
Optimizing Semantic Annotations
for Web Service Invocation

Keman Huang ,Member, IEEE, Jia Zhang , Senior Member, IEEE, Wei Tan , Senior Member, IEEE,

Zhiyong Feng ,Member, IEEE, and Shizhan Chen ,Member, IEEE

Abstract—Semantic annotations play an important role in semantics-aware service discovery, recommendation and composition.

While existing approaches and tools focus on facilitating the development of semantic annotations on web services, the validation of

the quality of annotations is largely overlooked. Meanwhile, the refinement of semantic annotations mostly goes through manual

processes, which not only is time-consuming but also requires significant domain knowledge. To enhance the Quality of Semantic

Annotation (QoSA), we have developed a technique to incrementally assess and correct semantic annotations of web services. Aiming

at supporting web service interoperation, we have formalized the QoSA of input and output parameters. Based on such formalism,

test cases are automatically generated to validate service annotations. Learned semantic instances are then accumulated to iteratively

validate semantic annotations of other services. Furthermore, a three-phase optimization methodology including local-feedback,

global-feedback, and global-propagate is developed to improve the QoSA by incrementally correcting inaccurate annotations.

Experiments over a real-world web services repository have demonstrated that our technique can effectively improve QoSA of

services, gaining a 78.68 percent improvement in input parameters annotations and identifying 36.47 percent inaccurate output

parameters annotations. The proposed technique can be equipped at various service repositories to enhance service discovery

and recommendation.

Index Terms—Quality of semantic annotation (QoSA), web service invocation, trusted instance repository, evaluation of QoSA, optimization

strategy for QoSA improvement

Ç

1 INTRODUCTION

WITH the rapid advancement of Services Computing
techniques, more andmore reusable software services

have been published to the Internet on a daily basis. How to
help service users find appropriate candidates in the sea of
services becomes increasingly important. Semantic Web
technology [1] has been proven effective in service discovery
[2], [3]. The last decade has witnessed the emergence of a
number of approaches and tools that leverage Semantic Web
technology [4], [5], [6], [7] to support service discovery, com-
position and recommendation. These solutions often exploit
various markup languages to annotate service elements (i.e.,
operations, inputs, and outputs) with the concepts defined
in the ontologies. Some example markup languages include
the LOD (Linked Open Data) [8], SAWSDL (Semantic Anno-
tations for WSDL) [9], Meta-WSDL,WSML, OWL-S [10], and
domain ontology bootstrapping from the web service
description [11]. Such concepts in annotations can then be
used to help consumers select more suitable services.

Apparently, the annotation process plays a fundamental role
in these scenarios. Therefore, several tools, such as Iridescent
[12], Meteor-S [13], and Kino [14], have been developed by
the Semantic Web community to assist the development of
annotations for web services.

However, the current tools typically cannot validate how
accurate the annotated ontologies reflect the web service
semantics. In other word, the Quality of Semantic Annotation
(QoSA) is not guaranteed and its verification is usually
overlooked [15]. Meanwhile, most of the semantic annota-
tion-based service discovery and composition mechanisms
assume that the annotations generated by the tools are accu-
rate while it is not always the case [16]. For example, con-
sider an incorrect annotation for the input of operation
“Convert” in web service “Rates”1 is “DBpedia: Currency.” It
implies the input should be a currency code instance such
as “CNY” or “USD” instead of a currency value. Such an
inaccurate annotation will mislead users and fail the inter-
operation between “Convert” and other service operations.
In Section 6, our empirical study over a real-world web ser-
vice repository has revealed that, only 38.61 percent of the
original annotations are accurate enough to support web
service invocation. Obviously, the inaccuracy of annotations
will significantly reduce the effectiveness of the related
semantics-based service discovery, recommendation and
composition [17]. As a result, in practical use, peer-inspec-
tion is oftentimes necessary before annotations are

� K. Huang, Z. Feng, and S. Chen are with the School of Computer Science
and Technology, Tianjin University, Tianjin 300071, China.
E-mail: {keman.huang, zyfeng, shizhan}@tju.edu.cn.

� J. Zhang is with the Department of Electrical and Computer Engineering,
CarnegieMellonUniversity–SiliconValley,Moffett Field, CA 94035.
E-mail: jia.zhang@ sv.cmu.edu.

� W. Tan is with the IBM Thomas J. Watson Research Center, Yorktown
Heights, NY 10598. E-mail: wtan@us.ibm.com.

Manuscript received 1 May 2016; revised 31 July 2016; accepted 19 Sept.
2016. Date of publication 22 Sept. 2016; date of current version 7 Aug. 2019.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSC.2016.2612632 1. http://www.mondor.org/ces/rates.asmx

590 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 12, NO. 4, JULY/AUGUST 2019

1939-1374� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 17,2020 at 21:19:37 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2549-7597
https://orcid.org/0000-0003-2549-7597
https://orcid.org/0000-0003-2549-7597
https://orcid.org/0000-0003-2549-7597
https://orcid.org/0000-0003-2549-7597
https://orcid.org/0000-0003-2148-0923
https://orcid.org/0000-0003-2148-0923
https://orcid.org/0000-0003-2148-0923
https://orcid.org/0000-0003-2148-0923
https://orcid.org/0000-0003-2148-0923
https://orcid.org/0000-0002-2617-7598
https://orcid.org/0000-0002-2617-7598
https://orcid.org/0000-0002-2617-7598
https://orcid.org/0000-0002-2617-7598
https://orcid.org/0000-0002-2617-7598
https://orcid.org/0000-0001-8158-7453
https://orcid.org/0000-0001-8158-7453
https://orcid.org/0000-0001-8158-7453
https://orcid.org/0000-0001-8158-7453
https://orcid.org/0000-0001-8158-7453
https://orcid.org/0000-0002-4430-4765
https://orcid.org/0000-0002-4430-4765
https://orcid.org/0000-0002-4430-4765
https://orcid.org/0000-0002-4430-4765
https://orcid.org/0000-0002-4430-4765
mailto:
mailto:
mailto:
http://www.mondor.org/ces/rates.asmx

published, which may be rather time-consuming and
require significant domain knowledge and expertise.

How to systematically verify and improve semantic anno-
tations has attracted attentions from both academia and
industry in recent years. Belhajjame etc. [18] proposed a veri-
fication framework based on software testing technology to
assess the adequacy of semantic annotations. Test cases are
automatically constructed from workflow provenance logs
and used to identify defects from the inputs and outputs
annotations. Afterwards, human curators will examine and
correct the errors discovered during the verification process.
However, correcting inaccurate annotation is a time-consum-
ing task, and it is after-the-fact makeup. Furthermore, when
the large-scale and rapid-increasing Semantic Web knowl-
edge base such as LOD is used for annotations, how to select
more suitable annotations has become a non-trivial work.

Our hypothesis is that, provenance data embedded in the past
service invocation processes is valuable for QoSA improvement. For
example, the response of a successful service invocation con-
tains accurate semantic information which can be used for
QoSA optimization. Our pilot study [19] extends the verifica-
tion framework proposed by Belhajjame et al. [18] and presents
a technique to assist annotators, not only in evaluating but also
in improving the QoSA of input parameters of web services.

In this paper, we significantly extend and improve our
technique in three dimensions: (1) supporting evaluation and
enhancement of both inputs and outputs annotations, (2) supporting
semi-automatic ontology bootstrapping, and (3) enhancing the opti-
mization strategy. Our goal is to automate the verification and
improvement of the quality of semantic annotations for web
services to enhance their interoperability. Overall, we have
established a four-phase framework for annotation verification
and optimization, including semantic annotation, invocation-
oriented quality evaluation, feedback-based optimization, and
annotation application. As the main motivation for semantic
annotation is to support interoperation between services, the
basic argument here is that “the better the semantic annotation
can support web service interoperation, the higher QoSA it owns.”
Hence, for the input parameters, their QoSA can be formally
defined as “the success rate of invocation” while for the output
parameters, their QoSA are defined as “the semantic similarity
between the successful output and the annotation.” Based on such
formal definitions, we propose an invocation-based technique
to verify the QoSA. Furthermore, we believe the past execu-
tion information of the invocations during the assessment is
useful for the QoSA improvement, not only the response for
the “successful invocations” but also the “rectification operations.”
Therefore, we have developed a semi-automatic method to boot-
strap the ontology from the response information to form an
incrementally growing trusted instance repository (TIR). On
top of the TIR, we have designed a three-phase optimization
mechanism to facilitate the QoSA optimization, including a
Local-feedback Strategy (LFS) to improve the annotated instan-
ces, a Global-feedback Strategy (GFS) to improve the annotated
concepts, and a Global-propagation Strategy (GPS) to enhance
the annotation approach.

Our major contributions are as follows:

1. A formal definition of the Quality of Semantic Anno-
tation is presented, associated with a verification
framework.

2. An ontology bootstrapping method is presented to
incrementally build a trusted instance repository based
on automatic test case generation and invocation.

3. Based on the trusted instance repository, a three-phase
optimization methodology is presented to improve the
annotation quality, consisting of local-feedback,
global-feedback and global-propagation strategies.

We have designed and conducted a set of experiments
based on the semantic annotations of real-world web serv-
ices. Our experiments state that our approach can achieve a
significant improvement in QoSA, gaining a 78.68 percent
improvement for input parameters annotations and identify-
ing 36.47 percent inaccurate output parameters annotations.

The rest of this paper is organized as follows. Section 2
reviews the related work. Section 3 introduces the four-
phase service annotation lifecycle framework. Section 4
details the formal definition of the QoSA associated with
the verification framework. Section 5 discusses the three-
phase optimization strategy for QoSA improvement. Section
6 reports the implementation as well as the empirical
results. Section 7 concludes the paper.

2 RELATED WORK

2.1 Semantic Annotation

Semantic annotation technologies have been widely used in
many disciplines, such as biomedical engineering [20], prod-
uct lifecycle management [15], emotion-oriented research
[21], e-commerce [22], web services and RESTful APIs [23],
[24], [25], etc. Many tools have been developed to assist
human curators in annotating tasks. For example, Meteor-S
[13] semi-automatically suggests to users the concepts from
domain ontologies to facilitate their annotation task. SAWS
[26] is a tool aiming to enhance the WSDL descriptions with
semantic concepts provided by domain ontologies. Kino [14]
automatically annotates web services based on the similarity
between the service’s descriptions and the vectors of avail-
able ontological terms. It also allows users to utilize the ontol-
ogy of their own choice for annotation. Based on SAWSDL,
the Iridescent tool [12] enables both expert and non-expert
users to create semantic service annotations by matching ele-
ments and concepts and suggesting annotations. Prot�eg�e [27]
is an open-source platform that assists consumers in con-
structing knowledge-based applications with ontologies.
With the large volume and rapid growth of available Seman-
ticWeb knowledge base [28], some tools exploit ontologies to
automate service annotation creation [8], [23], [29]. Hong
et al. proposed a linked context model which applies the
linked data to model and obtain context data from both users
and services [8]. Zhang et al. employed the DBpedia knowl-
edge base to automate the semantic annotation process [23].

However, a service annotation is valuable only when it
can accurately reflect the web service’s semantic meaning.
Existing tools mainly focus on assisting the annotation pro-
cess and suppose that all the annotations are correct for fur-
ther usage, while it may not always be true [18]. Our
empirical study over a real-world service repository shows
that only about 38.61 percent of the original annotations are
accurate enough for supporting web service interopera-
tions. Therefore, how to verify and guarantee the quality of
semantic annotations has become an important issue for the
services computing community.

HUANG ETAL.: OPTIMIZING SEMANTIC ANNOTATIONS FORWEB SERVICE INVOCATION 591

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 17,2020 at 21:19:37 UTC from IEEE Xplore. Restrictions apply.

2.2 Semantic Annotation Evaluation

Although the semantic annotation technologies have been
proven effective for solutions in different disciplines, its
effectiveness suffers from the low quality of semantic anno-
tations [18]. This is partly because that it is extremely time-
consuming and non-trivial to verify, collect and improve
the annotation quality through manual efforts. Therefore, a
few tools have been proposed to evaluate the quality of
annotations. Mokarizadeh et al. [30] introduced two golden
ontologies: one is constructed manually and the other is
constructed by automatically learning from web service
message element/part names. The difference between the
annotation and the golden ontology is considered as the
indicator for the QoSA. Meanwhile, the network properties
such as small-world and scale-free of the web service net-
work resulted from the semantic annotation are studied and
discussed. Belhajjame et al. [18] adapted techniques from
traditional software testing to verify the semantic annota-
tions for web services’ input and output parameters. An
annotated instance pool is generated by trawling the work-
flow provenance logs [16]. Based on the instance pool, if an
operation accepts a particular instance of a concept that is
disjoint with the annotation, the annotation will be consid-
ered as incorrect. Hence, the QoSA can be evaluated before
the annotation becomes publicly available.

These proposals describe a first step towards providing
tools for QoSA evaluation. However, they strongly depend
on the accuracy of the golden ontologies while the golden
ontologies need to be previously constructed before the
evaluation. Additionally, how to improve the QoSA is over-
looked by these methodologies.

2.3 Semantic Annotation Optimization

To the best of our knowledge, there is no proposal for auto-
matically or semi-automatically improve the semantic anno-
tation quality for web services interoperation. Actually, most
of the inaccurate semantic annotations are corrected through
manual efforts. In [18], a human curator has to examine the
errors discovered and then chooses a different concept for
annotation. Due to the large-scale and rapid increasing
Semantic Web knowledge base such as Linked Open Data
(LOD), it is non-trivial to select correct ontology to improve
annotations. Considering the specific feature of Semantic
Web service annotation, our previouswork [19] introduced a
two-layer optimization strategy to improve the web service
annotation. Our principle is that the response information
from a service invocation is useful for the QoSA improve-
ment, not only the response for the “successful invocation”
but also the “rectification operations.”

From a different perspective, crowdsourcing [31] has
been used for linked data management [32], such as entity
linking quality assurance [33], resource management [34]
and ontology alignment [35]. However, the crowdsourcing
may lead to information and/or cognitive overload which
bring no benefit for annotation quality improvement, for
example, the crowdsourcing disagreement for collecting
semantic annotation [36].

Hence, given a collection of semantic annotations for web
services, our goal is to verify and improve the annotations
to support web service interoperations. We significantly
extended our previous framework in [19] to take the outputs

annotations into account, semi-automatically bootstrap ontologies
to recommend potential correct concepts from knowledge base, as
well as to introduce the three-phase optimization framework to
further enhance the performance.

3 SERVICE ANNOTATION LIFECYCLE FRAMEWORK

Significantly extending our previous work [18], we propose
a four-phase service annotation lifecycle management
framework as shown in Fig. 1. The lifecycle of a service
annotation is divided into four phases: semantic annotation,
annotation quality verification, annotation optimization and
semantic-aware applications.

3.1 Semantic Annotation

In the semantic annotation phase, a user can semantically
annotate web services either manually or semi-automatically
using tools like KINO [14], Iridescent [12], and Meteor-S
[13]. Typically, such tools can provide suggestions for anno-
tation based on the knowledge base such as DBpedia [37],
OpenCYC [38], workflow provenance [16], or BioCatalogue
[39]. Based on the web semantic annotations, service elements
(such as operation names, input/output parameters, and
functional description) will be allocated with semantic
concepts.

3.2 Annotation Evaluation

In order to evaluate the quality of semantic annotation,
instances for inputs are drawn from the instance pool based on
the knowledge base, or from the trusted instance repository con-
structed during the QoSA assessment and optimization pro-
cess. Details about the construction of the TIR will be
discussed in Section 5. The instances are treated as test cases
and the web service operations will be invoked through tools
such as SoapUI [40] or HttpClient. Therefore, we can get the
response information for each invocation. Based on the response
results, we can evaluate the quality of the annotations. Finally,
each semantic concept for successfully invoked web service

Fig. 1. Four-phase semantic annotation lifecycle management
framework.

592 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 12, NO. 4, JULY/AUGUST 2019

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 17,2020 at 21:19:37 UTC from IEEE Xplore. Restrictions apply.

operations will be associated with an instance which can be
used to support the semantics-aware solution.

3.3 Annotation Optimization

Based on the execution status from the evaluation phase, the
trusted instances will be generated to construct the TIR. The TIR
is empty at the beginning but it will becomemore comprehen-
sive as time goes by. Then the TIR will be used to generate
instances for the invocation which can improve the QoSA. As it
only affects the instance generation but not the concept anno-
tation, it will not impact the annotation phase. Therefore, we
name it Local-Feedback Strategy. Furthermore, the TIR can be
used to correct the inaccurate annotated concepts during the
semantic annotation phase, both for the input and output
parameters. Therefore, we name it Global-Feedback Strategy.
Note that LFS and GFS both focus on improving the annota-
tions for successful invocations. Therefore, in this paper, we
extract the rules from the annotation optimization log to deal with
annotations of the false invocations.Wename it asGlobal-prop-
agation Strategy. After the optimization phase, the annotations
including the concepts and instances will become publicly
available for further usage. As their QoSA being improved,
such annotationswill becomemuchmore valuable.

3.4 Annotation Application

Based on the evaluation and optimization phase, each
semantic annotation for a web service will not only contain
the concepts but also the suggested instance, which can
enrich the semantic information for further semantic-aware
solutions, such as service discovery, composition and rec-
ommendation [5], [6], [7], [41], [42]. Details about these tech-
nologies are out of scope in this paper.

Note that in the proposed lifecycle framework, different
kinds of annotation algorithms and tools can be used to allo-
cate the annotations. Apparently, how to verify and opti-
mize the QoSA are the most critical processes.

4 SERVICE ANNOTATION EVALUATION

4.1 Semantic Annotation

For service annotation verification, unlike other methods
oriented to the annotations of individual services, our
approach is oriented to the annotations of a repository of
services. In other words, we learn and leverage peer serv-
ices’ effective annotations to verify and enhance incoming
service annotations. During the semantic annotation phase,
the service elements will be allocated with a semantic con-
cept from the Semantic Web knowledge base. The better the
annotations can express the web service’s input/output parame-
ters’ real semantics, the better that the annotations can support
the interoperability of the service. As the main motivation of
the semantic annotation for web service is to facilitate the
interoperation among different services, we define the basic
principle to evaluate the annotation quality as follows:

Definition 1 (Quality of Semantic Annotation for Web
Service Interoperation). The quality of annotations of a ser-
vice is measured by the success rate of the service interoperation.

In order to evaluate service interoperability, we focus on
the input and output parameters of each comprising opera-
tion p̂i of a web service. Here we extend the traditional

semantic annotation into the following tuple which not only
considers the annotated concepts ci;j but also the instances
cini;j for each parameter pi;j:

saiðp̂iÞ ¼<I;O>¼ <f<ipi;j; ici;j; icini;j > j0 � j � nig;
f< opi;k; oci;k; ocini;k > j0 � k � mig> ;

(1)

where ici;j is the semantic concept and icini;j is the semantic
instance annotated for the input parameter ipi;j, ni is the
number of input parameters for p̂i. oci;k is the semantic con-
cept, ocini;k is the semantic instance annotated for the output
parameter opi;k andmi is the number of output parameters.

Both the concepts and instances are considered in our
definition, because the associated instances can be consid-
ered as test cases thus to enrich the semantic information to
improve the performance of later semantic-aware solutions.
For each semantic annotation, there will be no instance asso-
ciated with the input/output parameters to start with.
Therefore icini;j; 0 � j � ni and ocini;k; 0 � k � mi are all
null at the very beginning of the verification phase.

As the input and output of each operation play different
roles in service interoperation, the evaluation methods
should be different. Furthermore, the evaluation of the out-
put parameters’ annotations should only be processed for
the successful invocations with correct input parameters’
annotations. Therefore, we will first discuss the verification
for input parameters and then present how to evaluate out-
put parameters’ annotations.

4.2 Quality Evaluation for Input Parameters

4.2.1 Annotation Quality

The semantic annotations for input parameters intend to
represent what kinds of instances are acceptable for the
input parameters. For example, “DBpedia: Currency Code”
means that only an instance of currency code such as “CNY”
is acceptable. Therefore, given the semantic annotation for
an input parameter ipi;j and a collection of instances
ini;j ¼< in1; . . . inx > generated based on the semantic
concept ici;j, if there exists at least one instance that is
acceptable for the parameter, the annotation ici;j for ipi;j is
considered as acceptable.

Definition 2 (Annotation Correctness for Input Parame-
ter, ACIP). Given an operation p̂i and one of its input parame-
ter ipi;j, the annotation ici;j for ipi;j is correct iff there exists at
least an instance in 2 ini;j ¼<in1; . . . inx> generated by ici;j
that is acceptable:

ici;j !correct <p̂i; ipi;j > (
iff

i n 2 ini;j ¼<in1; . . . inx> ;

in !accepted
<p̂i; ipi;j > :

(2)

If and only if the annotations for all the comprising input
parameters are acceptable, the operation can be successfully
invoked. Therefore, we define acceptable annotation for a
given operation as follows:

Definition 3 (Annotation Correctness for Input Parame-
ters of Operation, ACIO). Given an operation p̂i and
its input parameters’ semantic annotation sai:I, the annotation

HUANG ETAL.: OPTIMIZING SEMANTIC ANNOTATIONS FORWEB SERVICE INVOCATION 593

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 17,2020 at 21:19:37 UTC from IEEE Xplore. Restrictions apply.

is correct iff the annotation for all of its input parameters
are correct:

sai:I !correct p̂i(
iff 8 <ipi;y; ici;y >2 f<ipi;j; ici;j > g;

ici;y !correct <p̂i; ipi;y > :
(3)

Based on the discussions above, we define the QoSA for
the input parameters as follows:

Definition 4 (Quality of Semantic Annotation for Input
Parameter of Operations, QoSAI). Given a collection of
operations fp̂i; 0 < i � Ng for a web service and the semantic
annotationssai:I for the input parameters of each operation p̂i.
The QoSAI is defined as follows:

QoSAIðfp̂i; 0 < i � NgÞ ¼ jACIOj
N

¼ jfsai:I !
correct

p̂igj
jfsaigj :

(4)

Obviously QoSAI 2 ½0; 1�. The larger the QoSAI is, the
better quality the semantic annotation owns. If QoSAI is
equal to 1, all the annotations are correct. If QoSAI is equal
to 0, no annotation is correct.

Algorithm 1. Instance Generation for Input (IGI)

Input: <ipi;j; ici;j > : annotated concept for input
x: instances number
TIR: the trusted instance repository
IP: the instance pools from knowledge base

Output: ini;j ¼<in1; . . . inx> : generated instances
Procedure:
01. ini;j f

02. query genSPARQLðici;j; xÞ// Generate SPARQL query
with annotation ici;j

03. IF TIR 6¼ f THEN
04. lini;j ¼ executeSPARQLðTIR; query; xÞ;
05. ini;j ini;j [lini;j;
06. IFjlini;jj < x THEN
07. x x� jlini;jj;
08. ELSE
09. x 0;
10. ENDIF
11. ENDIF
12. IF x > 0 THEN
13. pini;j ¼ executeSPARQLðIP; query; xÞ; // execute the

query to generated x instances from IP
14. ini;j ini;j [pini;j;
15. ENDIF

4.2.2 Quality Evaluation

Instance Generation for Input Parameters. From Fig. 1, it can be
seen that there exist two sources for instance generation: an
instance pool (IP) from the Semantic Web knowledge base
and a trusted instance repository. As TIR is constructed based
on the execution provenance information from successful
invocations during the assessment and optimization phase,
the instances in TIR can reveal the specific domain knowl-
edge so that they can be used to guide future invocations.
The TIR construction will be detailed in Section 5. As shown

in Algorithm 1 we generate the instances from the TIR with
a higher priority.

Line 02 generates a SPARQL query2with the given annota-
tion and the candidate instance number. Lines 03�11 execute
the generated query in TIR to get the relevant instances. Lines
12�15 execute the query in the IP if the number of instances
generated from TIR is not enough for the evaluation.

Note that at the beginning, the TIR will be empty and all
the instances are generated from the IP coming from the
knowledge base such as DBpedia. Specially, the two files
“mappingbased_properties_en.nt”3 and “infobox_proper ties_en.
nt”4 which both contain specific instances are used to gener-
ate the IP. As the evaluation going on, the IP will be fleshed
out and more instances will be generated from the TIR.
Hence, the solution in [18] can be considered as a special case
in our approach.

Algorithm 2. QoSA Evaluation for Input Parameters
(EIP)

Input: SAI ¼ fsai:Ig: Annotations for Input
Output: QoSAI : QoSA for Input Parameters

EIR ¼ feirzg: Execution information records
sp ¼ fspig: successful invocations

Procedure:
01. EIR f;ACIO f;
02. sp f; fp fp̂ig;
03. FOR sai:I 2 SAI
04. FOR < ipi;j; ici;j; icini;j >2 sai:I
05. ini;j IGIðsai:I; x; TIR; IP Þ; // Use Algorithm 1 to

generate the instances for invocation
06. ENDFOR
07. FORf< ipi;j; ini;j;ki;j > j0 � j � n; 0 � k < xg
08. eirz invokeðp̂i; f< ipi;j; ini;j;ki;j > gÞ
09. EIR EIR [eirz
10. IF eirz:st ¼ true
11. AICO AICO [sai:I
12. sai:icini;j ini;j;ki;j ; //update the instances
13. sp sp [p̂i;
14. BREAK;
15. ENDIF
16. ENDFOR
17. ENDFOR
18. QoSAI jACIOj

jSAj

Evaluation for Input Parameters Annotation. For each opera-
tion of a web service, given the combination of instances gen-
erated from Algorithm 1 for the input parameters, the
invocation will generate the execution information including
the invocation status as well as the result. We formally define
each execution information record as the following tuples:

eir ¼< sai; f< ipi;j; ini;j;ki;j > g; st; er > ; (5)

where f< ipi;j; ini;j;ki;j > g is the instance combination for
each input parameter st 2 ftrue; falseg is the invocation sta-
tus, er is the response from the invocation. For description

2. SPARQL is a semantic query language for RDF databases. An
example of SPARQL query is shown in Supplementary File Figure A,
which can be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TSC.2016.2612632.

3. http://wiki.dbpedia.org/Downloads2015-04#dbpedia-ontology
4. http://wiki.dbpedia.org/Downloads2015-04#dbpedia-ontology

594 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 12, NO. 4, JULY/AUGUST 2019

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 17,2020 at 21:19:37 UTC from IEEE Xplore. Restrictions apply.

http://wiki.dbpedia.org/Downloads2015-04#dbpedia-ontology
http://wiki.dbpedia.org/Downloads2015-04#dbpedia-ontology

convenience, we denote the successful invocation as
sp ¼ fspig and the fault invocation as fp ¼ ffpjg. Obviously
fpig ¼ sp [fp; sp \ fp ¼ f.

Therefore, we can get the details of the evaluation pro-
cess for the input parameters annotations, reported in Algo-
rithm 2. Lines 04�06 generate the instances for each input
parameter; Lines 07�17 invoke the operation, get the execu-
tion information record and then separate the initial opera-
tions into the successful invocations and false invocations
based on the status. Line 16 calculates the QoSA for input
parameters.

If the TIR is set as null, it will not be used for instance
generation. The evaluation will reflect the annotation qual-
ity of the original input parameters annotations.

4.3 Quality Evaluation for Output Parameters

4.3.1 Annotation Quality

The semantic annotations for the output parameters of an
operation represent the output values which can be con-
sumed by other services. Many tools, such as Taverna [43]
and Galaxy [44], are developed to assist designers in con-
structing service compositions. Specially, these tools will
employ the semantic annotations of the output parameters
to search for services that are able to consume them and rec-
ommend the interoperable services to the designers. Appar-
ently, the more similar between the semantic annotations
and the real output of the operation is, the better the con-
structed composition is. Hence the quality of the annotation
for the output parameters can be considered as the semantic
similarity between the annotations and the output values.

Definition 5 (Annotation Quality for Output Parame-
ters of Operation, AQOO). Given a successful operation
spi, its output parameters’ semantic annotation sai:O, its out-

put values sai:O
_

¼ f<opi;k; bci;k; bcini;k >g, the annotation
quality for output parameters is defined as:

AQOOðsaiÞ ¼ simðsai:O; sai:O

_

Þ ¼
X

correctðoci;k; bci;kÞ:
(6)

In this paper, only the situation that the annotated con-
cept oci;k is the same to the output value bci;k will be consid-
ered as correct:

correctðoci;k; bci;kÞ ¼ 1
0

�
oci;k ¼ bci;k
oci;k 6¼ bci;k

: (7)

Note that only the successfully invoked services can gen-
erate the output values. Here, we can define the annotation
quality of output parameters as the ratio of the corrected
annotations:

Definition 6 (Quality of Semantic Annotation for Out-
put Parameter of Operations,QoSAO). Given a collection
of successfully invoked operations fspi; 0 < i � Ns � Ng for
a web service and the semantic annotations sai:O for the output
parameters of each operation spi. The QoSAo is defined as
follows:

QoSAoðfspigÞ ¼
PNs

i¼1 jAQOOðsaiÞjPNs
i¼1 jsai:Oj

; (8)

where jsai:Oj refers to the number of output parameters
for spi.

4.3.2 Annotation Evaluation

Bootstrapping from Invocation Response. For each successful
invocation, the web service operation will reveal informa-
tion about the execution. The response represents the values
output by the services which can be consumed by other
services. Fig. 2 illustrates the invocation result from the
operation “GetCurrencyList” in web service “Rates.”

It can be seen that each item “<Currency>. . .
</Currency>” in the resulting list refers to one currency,
“AED” in “<Code> AED</Code>” is an ISO currency code,
and “UAE Dirham” in “<Name>UAE Dirham</Name>” is a
currency name. Such information can be used to generate the
instances which are accurate for the invocation. Addition-
ally, we can extract the concepts representing the output of
the web services. Similar to [11], [45], we extract the tokens
from the execution result. As the execution result is in XML
format, each value of the XML schema’s leaf element will be
considered as a trusted instance (tin); each element name list
from the finest granularity to the general levels with opera-
tion namewill be considered as the candidate concept (cc). The
granularity level is used to build the concept hierarchy. For
example, the possible concepts in Fig. 2 are “Currency Code,”
“Currency Name” and “Currency” while “Currency Code,”
“Currency Name” are the sub classes of “Currency.”

For each candidate concept, we consider it as the key
word and then query from the following three sources
“OWL,” “Resource” and “Property” in DBpedia5:

OWL (dbpedia_2015-04.owl6): This dataset consists of the
information about the ontology concepts in DBpedia,
including the class, datatype property and object
property.

Resource (mappingbased_properties_en.nt7): This dataset con-
tains triples extracted from the respective Wikipedia

Fig. 2. Execution result from the invocation of the operation
“GetCurrencyList” in web service “Rates.”

5. http://oldwiki.dbpedia.org/Datasets#h18-19
6. http://wiki.dbpedia.org/Downloads2015-04#dbpedia-ontology
7. http://wiki.dbpedia.org/Downloads2015-04#dbpedia-ontology

HUANG ETAL.: OPTIMIZING SEMANTIC ANNOTATIONS FORWEB SERVICE INVOCATION 595

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 17,2020 at 21:19:37 UTC from IEEE Xplore. Restrictions apply.

http://oldwiki.dbpedia.org/Datasets#h18-19
http://wiki.dbpedia.org/Downloads2015-04#dbpedia-ontology
http://wiki.dbpedia.org/Downloads2015-04#dbpedia-ontology

whose subject and object resource have an equivalent
English article.

Property (infobox_properties_en.nt8): This dataset contains
all properties extracted from all infoboxes and tem-
plates within all Wikipedia articles.

Based on the quality of these data sources, we use the pri-
ority ordering: “OWL”>”Resource”>”Property.” This means
that the generated concepts from the higher priority data
sources will have a higher ranking. In order to guarantee
the accuracy of the trusted instance repository, the boot-
strapping process will be semi-automatic and the annotator
will participate in the “getMappingConceptFromOWL,”
“getMappingConceptFromResource,” “get-MappingConceptFro-
mProperty” process to pick the final concepts from the query
result. How to improve the recommendation performance,
for example, using the hierarchy to generate better query
result, is out of scope and we will leave it as the future work.

Finally, from the response information, we can get the
trusted instance records modeled as the following tuples:

tirðspiÞ ¼ f<cck; bck; ftinqj0 < q �Mkg> g; (9)

where spi is the successfully invoked operation, cck is the can-
didate concept, bck is the bootstrapping concept generated
from the bootstrapping process, ftinqj0 < q �Mkg is the
extracted instance list andMk is the trusted instances number.

Algorithm 3 details the bootstrapping process. Line 02
extracts the instances and candidate concepts from the
response information. Line 04�Line 10 query the boot-
strapping concepts from the three DBpedia sources and
the annotators will participate to select the bootstrapped
concepts from the recommended list. Lines 11�13 add the
generated records into the trusted instance repository.
Table 1 shows the generated result for the response from
“GetCurrencyList”.

Evaluation for Output Parameters Annotation. Based on the
definition shown above, the evaluation of the output
parameter is straightforward. For example, as shown in
Table 2, the original annotations for the output parameters
of “GetCurrencyList” are “DBpedia: Currency,” “DBpedia:
PostalCode” and “DBpedia: GivenName” while the generated
concepts are “DBpedia: Currency,” “DBpedia: Currency Code”
and “DBpedia: Currency Name.” Then the QoSAo for
“GetCurrencyList” is only 1/3.

Details about the evaluation of QoSAo are reported in
Algorithm 4. Line 03 uses Algorithm 3 to extract the boot-
strapping concepts from the response information. Lines

04�06 compare the original annotated concepts with the
bootstrapping concepts. Line 08 calculates the quality of the
output parameters annotations.

Algorithm 3. Bootstrapping Response Information (BRI)

Input: spi: successfully invoked operation
erðspiÞ: response from the invocation

Output: tirðspiÞ ¼ f< cck; bck; ftinqj0 < q �Mkg > g
Procedure:
01. tir ¼ f;
02. f< cck; ftinqg > g tokenExtractionðerÞ; // extract

the candidate concepts and trusted instance list from the
execution response;

03. FOR cck 2 f< cck; ftinqg > g
04. bck getMappingConceptFromOWLðcckÞ;
05. IF bck ¼ null
06. bck getMappingConceptFromResourceðcckÞ;
07. IF bck ¼ null
08. bck getMappingConceptFromPropertyðcckÞ;
09. ENDIF
10. ENDIF
11. IF bck 6¼ null
12. tir tir [f< cck; bck; ftinqg > g;
13. ENDIF
14. END FOR

Algorithm 4. QoSA Evaluation for Output Parameters
(EOP)

Input: fspig: the annotations for the output parameters of the
successful invocations.

ftirðspiÞg: the concepts generated from the response
Output: QoSAo

Procedure:
01. AQOO 0; SAO 0;
02. FOR spi 2 fspig
03. bcðspiÞ f< cck; bck > g 2 tirðspiÞ;// bootstrapping

concepts from the response information
04. ocðspiÞ f< oci;k > g; //original annotated concepts
05. AQOO AQOOþ simðbcðspiÞ; ocðspiÞÞ;
06. SAO SAOþ jsai:Oj//number of output parameters
07. END FOR
08. QoSAo ¼ AQOO

SAO

5 SERVICE ANNOTATION OPTIMIZATION

During the verification phase, the quality of the semantic
annotation is evaluated, and the inaccurate annotations are
also identified so that we can improve them. As discussed
above, each semantic annotation for web service consists of
the concepts and the instances, the optimization methodol-
ogy should improve both the associated concepts and
instances. Additionally, we can use the optimization log to

TABLE 1
Trusted Instance Records for “GetCurrencyList”

cck bck ftinqj0 < q �Mkg
Currency DBpedia:

Currency
/

Currency Code DBpedia:
Currency
Code

EUR, AUD, BRL, CAD, CNY,
CUP, EUR, EGP, etc.

Currency Name DBpedia:
Currency
Name

Dollar, Taka, Franc, Pound,
Yen, Krona, Baht, Lira, etc.

TABLE 2
QoSAo for “GetCurrencyList”

bck ock

DBpedia:Currency DBpedia: Currency
DBpedia:Currency Code DBpedia: PostalCode
DBpedia:Currency Name DBpedia: GivenName

8. http://wiki.dbpedia.org/Downloads2015-04#dbpedia-ontology

596 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 12, NO. 4, JULY/AUGUST 2019

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 17,2020 at 21:19:37 UTC from IEEE Xplore. Restrictions apply.

http://wiki.dbpedia.org/Downloads2015-04#dbpedia-ontology

further improve the annotations for the false operations.
Therefore, our annotation optimization methodology con-
sists of the following three folds:

Local-feedback strategy to improve the annotated instances for the
input parameters annotations;

Global-feedback strategy to improve the annotated concepts for
both input and output parameters annotations;

Global-propagation strategy to improve annotations for false
operations.

5.1 Local-feedback strategy for Input Parameter

As we extract the response information of the successful
invocations to generate the trusted instance records to
enrich the trusted instance repository, more accurate instan-
ces can be generated during the “Instance Generation” phase.
It is possible that some of the unsuccessful invocations can
become successful with the new instances. Therefore, the
local-feedback strategy for the input parameter annotation
optimization is straightforward.

Definition 7 (Local-Feedback Strategy for Input Param-
eter Annotation Optimization). For each successful invo-
cation during evaluation, get the execution response, extract
the trusted instance records and update the trusted instance
repository.

The trusted instance repository starts with no instance.
The instances generated for the first-round evaluation all
come from the knowledge base. However, as time goes by,
the successful invocations will enrich the trusted instances
in TIR. Due to the fact that the trusted instance records in
TIR are more accurate, some false invocations due to the
illegal input instances will become successful during the
local-feedback optimization. Here we name them as the rec-
tification operations for convenience. The optimization pro-
cess will stop when there exist no more rectification
operations. Details are reported as Algorithm 5.

Algorithm 5. Local-Feedback Strategy

Input: SAIðbpiÞ ¼ fsai:Ig: Input Parameters Annotations
Output: sp ¼ fspig: successful invocations

fp ¼ ffpjg: fault-invocations
Procedure:
01. sp ¼ f;fp ¼ fbpig;
02. Repeat
03. < QoSAI;EIR; nsp > EIP ðSAIðfpÞ; xÞ;
04. IF nsp 6¼ null
05. FOR spi 2 nsp
06. BRIðspi; eirðspiÞÞ;
07. ENDFOR
08. sp sp [nsp;
09. fp fp� nsp;
10. QoSAI ¼ jspjjbpi j // calculate the total QoSA
11. ELSE
12. BREAK;
13. ENDIF
14. Until Convergence

Line 03 invokes the initial or unsuccessful operations to
get the accurate instances. Lines 05�07 bootstrap the con-
cepts and instances from the successful responses to update

the trusted instance repository. Lines 08�09 update the suc-
cessful and false invocations based on the response informa-
tion. Line 10 calculates the QoSA for the whole original
annotations. Line 12 stops the process if there is no more
successful invocation.

5.2 Global-feedback Strategy for Input

In the local-feedback strategy, the instances generated for
invocations will be updated for each round until the LFS
reaches a convergence. Obviously, the original semantic
annotations for the rectification operations are inaccurate.
These reclaimed records (RR) can be used to help the annota-
tors correct their annotations. Here we formally define them
as the following tuple:

rr ¼<sai; f<ipi;j; tini;j;ki;j > j0 � j � ng> ; (10)

where f< ipi;j; tini;j;ki;j > g is the instance combination
which makes earlier unsuccessful invocation successful.

Each instance tini;j;ki;j is allocated with a concept bck. If
the original annotated concept ici;j for the parameter ipi;j is
different from bck, the original annotation is considered as
inaccurate and it should be replaced by bck. Hence, the
global-feedback strategy for the annotation optimization
can be described as follows:

Definition 8 (Global-Feedback Strategy for Input
Parameter Annotation Optimization, GFSI). For each
reclaimed record generated during the LFS, identify the inaccu-
rate annotation for the input parameter and update it to the
new concept.

The original inaccurate concepts will be replaced by the
new correct annotations. Here we name these optimization
logs as the optimized annotation (OA) for convenience and
formally define them as follows:

oak ¼<pi;k; ci;k; bci;k; tini;k > ; (11)

where pi;k refers to the parameter for the operation pi;k ¼
<namei;k; typei;k > ; namei;k refers to the parameter’s
name, typei;k refers to its data type, ci;k is the original
annotated concept and bci;k is the bootstrapping concept.
tini;k is the list of the trusted instances.

Algorithm 6. Global-Feedback Strategy for Input (GFSI)

Input: RR ¼ frrsg// the reclaimed records from LFS
Output: OA ¼<oak> ;//the optimized log
Procedure:
01. FOR rrs 2 RR
02. FOR < ipi;j; tini;j;ki;j >2 rrs
03. bci;j getConceptðtini;j;ki;j ; TIRÞ;
04. IF sai:ici;j 6¼ bci;j
05. sai:ici;j bci;j;
06. sai:icini;j tini;j;ki;j ;
07. oak ¼<ipi;j; sai:ci;k; bci;k; tini;j;ki;j >
08. OA OA [oak
09. ENDIF
10. ENDFOR
11. ENDFOR

HUANG ETAL.: OPTIMIZING SEMANTIC ANNOTATIONS FORWEB SERVICE INVOCATION 597

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 17,2020 at 21:19:37 UTC from IEEE Xplore. Restrictions apply.

Algorithm 6 details the global-feedback strategy for
input parameters. Line 03 gets the bootstrapping concept of
the instance from the trusted instance repository. Lines
05�06 update the inaccurate annotation into the new one.
Lines 07�08 generate the optimized log. Table 3 shows a
snapshot of annotations correction during the GFSI.

5.3 Global-feedback Strategy for Output

As discussed in Section 4.3, we extract the bootstrapping
concepts from all the successfully invoked responses. Then
we consider the similarity between the original output
parameters annotations and the bootstrapping concepts as
the quality of the annotation. Straightforwardly, the original
annotations which are different from the bootstrapping con-
cepts are considered as the inaccurate annotations. There-
fore we can use the bootstrapping concepts to replace them.

Definition 9 (Global-Feedback Strategy for Output
Parameter Annotation Optimization, GFSO). For each
successful invocation, extract the bootstrapping concepts from
the response and update the inaccurate output parameters
annotations.

Algorithm 7. Global-Feedback Strategy for Output
(GFSO)

Input: fspig: the annotations for the output parameters of the
successful invocations.

ftirðspiÞg: the concepts generated from the response
Output: OA ¼<oak> ;//the optimized log
Procedure:
01. FOR spi 2 fspig
02. ocðspiÞ f<oci;k > g; //original annotated concepts
03. bcðspiÞ f<cck; bck> g 2 tirðspiÞ;// bootstrapping

concepts from the response information
04. FORoci;j 2 ocðspiÞ
05. IF oci;j 6¼ bci;j
06. spi:oci;j bci;j;
07. spi:ocini;j tini;j;ki;j ;
08. oak ¼<opi;j; oci;j; bci;j; tini;j;ki;j > ;
09. OA OA [oak;
10. ENDIF
11. ENDFOR
12. ENDFOR

Considering the example shown in Table 2 again, the
original annotations “DBpedia: PostalCode” and “DBpedia:

GivenName” for the output parameters of “GetCurrencyList”
will be replaced by the bootstrapping concepts “DBpedia:
Currency Code” and “DBpedia: Currency Name” during the
global-feedback strategy for the output parameters. Algo-
rithm 7 details the GFSO. Line 06�07 replace the inaccurate
annotated concept with the bootstrapping concept.
Lines 08�09 update the optimized log. Table 4 shows a
snapshot of annotations correction during the GFSO.

5.4 Global-propagation Strategy for
False-Operations

As discussed above, the LFS, GFSI, GFSO all focus on the
successful invocations. For the false-operations, fortunately,
the optimized log can be used to update the annotations.
The basic idea here is that “if the annotations forfpjis similar
tooak, then the annotationcj;k for fpj can be updated bybci;k.”
Hence, the strategy to further improve the annotations for
the false-operations can be defined as:

Definition 10 (Global-propagation Strategy for false-
operation annotation optimization, GPS). For the anno-
tation for a false-operation, if there exist a similar optimized
annotation (oa) record, then update the annotation with the
bootstrapping concept in oa.

Algorithm 8. Global-Feedback Strategy (GPS)

Input: ffpig: the annotations for the fault invocations.
foakg: the optimized annotations

Procedure:
01. FOR fpi 2 ffpig
02. FOR <pi;j; ci;j >2 fpi
03. IF simð<pi;j; ci;j > ; oakÞ � T
04. fpi:ci;j oak:bci;k;
05. fpi:cini;j oak:tini;k;
06. ENDIF
07. ENDFOR
08. ENDFOR

The calculation of the similarity between two parameters
with semantic annotations has been widely discussed [46],
[47], [48], [49]. In order to guarantee the accuracy of the opti-
mization, we first calculate the similarity between the origi-
nal annotations for the parameters and the optimized
annotations, and then annotators need to participate to
select the recommended revisions. Specially, if the parame-
ter name, data type and the associated annotation are all the
same, we will directly replace the original concept by the
bootstrapping concept. Actually, the empirical study shows
that 58.78 percent revisions fall into this scenario.

TABLE 3
Annotation Update during GFSI (Part)

Original Annotation Instance
(tini;j;ki;j)

Replace
Annotation

DBpedia:Currency Dollar DBpedia:
Currency Name

DBpedia:Currency CAD DBpedia:
Currency Code

DBpedia:Programming
Language

English DBpedia:
Language Name

DBpedia:endDate 2014-12-16T08:
00:00

DBpedia:Datetime

DBpedia:Country CN DBpedia:
Country Code

TABLE 4
Annotation Update during GFSO (Part)

Invocation Result Original Replace

<Code>AD
</Code>

DBpedia:
postalCode

DBpedia:
currency Code

<Name>UAE Dirham
</Name>

DBpedia:
GivenName

DBpedia:
currencyName

<State>NY
</State>

DBpedia:
highestState

Dbpedia:
stateName

<City>Albany
</City>

DBpedia:
BroadcastNetwork

Dbpedia:
cityName

598 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 12, NO. 4, JULY/AUGUST 2019

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 17,2020 at 21:19:37 UTC from IEEE Xplore. Restrictions apply.

Algorithm 8 details the GPS to improve the annotations
for the false operations. Lines 03�06 update the annotations
of the fault-operation if there exists a similar optimized
annotation. In this paper, we just set T ¼ 0:8 and then the
annotators will participate in the similarity calculating pro-
cess to select one for the replacement.

5.5 Annotations Optimization

Based on the strategies presented above, in order to optimize
the annotation, the LFS is first used to construct the trusted
instance repository and allocate the instances for the input
parameters, and then the GFSI and GFSO are used to semi-
automatically correct the inaccurate concepts for the success-
ful invocations. The GPS is further employed to update the
annotations for the false-operations. The optimized annota-
tions process will stop until no more new successful invoca-
tions happen. Finally, the optimized annotations, consisting of
the concepts and instances, will be publicly published for fur-
ther application. Algorithm 9 details the optimization process.

Line 03 uses Algorithm 1 to invoke the operations. Lines
05�07 use Algorithm 2 to extract the bootstrapping con-
cepts. Line 08 organizes the reclaimed records. Line 10 uses
Algorithm 6 to update the concepts for input parameters
and Line 11 uses Algorithm 7 to correct the output parame-
ters concepts. Line 12 uses Algorithm 8 to update the anno-
tations for the false-invocations.

6 EXPERIMENTS

6.1 Data and Prototype

In order to prove the effectiveness of the presented frame-
work, we have implemented a prototyping system based on
our proposed lifecycle model.

Similar to [23], we employed the dataset consisting of 300
real-world web services with WSDL documents9, relevant
to travel and weather domains collected from the web. Since
only the web services available for invocation can be used
for the QoSA evaluation, we removed the services whose
endpoints or WSDL references are inactive. Afterwards, we
further filtered the services with errors because they are not
actually available. Error messages we used include
“Endpoints refer to other websites or services,” “Service data has
been ported,” “Endpoints turn out to be other URLs while
accessing,” and “Services have no truly useful content.” Addi-
tionally, our previous work [19] found that 151 operations
are always failed with the return information “There is a
problem with the resource you are looking for and it cannot be dis-
played.” Thus, those operations were removed from the
dataset. Finally, we received a dataset summarized in
Table 5, consisting of 115 services, 790 operations and
14,326 parameters (6,290 outputs parameters and 8,036
inputs parameters) as the benchmark.

Algorithm 9. Annotation Optimization Process

Input: SAðbpiÞ ¼ fsaig: Original Annotations
Output: sp ¼ fspig: successful invocations

fp ¼ ffpjg: fault-invocations
Procedure:
01. sp ¼ f;fp ¼ fbpig;
02. Repeat
03. < QoSAI;EIR; nsp > EIP ðSAIðfpÞ; xÞ;
04. IF nsp 6¼ null
05. FOR spi 2 nsp
06. BRIðspi; eirðspiÞÞ;
07. ENDFOR
08. RR constuctRRðnspÞ;
09. OA f;
10. OA GFSIðRRÞ;
11. OA OA [GFSOðnsp; LIRÞ;
12. GPSðfp;OAÞ;
13. sp sp [nsp;
14. fp fp� nsp;
15. ELSE
16. BREAK;
17. ENDIF
18. Until Convergence

The experimental environment is a Windows 7 machine
equipped with 3 GB memory, Myeclipse 9 and Mysql 5.5.
The annotation approach presented in [23] is used to gener-
ate the original semantic annotations as the baseline. Dbpe-
dia 2015-04 is used as the semantic knowledge base. An
Httpclient-based simulator was developed to automatically
invoke web service operations.

To facilitate the concepts bootstrapping from the suc-
cessful response information, we have developed a semi-
automatic bootstrapping tool, reported its screenshot in
supplementary Fig. B, available online, to help annota-
tors to select suitable concepts from the semantic knowl-
edge base. As discussed in Section 4.3.2, the response
file is loaded into the tool and then the candidate
concepts will be extracted from the file. Furthermore, for
each candidate concept, we query the concepts from the
three knowledge bases in DBpedia so that the annotators
can pick the most suitable ones as the bootstrapping
concepts.

Note that our framework is generic and it can be fur-
ther extended in the following aspects: 1) the annotation
approach can be replaced by other techniques such as
KINO [14], Iridescent [12], Meteor-S [13] etc.; 2) the
knowledge base can be switched to OpenCYC [38], work-
flow provenance [16], or BioCatalogue [39] etc.; and 3) the
dataset can be substituted by other WSDL-based service
dataset [50]. Since semantic annotation technologies have
been recently developed for the RESTful services [24],
[52], our framework can also be used for RESTful services’
annotations.

6.2 Experiments and Discussions

6.2.1 Optimization for Input Parameters

Comparison Methodology. To evaluate the effectiveness of our
optimization framework for input parameters annotations,
we set the instances for evaluation as six and then consid-
ered the following methodologies:

TABLE 5
Benchmark Datast

service #operations #inputs #output

115 790 8,036 6,290

9. The WSDL documents used in the experiment have been publicly
available in our website: http://colmanzf.com/colman/?page_id¼25

HUANG ETAL.: OPTIMIZING SEMANTIC ANNOTATIONS FORWEB SERVICE INVOCATION 599

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 17,2020 at 21:19:37 UTC from IEEE Xplore. Restrictions apply.

http://colmanzf.com/colman/?page
http://colmanzf.com/colman/?page

Original Semantic Annotation (OSA): all instances for each
annotation are generated from Dbpedia and no feed-
back optimization strategy is employed.

Local-feedback Strategy for Annotation Optimization (LFSA):
instances are generated from both Dbpedia and the
trusted instance repository. The local-feedback strategy
is used to optimize the semantic annotation.

Global-feedback Strategy for Annotation Optimization (GFSA):
based on the LFSA, the global-feedback strategies GFSI
is used to update the inaccurate concepts.

Global-Propagate Strategy for Annotation Optimization (GPSA):
based on the GFSA, the global-propagation strategy is
further used to correct the inaccurate concepts for input
parameters annotations of the fault invocations.

Results. To remove the random effect from the dynamic
environment, we constructed four clients using the same
network environment for each experiment. For each round,
we ran eight times to get the average result.

Fig. 3 reports the result of the QoSAI for each methodol-
ogy. It can be seen that the QoSAI for the original annota-
tions was no more than 40 percent, about 38.61 percent. It
proves that it is not suitable to suppose that the semantic
annotations for web services are always accurate. This
result is consistent with the conclusion in [16] which moti-
vates our research. On the contrary, our optimization
framework can effectively improve the quality of the input
parameters annotations. The QoSAI for the three methods
all reached 0.6899, gaining a 78.68 percent improvement in
QoSAI . The GFSA and the LFSA gained the similar perfor-
mance because the GFSA only corrects the annotation for
the successful invocations which will not be tested in the
next round.

Additionally, comparing with the LFSA and the GFSA,
the GPSA gained a faster convergence speed. It reached a
convergence in the fifth round while the LFSA and GFSA
both need eight rounds. This may be because GPSA will
update the inaccurate annotations for the false invocations
so that more false invocations can be successfully invoked
in the next round.

Furthermore, we conducted a depth analysis about the
reclaimed records in which the annotations were inaccurate
at the beginning but were corrected after the optimization.
It can be seen that the percent of exceptions from the illegal
invocation (IIE) “Server was unable to process request. Object ref-
erence not set to an instance of an object” is rapidly decreasing.
After the optimization process, the IIE will reduce from
44.18 to 14.30 percent. This means that our optimization
framework can help to annotate more accurate instances for
the operations, which can enhance the effectiveness of the
semantic-aware solutions.

6.2.2 Optimization for Output Parameters

Comparison Methodology. To evaluate the performance of our
optimization framework to update the output parameters
annotations, based on whether the global-propagation strat-
egy is used to identify the inaccurate output parameters
annotations, we considered the six methodologies shown in
Table 6.

Result. Fig. 4 shows the result of the QoSAo for each
methodology. It can be seen that the propagation methodol-
ogy gained significant improvement, about 36.66�43.61 per-
cent, for all the three approaches.

Furthermore, comparing OSAW, LGFSAW, and GPSAW,
it can be seen that LGFSAW and GPSAW both gained sig-
nificant improvement than OSAW, from 7.06 to 36.47 per-
cent. Similarly, GPSAW gained a faster convergence speed
than the LGFSAW. Therefore, we can conclude that our
framework can significantly improve the quality of the out-
put parameters annotations.

Fig. 3. Effectiveness of the optimization framework for input.

TABLE 6
Benchmark Datast

Without With

OSA OSA OSAW
LFSA/GFSA LGFSA LGFSAW
GPSA GPSA GPSAW

Fig. 4. Effectiveness of the optimization framework for output.

600 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 12, NO. 4, JULY/AUGUST 2019

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 17,2020 at 21:19:37 UTC from IEEE Xplore. Restrictions apply.

6.2.3 Annotation Publication Performance

Comparison Methodology. The semantic annotations will
finally be published associated with the corresponding web
services. To evaluate the quality of the published annota-
tions, we consider the following two strategies:

Annotation with Optimized Concept (AOC): Annotations are
optimized by the optimized framework and only the
concepts are published.

Annotation with Attached Instance (AAI): Annotations are
optimized by the optimized framework and the con-
cepts as well as the instances are published.

Results. Here we consider the quality of the input param-
eters annotations for each strategy. As shown in Fig. 5, com-
paring with the original annotations, the AOC gained a
60.71 percent improvement in QoSAI . This means that the
annotated concepts for the web service annotations become
more accurate after optimization, so that more accurate
instances can be generated from the semantic knowledge
database. Furthermore, if the attached instances were avail-
able, the QoSAI reached 0.6873, showing a 76.30 percent
improvement to the original annotations.

Thus, we can conclude that our framework can effec-
tively improve the accuracy of the annotated concepts and
the associated instances can help to facilitate the interopera-
tions between web services.

7 CONCLUSIONS

In this paper, we have presented a technique capable of
verifying and improving the quality of semantic annota-
tions for web services to support their interoperations.
QoSA is formally defined as how well the semantic anno-
tations can support the interoperation among web serv-
ices. Based on a trusted instance repository incrementally
constructed during the verification and optimization pro-
cess, a three-phase optimization framework is presented
to improve the QoSA, including the Local-feedback strategy
to optimize annotated instances; Global-feedback strategy to
correct inaccurate annotated concepts for successful

invocations; and Global-propagation strategy to update the
annotations for false operations.

Based on the presented framework, given a collection of
semantic annotations for real-world web services, our
empirical study shows that:

Comparing with the original annotations, the framework gains
78.68 percent improvement in QoSA of the input parameters
annotations.

The framework can effectively identify and improve the outputs
parameters annotations, from 7.06 to 36.47 percent.

Comparing with the original annotations, the optimized annota-
tions can gain 60.71 percent improvement in quality. If the
trusted instance repository is published, we gain 76.30 per-
cent improvement, reaching 0.6873.

Webelieve that our presented technique can be applied at a
service repository to help evaluate and improve the semantic
annotations of its comprising services. A service will be pub-
lished only after its QoSA reaches a predefined threshold.

In this paper, the bootstrapping process and the opti-
mized process are both semi-automatic, which means that
the candidate concepts are recommended for annotators to
select. In the future, we will focus on recommendation per-
formance improvement to further facilitate the annotation
quality optimization. Additionally, our current experiments
are based on SOAP-services; we plan to further employ our
framework to improve RESTful services’ semantic annota-
tion in our following work. Finally, as the service context
such as the way how services could be retrieved and used
will also affect the service interoperations, we will further
extend our framework to consider the service context as
well as to support the shimming [51] between services to
improve the interoperation performance.

ACKNOWLEDGMENTS

The authors thank Juan Chen for the assistance in the imple-
mentation of the prototype. Shizhan Chen is the corre-
sponding author. This work is supported by the National
Natural Science Foundation of China grants 61373035,
61572350, 61502333.

REFERENCES

[1] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,”
Sci. Amer., vol. 284, pp. 28–37, 2001.

[2] B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid,
“Composing web services on the Semantic Web,” Int. J. Very Large
Data Bases, vol. 12, pp. 333–351, 2003.

[3] S. A. McIlraith, T. C. Son, and H. Zeng, “Semantic Web services,”
IEEE Intell. Syst., vol. 16, no. 2, pp. 46–53, 2001.

[4] A. V. Paliwal, B. Shafiq, J. Vaidya, H. Xiong, and N. Adam,
“Semantics-based automated service discovery,” IEEE Trans. Serv.
Comput., vol. 5, no. 2, pp. 260–275, Apr.-Jun. 2012.

[5] K. P. Joshi, Y. Yesha, and T. Finin, “Automating cloud services life
cycle through semantic technologies,” IEEE Trans. Serv. Comput.,
vol. 7, no. 1, pp. 109–122, Jan.-Mar. 2014.

[6] J. Zhang, J. Wang, P. Hung, Z. Li, N. Zhang, and K. He,
“Leveraging incrementally enriched domain knowledge to
enhance service categorization,” Int. J. Web Serv. Res., vol. 9,
pp. 43–66, 2012.

[7] J. Zhang, R. Madduri, W. Tan, K. Deichl, J. Alexander, and
I. Foster, “Toward semantics empowered biomedical web serv-
ices,” in Proc. 2011 IEEE Int. Conf. Web Serv., 2011, pp. 371–378.

[8] Q. Y. Hong, Z. Xia, S. Reiff-Marganiec, and J. Domingue, “Linked
context: A linked data approach to personalised service
provisioning,” in Proc. 2012 IEEE 19th Int. Conf. Web Serv., 2012,
pp. 376–383.

Fig. 5. Effectiveness of the optimization framework for output.

HUANG ETAL.: OPTIMIZING SEMANTIC ANNOTATIONS FORWEB SERVICE INVOCATION 601

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 17,2020 at 21:19:37 UTC from IEEE Xplore. Restrictions apply.

[9] J. Kopecky, T. Vitvar, C. Bournez, and J. Farrell, “SAWSDL:
Semantic annotations for WSDL and XML Schema,” IEEE Int.
Comput., vol. 11, no. 6, pp. 60–67, Nov./Dec. 2007.

[10] S. S. Alonso, O. S. Martinez, and L. J. Aguilar, “RAWS: Reflective
engineering for web services,” in Proc. IEEE Int. Conf. Web Serv.,
2004, pp. 488–495.

[11] A. Segev and Q. Z. Sheng, “Bootstrapping ontologies for web
services,” IEEE Trans. Serv. Comput., vol. 5, no. 1, pp. 33–44,
Jan.-Mar. 2012.

[12] T. G. Stavropoulos, D. Vrakas, and I. Vlahavas, “Iridescent: A tool
for rapid semantic annotation of web service descriptions,” in
Proc. 3rd Int. Conf. Web Intell. Mining Semantics, 2013, Art. no. 12.

[13] A. A. Patil, S. A. Oundhakar, A. P. Sheth, and K. Verma, “Meteor-s
web service annotation framework,” in Proc. 13th Int. Conf. World
Wide Web, 2004, pp. 553–562.

[14] A. Ranabahu, P. Parikh, M. Panahiazar, A. Sheth, and F. Logan-
Klumpler, “Kino: A generic document management system for
biologists using SA-REST and faceted search,” in Proc. 5th IEEE
Int. Conf. Semantic Comput., 2011, pp. 205–208.

[15] Y. Liao, M. Lezoche, H. Panetto, N. Boudjlida, and E. R. Loures,
“Semantic annotation for knowledge explicitation in a product
lifecycle management context: A survey,” Comput. Ind., pp. 24–34,
2015.

[16] K. Belhajjame, S. M. Embury, N. W. Paton, R. Stevens, and C. A.
Goble, “Automatic annotation of web services based on workflow
definitions,” ACM Trans. Web, vol. 2, no. 2, 2008, Art. no. 11.

[17] L. Derczynski, D. Maynard, N. Aswani, and K. Bontcheva,
“Microblog-genre noise and impact on semantic annotation accu-
racy,” in Proc. 24th ACM Conf. Hypertext Social Media, 2013, pp. 21–
30.

[18] K. Belhajjame, S. M. Embury, and N. W. Paton, “Verification of
Semantic Web service annotations using ontology-based parti-
tioning,” IEEE Trans. Serv. Comput., vol. 7, pp. 515–528, 2014.

[19] J. Chen, Z. Feng, S. Chen, K. Huang, J. Zhang, and W. Tan, “A
novel lifecycle framework for Semantic Web service annotation
assessment and optimization,” in Proc. 22nd Int. Conf. Web Serv.,
2015, pp. 361–368.

[20] Z. Xiang, J. Zheng, Y. Lin, and Y. He, “Ontorat: Automatic genera-
tion of new ontology terms, annotations, and axioms based on
ontology design patterns,” J. Biomed. Semantics, vol. 1, no. 6, 2015,
Art. no. 4.

[21] L. Duan, S. Oyama, M. Kurihara, and H. Sato, “Crowdsourced
semantic matching of multi-label annotations,” in Proc. 24th Int.
Joint Conf. Artif. Intell., 2015, pp. 3483–3489.

[22] J. Kopeck�y and E. P. B. Simperl, “Semantic Web service offer dis-
covery for e-commerce,” in Proc. 10th Int. Conf. Electron. Commerce,
2008, pp. 29:1–29:6.

[23] Z. Zhang, S. Chen, and Z. Feng, “Semantic annotation for web
services based on DBpedia,” in Proc. IEEE 7th Int. Symp. Serv. Ori-
ented Syst. Eng., 2013, pp. 280–285.

[24] D. Roman, J. Kopeck�y, T. Vitvar, J. Domingue, and D. Fensel,
“WSMO-Lite and hRESTS: Lightweight semantic annotations for
web services and RESTful APIs,” Web Semantics Sci. Serv. Agents
World Wide Web, vol. 31, pp. 39–58, 2015.

[25] D. Tosi and S. Morasca, “Supporting the semi-automatic semantic
annotation of web services: A systematic literature review,” Inf.
Softw. Technol., vol. 61, pp. 16–32, 2015.

[26] I. Salomie, V. R. Chifu, I. Giurgiu, and M. Cuibus, “SAWS: A tool
for semantic annotation of web services,” in Proc. IEEE Int. Conf.
Autom. Quality Testing Robot., 2008, pp. 387–392.

[27] Protege, 2015. [Online]. Available: http://protege.stanford.edu/
products.php.

[28] B. Liu, K. Huang, J. Li, and M. Zhou, “An incremental and distrib-
uted inference method for large-scale ontologies based on MapRe-
duce paradigm,” IEEE Trans. Cybern., vol. 45, pp. 53–64, Jan. 2015.

[29] F. Daniel, F. M. Facca, V. Saquicela, L. M. Vilches-Bl�azquez, and
�O. Corcho, “Semantic annotation of RESTful services using exter-
nal resources,” in Current Trends in Web Engineering, F. Daniel and
F. M. Facca, Eds. Berlin, Germany: Springer, 2010, pp. 266–276.

[30] S. Mokarizadeh, P. Kungas, and M. Matskin, “Evaluation of a
semi-automated semantic annotation approach for bootstrapping
the analysis of large-scale web service networks,” in Proc. IEEE/
WIC/ACM Int. Conf. Web Intell. Intell. Agent Technol., 2011, pp. 388–
395.

[31] Y. Zhao and Q. Zhu, “Evaluation on crowdsourcing research: Cur-
rent status and future direction,” Inf. Syst. Frontiers, vol. 16,
pp. 417–434, 2014.

[32] H. M. Alonso and L. Romeo, “Crowdsourcing as a preprocessing
for complex semantic annotation tasks,” in Proc. 9th Int. Conf. Lan-
guage Resources Eval., 2014, pp. 229–234.

[33] G. Demartini, D. E. Difallah, and P. Cudr�e-Mauroux, “ZenCrowd:
Leveraging probabilistic reasoning and crowdsourcing techniques
for large-scale entity linking,” in Proc. 21st Int. Conf. World Wide
Web, 2012, pp. 469–478.

[34] C. Sarasua, E. Simperl, and N. F. Noy, “Crowdmap: Crowdsourc-
ing ontology alignment with microtasks,” in Proc. Int. Semantic
Web Conf., 2012, pp. 525–541.

[35] J. Wang, T. Kraska, M. J. Franklin, and J. Feng, “CrowdER:
Crowdsourcing entity resolution,” in Proc. VLDB Endowment,
vol. 5, pp. 1483–1494, 2012.

[36] A. Dumitrache, “Crowdsourcing disagreement for collecting
semantic annotation,” in Semantic Web. Latest Advances and New
Domains. Switzerland: Springer, 2015, pp. 701–710.

[37] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z.
Ives, “DBpedia: A nucleus for a web of open data,” in Semantic
Web. Berling, Germany: Springer, 2007.

[38] C. Matuszek, J. Cabral, M. J. Witbrock, and J. DeOliveira, “An
introduction to the syntax and content of Cyc,” in Proc. AAAI
Spring Symp. Formalizing Compiling Background Knowl. Its Appl.
Knowl. Representation Question Answering, 2006, pp. 44–49.

[39] J. Bhagatet al., “BioCatalogue: A universal catalogue of web serv-
ices for the life sciences,” Nucleic Acids Res., vol. 38, no. Suppl. 2,
pp. W689–W694, 2010.

[40] C. Kankanamge, Web Services Testing with SoapUI. Packt Publish-
ing Ltd, Birmingham, UK, 2012.

[41] D. Repchevsky and J. L. Gelpi, “BioSWR-Semantic Web services
registry for bioinformatics,” PLoS One, vol. 9, Jan 20, 2014, Art. no.
e107889.

[42] S. N. Han, G. M. Lee and N. Crespi, “Semantic context-aware ser-
vice composition for building automation system,” IEEE Trans.
Ind. Informat., vol. 10, no. 1, pp. 752–761, Feb. 2014.

[43] D. Hull, et al., “Taverna: A tool for building and running work-
flows of services,” Nucleic Acids Res., vol. 34, pp. W729–W732,
2006.

[44] A. Dhamanaskar, M. E. Cotterell, J. Zheng, J. C. Kissinger, C. J.
Stoeckert Jr, and J. A. Miller, “Suggestions for galaxy workflow
design using semantically annotated services,” in Proc. 7th Int.
Conf. Formal Ontology Inf. Syst., 2012, pp. 29–42.

[45] S. Mokarizadeh, P. K€ungas and M. Matskin, “Ontology learning
for cost-effective large-scale semantic annotation of web service
interfaces,” in Knowledge Engineering and Management by the
Masses. New York, NY, USA: Springer, 2010, pp. 401–410.

[46] X. Hu, Z. Feng, K. Huang, and S. Chen, “Classification based
parameter association for non-redundant annotation,” in Proc.
IEEE Int. Conf. Serv. Comput., 2015, pp. 688–695.

[47] C. Fellbaum and G. Miller,WordNet: An Electronic Lexical Database:
Cambridge, MA, USA: MIT Press, 1998.

[48] S. Harispe, D. S�anchez, S. Ranwez, S. Janaqi, and J. Montmain, “A
framework for unifying ontology-based semantic similarity meas-
ures: A study in the biomedical domain,” J. Biomed. Inform.,
vol. 48, pp. 38–53, 2014.

[49] A. S. Ribalta, D. S�anchez, M. Batet, and F. Serratosa, “Towards the
estimation of feature-based semantic similarity using multiple
ontologies,” Knowl.-Based Syst., vol. 55, pp. 101–113, 2014.

[50] Z. Zheng, Y. Zhang and M.R. Lyu, “Investigating QoS of real-
world web services,” IEEE Trans. Serv. Comput., vol. 7, no. 1,
pp. 32–39, Jan.-Mar. 2014.

[51] A. Kashlev, S. Lu, and A. Chebotko, “Typetheoretic approach to
the shimming problem in scientific workflows,” IEEE Trans. Serv.
Comput., vol. 8, pp. 795–809, 2015.

[52] C. Luo, Z. Zheng, X. Wu, F. Yang, and Y. Zhao, “Automated struc-
tural semantic annotation for RESTful services,” Int. J. Web Grid
Serv., vol. 12, pp. 26–41, 2016.

602 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 12, NO. 4, JULY/AUGUST 2019

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 17,2020 at 21:19:37 UTC from IEEE Xplore. Restrictions apply.

http://protege.stanford.edu/products.php
http://protege.stanford.edu/products.php

Keman Huang received the dual BS degrees
from the Department of Automation and School
of Economics and Management from Tsinghua
University, China, in 2009, and the PhD degree
from the Department of Automation, Tsinghua
University, China, in 2014. He is currently an
assistant professor in the School of Computer
Science and Technology, Tianjin University and a
visiting scholar in the Sloan School of Manage-
ment, MIT, Cambridge, Massachusetts. His
research interests include service ecosystem,

service recommendation, mobile service, and Semantic Web. He has
published more than 30 journals and conference proceedings papers.
He received the Best Paper Runner-up Award from IEEE SCC 2016,
Best Student Paper Award from IEEE ICWS 2014 and ICSS 2013. He is
currently an associate editor of the International Journal of Services
Computing. He was in the program committees of many conferences
and the publicly chair of IEEE ICWS/SCC/MS/ BIGDATA Congress
2016. He is a member of the ACM and the IEEE.

Jia Zhang received the MS and BS degrees in
computer science from Nanjing University, China,
and the PhD degree in computer science from
the University of Illinois at Chicago. She is cur-
rently an associate professor in the Department
of Electrical and Computer Engineering, Carne-
gie Mellon University. Her recent research inter-
ests center on service oriented computing, with a
focus on scientific workflows, net-centric collabo-
ration, and big data. She has co-authored one
textbook titled “Services Computing” and has

published more than 140 refereed journal papers, book chapters, and
conference papers. She is currently an associate editor of the IEEE
Transactions on Services Computing and the International Journal of
Web Services Research, and editor-in-chief of the International Journal
of Services Computing. She is a senior member of the IEEE.

Wei Tan received the BS and PhD degrees from
the Department of Automation, Tsinghua Univer-
sity. He is currently a research staff member with
the IBM T. J. Watson Research Center, New York.
From 2008 to 2010, he was a researcher in the
Computation Institute, University of Chicago and
Argonne National Laboratory. At that time, he
was the technical lead of the caBIG workflow sys-
tem. His research interests include GPU acceler-
ated machine learning, NoSQL, big data, cloud
computing, service-oriented architecture, busi-

ness and scientific workflows, and petri nets. He has published more
than 70 journal and conference papers, and a monograph “Business
and Scientific Workflows: A Web Service-Oriented Approach” (272
pages, Wiley-IEEE Press). He received the IEEE Peter Chen Big Data
Young Researcher Award (2016), Best Paper Award from ACM/IEEE
CCGrid (2015), Best Student Paper Award from IEEE ICWS (2014),
Best Paper Award from IEEE SCC (2011), the Pacesetter Award from
the Argonne National Laboratory (2010), and caBIG Teamwork Award
from the National Institute of Health (2008). He is a member of the ACM
and a senior member of the IEEE.

Zhiyong Feng received the PhD degree from
Tianjin University. He is currently a full professor
in the School of Computer Science and Technol-
ogy, Tianjin University, China. He is the author of
one book, more than 130 articles, and 39 patents.
His research interests include knowledge engi-
neering, services computing, and security soft-
ware engineering. He is a member of the IEEE
and the ACM.

Shizhan Chen received the BS, MS, and PhD
degrees in computer science and technology
from Tianjin University, China, in 1998, 2004, and
2010, respectively. He is currently an associate
professor in the School of Computer Science and
Technology, Tianjin University. His research inter-
ests include services computing and mobile Inter-
net. He is a reviewer of some international
conferences and journals. He is currently leading
a research project supported by National Natural
Science Foundation of China. He is a member of
the ACM and the IEEE.

HUANG ETAL.: OPTIMIZING SEMANTIC ANNOTATIONS FORWEB SERVICE INVOCATION 603

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 17,2020 at 21:19:37 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

