service and another newborn one as follows:

simcm(nss, nsp) = (1− λcm)simd(nss, nsp)

+ λcmsimca(nss, nsp)
(3)

where λcmis a parameter to trade off text descriptions and

category tags in DCaCM.

B. Mashup-Service-Usage-Records-based Collaborative
Filtering

Collaborative filtering is one of state-of-the-art methods

in the recommendation community [8]. We expand it to help

recommending potential collaborative services for a newborn

service. If an existing mashup m ∈M t is partly similar with
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a newborn service nss ∈ St+1
new, the services invoked by m

will tend to collaborate with nss in the future.

Firstly, we calculate the similarity between a newborn

service nss and an existing mashup m according to their

text descriptions and category tags. Based on DCaCM, We

calculate their similarity as follows:

sim(nss,m) = (1− λmcf )simd(nss,m)

+ λmcf · simca(nss,m)
(4)

where λmcf is also a parameter to trade off text descriptions

and category tags, but in MURCF. For convenience, we

define msimm (nss) as the highest similarity between nss
and every mashup mi:

msimm(nss) = max
mi∈Mt

sim(nss,mi) (5)

Afterwards, M t
ηmcf

is defined as follows:

M t
ηmcf

=

{
m

∣∣∣∣ m ∈M t,
sim(nss,m) ≥ ηmcfmsimm(nss)

}
(6)

At timestamp (t+ 1), the probability of future collabo-

ration between a selected newborn service nss and an old

service si ∈ St can be calculated as follows:

pmcf (si|nss) =
∑

mj∈Mt
ηmcf

sim(nss,mj)y(mj , si) (7)

in which y(mj , si) = 1, if (mj , si) ∈ Et, and y(mj , si) = 0
otherwise. pmcf (si|nss) is one part of the probability for

collaboration between nss and si.

C. Collaboration-Records-based Collaborative Filtering

CRCF, as a complement to MURCF, utilizes collaboration

records among services as well as collaboration records

among categories. CRCF is designed to facilitate predicting

the collaboration among dissimilar services.

On one hand, similar services tend to collaborate with

same services. On the other hand, if there are two services

and their categories collaborate frequently according to

collaboration records, we believe they tend to collaborate

with the same services.

Firstly, given a timestamp t ∈ TS and the corresponding

Gt, we can derive a service-collaboration matrix SCt =

(sctij)
Nt

s×Nt
s

i=1,j=1. For each service si ∈ St, if it collaborates

with another service sj ∈ St for k times by the end of time

t, then sctij = k. Collaboration with one service itself is

not counted. Thus, sctii = 0, i = 1, 2, . . . , N t
s . Using SCt

and SCAt (defined in Section II), we can derive a category-
collaboration matrix CCt = (cctij)

Nca×Nca
i=1,j=1 . cctij = k when

category i and j collaborate for k times by the end of time

t. Different from SCt, collaboration with one category itself

is counted in CCt. Then SCt and CCt are normalized into

NSCt and NCCt as follows:

nsctuv =
sctuv∑
w sctuw

, ncctuv =
cctuv∑
w cctuw

(8)

Secondly, a generalized similarity between a selected

newborn service nss ∈ St+1
new and an old one si ∈ St

is calculated. Part of this similarity is called category-

collaboration similarity. In SCAt, each row scati represents

the category vector of si. In NSCAt+1 (defined in Section

II), nscat+1
s represents the category vector of nss. The

category-collaboration similarity between nss and si can be

calculated as follows:

cacosim(nss, si) =

Nca∑
u=1

Nca∑
v=1

(nscat+1
su · ncctuv · scativ) (9)

Then the generalized similarity can be calculated as follows:

simg(nss, si) = (1− λcrcf )simd(nss, si)

+ λcrcf · cacosim(nss, si)
(10)

where λcrcf is another parameter to trade off text descrip-

tions and category tags. Similar with what we have done in

MURCF, for convenience, msims(nss) are defined as the

highest generalized similarity between nss and every old

service si. Afterwards, St
ηcrcf

is defined as follows:

St
ηcrcf

=

{
s

∣∣∣∣ s ∈ St,
simg(nss, s) ≥ ηcrcfmsims(nss)

}
(11)

Finally, the other part of probability for future collabora-

tion between nss and an old service si can be calculated as

follows:

pcrcf (si|nss) =
∑

sj∈St
ηcrcf

simg(nss, sj)nsc
t
ji (12)

IV. RECOMMENDATION FRAMEWORK

Based on previously introduced components, DCaCM,

MURCF and CRCF, in this section, we show how to

integrate them for recommendation.

A. The Process of Divide-and-Conquer

At timestamp (t + 1), a newborn service nss ∈ St+1
new is

selected. Other newborn services nsp ∈ St+1
new, p �= s and

all the old services si ∈ St are in candidate list CL(nss).
Separately, each candidate newborn service nsp receives a

point calculated by DCaCM:

pns(nsp|nss) = simcm(nss, nsp) (13)

while each candidate old service si receives a point calcu-

lated by MURCF and CRCF as follows:

ps(si|nss) = (1− μ)pmcf (si|nss)
+ μ · pcrcf (si|nss)

(14)

in which μ is a parameter to trade off MURCF and CDCF.

So far, every candidate service in CL(nss) gets a point

but in two standards, and two independent ranked lists can

be produced according to these points. We will unify the

points in the next process and merge those two lists into a

unified and ranked one for recommendation.
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B. The Process of Merging

One important observation is that collaboration between

two newborn services is less than that between a newborn

service and an old one. So we select Top Nnew candidate

newborn services according to pns, and adjust their points by

a factor σ. Then the unified point for each candidate service

sc ∈ CL(nss) is determined by the following equation:

p(sc|nss) =
⎧⎨
⎩

ps(sc|nss), if sc ∈ St

σ · pns(sc|nss), if sc is Top Nnew in St+1
new

0, others

(15)

Finally, the ranked recommendation list RL(nss) can be

produced according to p(sc|nss) in a descending order.

V. EXPERIMENTS

In this section, we present our empirical experiments

on a real-world dataset from ProgrammableWeb, evaluating

the performance of our proposed approach (DCCC) against

the state-of-the-art methods. The effects of our divide-and-

conquer strategy, category tags and collaboration records are

demonstrated.

A. Dataset

ProgrammableWeb has been accumulating a variety of

services and mashups since its establishment in 2005 [18].

We crawled the metadata of all services and mashups

from September 2005 to August 2016. Metadata includes

name, creation date, description, category and mashup-

service usage records. Numerical properties of the dataset

are summarized in Table I.

Table I
NUMERICAL PROPERTIES OF DATASET

Number of services 15,386

Number of mashups 7,822

Number of services collaborating with other services 1,289

Number of mashups containing more than one service 3,564

Number of categories 437

Size of vocabulary 24,209

B. Experiment Preparation

1) Preprocess: Mashups containing less than two ser-

vices and categories appearing less than twice were removed,

because they cannot offer any collaboration records. We

applied word stemming and removed stop words in text

descriptions.

As stated in section III, we applied LDA to obtain

distributions over K latent topics for every service and

mashup. α and β are two hyper-parameters in LDA [17] . In

our experiments, we set K = 60, α = 50/K, and β = 0.01.

2) Training and Test Sets: In our experiments, we

adopted a time granularity of one month, and there are

144 months from September 2005 to August 2016. To test

the performance of our approach (DCCC), we divided the

dataset into training and test sets by a moving timestamp

t ∈ TS. Given a cutoff timestamp t, we regard the data

before it [1, t] as a training set, and the data in the following

ten months [t + 1, t + 10] as a test set. We moved the

timestamp from August 2007 to October 2015, t ∈ [24, 134],
and obtained 111 training and test sets. We did experiments

on overall 111 training and test sets. In other words, we

tested our approach and baseline methods in more than

a nine-year period month by month. For each newborn

service at timestamp (t + 1), we will recommend proper

services to collaborate with it. The collaboration records

in the following ten months
{
SCt+1,SCt+2, . . . ,SCt+10

}
act as ground truth.

C. Evaluation Metric

Similar with [4], two widely accepted metrics, Mean

Average Precision @ top N (MAP@N) and Normalized

Discounted Cumulative Gain @ top N (NDCG@N), are used

in our experiments.

Both MAP@N and NDCG@N are real numbers between

0 and 1. The higher MAP@N or NGCD@N indicates

a better accuracy of the recommendation. Different from

MAP@N, NDCG@N emphasizes on the precision of the

first few (1st, 2nd,3rd,. . . ) recommendations.

By moving the cutoff timestamp t , we can calculate

MAP@N and NGCD@N for each test set and use the

average value of MAP@N and NDCG@N as the evaluation

metric to compare DCCC with baseline methods.

D. Baseline Methods

Some complex methods for service recommendation [10],

[15], [19] were proposed in recent years, however, none of

them can be directly applied to our problem. Therefore, three

typical approaches were selected as baselines. Another three

baselines were generated by reducing components in DCCC,

to test our approach more meticulously.

1) Baseline Method 1: A Probabilistic Approach (PA)
The Probabilistic Approach [5] applies LDA to calcu-

late the semantic similarity between the selected service

nss ∈ St+1
new and any other candidate service sc ∈ CL(nss).

Gibbs sampling is applied to get probability distribution of

services over topics p(z|s) and topics over words p(w|z).
The description of nss is SW (nss) and the similarity is

calculated according to:

ppa(sc|nss) =
∑

w∈SW (nss)

K∑
z=1

p(w|z)p(z|sc) (16)

The recommendation list RL(nss) is then ranked in a

descending order w.r.t ppa(sc|nss).
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2) Baseline Method 2: TopPopN
TopPopN approach [9] recommends the top N popular

services for each selected newborn one.

3) Baseline Method 3: Mashup-Description-based Col-
laborative Filtering (MDCF)

Collaborative Filtering is widely acknowledged as the

most important recommendation algorithm and applied in

many methods [6], [8]. The semantic similarity of an mashup

m ∈ M t and a selected newborn service nss ∈ St+1
new is

calculated according to simd(nss,m) in (1). The recom-

mendation list RL(nss) is ranked in a descending order w.r.t

pmd(sc|nss), which can be calculated as follows:

pmd(sc|nss) =
∑

mj∈Mt
ηmcf

simd(nss,mj)y(mj , sc) (17)

where M t
ηmcf

is defined the same as (6).

4) Baseline Method 4: A Divide-and-Conquer Ap-
proach without category tags and collaboration records
(DC)

DC ignores category tags and collaboration records in a

service ecosystem. In other words, DC is degenerated from

DCCC by setting λcm, λmcf and μ all to 0, and RL(nss)
is ranked in a descending order w.r.t p(sc|nss) in (15).

Comparing DCCC with DC, we can demonstrate the effect

of category tags together with collaboration records.

5) Baseline Method 5: DCaCM
Similar with PA, DCaCM recommends potential collab-

orative services according to the similarity between the

selected newborn service nss and any other one sc. The

difference is that DCaCM takes category tags into consider-

ation and calculates the similarity according to (3). RL(nss)
is then ranked in a descending order w.r.t simcm(nss, sc)
in (3).

6) Baseline Method 6: A Complex Collaborative Fil-
tering combining MURCF with CRCF (CCF)

This baseline method only comprises two components

in our complete approach and it recommends potential

collaborative services only through collaborative filtering. In

other words, CCF is a degenerated DCCC in which σ = 0
and it ignores the collaboration between newborn services.

Recommendation list RL(nss) is ranked in a descending

order w.r.t ps(sc|nss) in (14).

E. Experiments Results

1) Parameters Settings: We tuned the parameters of our

approach and every baseline method, respectively, to get the

best performance of each method. In DCCC, λcm = 0.5,

λmcf = 0.4, ηmcf = 0.4, λcrcf = 0.35, ηcrcf = 0.45,

μ = 0.4, σ = 2.1, Nnew = 9. In MDCF, ηmcf = 0.4. In

DC, ηmcf = 0.4, σ = 1.7, Nnew = 9. In DCaCM, λcm =
0.35. In CCF, λmcf = 0.4, ηmcf = 0.4, λcrcf = 0.35,

ηcrcf = 0.45, μ = 0.4.
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Figure 2. MAP@N and NDCG@N of all approaches.

2) Performance Comparison: Fig. 2 illustrates the

MAP@N and NDCG@N of our approach and all baseline

methods. PA only considers the semantic similarity between

services. However, collaborative services may have little

semantic similarity or even be totally dissimilar. As a result,

PA gets the lowest MAP and NDCG. TopPopN recommends

services simply according to their popularity. Our experi-

ments confirm that it is effective in some degree. MDCF,

as a typical method based on collaborative filtering, utilizes

mashup-service usage records and performs better than other

two published methods. DCaCM takes advantage of category

tags as large-granularity information, and it performs better

than PA. Similarly, CCF utilizes not only category tags

but also collaboration records as a complement to mashup-

service usage records, and it performs better than MDCF.

By adopting the divide-and-conquer strategy, DCCC and DC

achieve much better performance than CCF and MDCF.

The detailed performance of different approaches is sum-

marized in Table II. In terms of MAP@N, DCCC has an

approximately 9% better performance than the best pub-

lished method MDCF. Comparison between DC and MDCF

demonstrates a more than 6.5% promotion by adopting the

divide-and-conquer strategy. It can be inferred by comparing

DCCC with DC, category tags together with collaboration

records contribute a 2.5% promotion furthermore.

NDCG@N emphasizes on the precision of the first few

(1st, 2nd,3rd,. . . ) recommendations. Both Fig. 2 and Ta-

ble II illustrate that DCCC performs pretty good on the

Table II
PERFORMANCE COMPARISON BETWEEN ALL APPROACHES ON

MAP@20, MAP@50, NDCG@5 AND NDCG@50

Approaches MAP@20 MAP@50 NDCG@5 NDCG@50
DCCC 27.27% 29.80% 0.4026 0.4785

DC 25.13% 27.39% 0.3677 0.4517

CCF 20.48% 22.28% 0.3415 0.3744

MDCF 19.06% 20.71% 0.3229 0.3539

TopPopN 17.23% 18.74% 0.2947 0.3202

DCaCM 9.70% 10.95% 0.1608 0.2189

PA 7.40% 8.60% 0.1258 0.1858
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first few recommendations. DCCC gets a higher NDCG@5

than MDCF by 0.0796 (24.65% relatively), when category

tags together with collaboration records contribute 0.0349

(10.81% relatively) and the divide-and-conquer strategy con-

tributes the other 0.0447 (13.85% relatively).

As a conclusion, it improves the accuracy of recom-

mendation significantly by adopting the divide-and-conquer

strategy alone. Moreover, it leads to more improvement to

take advantage of category tags together with collaboration

records, especially when the length of a recommendation list

is shorter than 10.

3) Effect of Category Tags: To demonstrate the effect

of category tags more sufficiently, we analyzed the effects

of λcm, λmcf and λcrcf . Those parameters balance the

influence of text descriptions and category tags (small-

granularity and large-granularity information) in three main

components of DCCC. λcm, λmcf and λcrcf are all real

numbers between 0 and 1, and when they are 0, category

tags are ignored in DCCC. Since their values are almost

the same in DCCC, for convenience, we set them equal

λcm = λmcf = λcrcf = λ in this analysis.

Fig. 3 illustrates the MAP@20 and NDCG@5 of DCCC

with different λ. Both MAP@20 and NDCG@5 reach the

maximum when λ ≈ 0.5, which indicates that taking

category tags into consideration improves the quality of

recommendation in our cold start problem.
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Figure 3. MAP@20 and NDCG@5 of DCCC with different λ

4) Effect of Collaboration Records: To further demon-

strate the limitation of mashup-service usage records and

the contribution of collaboration records on predicting the

collaboration among dissimilar services, next a qualitative

analysis of our experimental results is presented.

Top three services in the ranked recommendation list for

several typical services are presented in Table III. At the

times they emerged in the system, we recommend potential

collaborative services for each of them twice. For example,

Facebook is a social network API, emerged in August 2006.

Without collaboration records, the top 3 services are all re-

lated to social network. Flickr is a photo sharing API, Plazes
is a location-aware social network API, and del.ico.us is a

social bookmarking API. However, only Flickr collaborated

with Facebook in reality. With collaboration records added,

a location-related API Google Maps appears in the top 3 list.

Most importantly, Google Maps collaborated with Facebook

in reality, which is a typical collaboration between dissim-

ilar services. The situations are similar for other cases in

Table III, potential collaboration among dissimilar services,

such as The Movie DB, Baidu and Twitter, can be discovered

by taking collaboration records into consideration.

Table III demonstrates that collaboration records are ef-

fective complement to mashup-service usage records. Mean-

while, it proves that collaboration records help to predict

future collaboration among dissimilar services.

Table III
TOP 3 SERVICES IN RANKED RECOMMENDATION LIST FOR SEVERAL

TYPICAL NEWBORN SERVICES

Without Collaboration
Records

With Collaboration
Records Added

Facebook Flickr, Plazes, del.icio.us
Flickr, Plazes, Google

Maps

Twitter Flickr, Amazon Product
Advertising, Technorati

Flickr, Google Maps,
Amazon Product

Advertising

Map24
AJAX

Google Maps, Plazes,
Yahoo Geocoding

Google Maps, Plazes,
Flickr

The
Movie DB

YouTube, Amazon
Product Advertising,

Google Maps

YouTube, Twitter,
Amazon Product

Advertising

Baidu Google Maps, YouTube,
Yahoo Search

Google Maps, Twitter,
YouTube

1 Italics indicate that service can only be recommended by utilizing
collaboration records.

2 A strikeout indicates that service never collaborates with the selected
one in reality.

VI. RELATED WORK

A. Service Recommendation

With the explosive development of service ecosystems,

service recommendation becomes a key problem. Early

works used to employ keyword-based methods on the infor-

mation from Web Service Description Language (WSDL) [3].

However, keyword-based methods suffer from poor perfor-

mance in practice. In this situation, the LDA model is widely

used in later work to characterize the latent topics between

service descriptions and users’ queries [5]. The LDA model

is also used to extract temporal information in an evolving

service ecosystem [11]. On the other hand, a lot of research

work [6], [8] are supported by neighborhood-based collabo-

rative filtering. [19] and [20] combine collaborative filtering

and content matching for better performance. Unfortunately,

all these approaches recommend services based on users’

queries, which are commonly represented by the description

of mashups. Most of them tend to recommend popular

services [9].

B. Service Collaboration

In the research of service collaboration, most works are

on the basis of Apriori algorithm [12], [13], [14]. Apriori

algorithm can be used to mine association rules among
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services. [15] proposed a link prediction method to predict

future collaboration between services. [16] came up with a

new method to mine latent negative association rules among

services. The SeCo-LDA approach [10] used the LDA model

to mine the latent co-occurrence topics among services.

However, all the approaches mentioned above can only be

implemented on the set of old services, which have been

used before. In other words, these approaches cannot solve

a cold start problem.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced and studied a novel rec-

ommendation problem, proactively recommending potential
collaborative services for a newborn service. Our motivation

is to fully exploit functional potential of every single service,

and to illuminate how to use newborn services with the

collaborative ones. We aim to enhance the diversity and

robustness of a service ecosystem.
To solve this problem, we present a divide-and-conquer

(DCCC) approach, which utilizes category tags and col-

laboration records as complements of text descriptions and

mashup-service usage records. Through three main compo-

nents DCaCM, MURCF and CRCF, DCCC produces one

ranked list of old services and another list of newborn

services separately for each newborn service. Finally, the

two ranked lists are merged into one for recommendation.
Empirical experiments demonstrate that DCCC achieves

significant improvement in recommendation accuracy. The

effects of our divide-and-conquer strategy, category tags and

collaboration records are also confirmed.
In the future, we plan to replace the LDA-based and

collaborative-filtering-based components with other meth-

ods, such as deep learning. We also plan to further study how

to predict future collaboration between newborn services.
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