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Abstract—Driven by the widespread application of Service-
Oriented Architecture (SOA), the quantity of web services
and their users keeps increasing in the service ecosystem.
Since services are hosted by service providers, it will be
very helpful to predict the tendency of services invocation
for service providers, so that proper actions may be taken
to ensure the quality of services. Two major challenges exist
in predicting the tendency of services invocation, however.
First, different service invocation sequences may bear different
and complicated characteristics, which is hard to be modeled
generally. Second, the intricate relations between service invo-
cation sequences are valuable but hard to be discriminated and
utilized. To address these issues, a deep neural network, named
Piecewise Recurrent Neural Network (PRNN), is developed
by taking both generality and pertinence into consideration.
For generality, PRNN extracts complicated characteristics of
all service invocation sequences through Long Short-Term
Memory (LSTM) units. For pertinence, PRNN develops a piece-
wise mechanism, through which service invocation sequences
can be clustered automatically and predicted discriminatingly.
Extensive experiments in real-world dataset show that PRNN
outperforms baseline methods in predicting the tendency of
services invocation.

Keywords-Service discovery; tendency of services invocation;
LSTM; piecewise mechanism

I. INTRODUCTION

With the rapid adoption of Service-Oriented Architecture,

numerous services have been published onto the Internet

and people have been leveraging available services to create

value-added new services, making the service ecosystem

prosperous [1]. However, it gives rise to the difficulties

for service providers in maintaining a stable Quality of

Service (QoS). Since service providers are not facing fixed

user base, service usage patterns may fluctuate over time,

and thus a static strategy may not work. For example,

some providers may rent too many servers to avoid possible

network congestions and bear a high cost, while others may

rent too few and suffer from losing users for their delayed

∗ Corresponding Author

service supplement at peak time. Obviously, understanding

and predicting the tendency of services invocation (i.e.,
the number of services invocation at a given time period)
is becoming increasingly important for service providers to

adjust their operating strategy dynamically and achieve a

desirable QoS in an economic way.

To predict the tendency of services invocation, some

non-negligible facts require special attention. 1) Different

service invocation sequences present different and compli-

cated characteristics, like nonlinearity, periodicity and long-

term dependency. Take Sportradar Olympics API as an

example. Because of its Olympics relevance, the API always

reaches a peak time when Olympics is held, and thus shows

a four-year periodicity during the Games without distinct

patterns in other days. Such a usage pattern is obviously

unique from many other services. 2) Services with similar

functions tend to present similar invocation tendency, and

such similarities have potential for predicting the tendency

of services invocation. For example, Google Maps is one of

the most famous mapping function services, while Mappy is

an analogous but obscure one, consequently the invocation

tendency of them being likely to be similar [2]. If this

relation is utilized, the changes of Google Maps will be

helpful for predicting the invocation tendency of Mappy and

vice versa. 3) Because of the particular existence of mashups

(e.g., services combination) in the service ecosystem, some

services are always invoked at the same time when their

mashup is invoked, which makes the relations of service

invocation sequences more complicated. For instance, Food-
sta is a mashup comprised of two APIs: Instagram and

Google Maps. Apart from being invoked alone, Instagram
and Google Maps are invoked at the same time when Food-
sta is invoked, which increases the difficulty in predicting

the tendency of services invocation. These intractable facts

remarkably differ the service invocation prediction problem

from other time-series prediction problems, and thus further

study is demanded in predicting the tendency of services
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invocation.
Recently, Recurrent neural network (RNN) has been ar-

guably regarded as one of the best models for sequences

modeling, for its capacity of capturing the general changing

patterns by learning from enormous data [3], [4]. Since

service invocation records can be represented as thousands

of sequences, RNN can be used to predict the tendency of

services invocation in an acceptable accuracy. In spite of its

presenting a cogent generalization, however, RNN treating

all sequences as a whole impairs the pertinence for predic-

tion and exposes some limitation. On the contrary, some

classic univariate models focusing on modeling time series

individually, like ARMA [5], can diminish such limitation.

However, the valuable relations between services will be

wasted, if those models are applied. Intuitively, taking both

generality and pertinence into account may enhance service

invocation prediction. In such a context, we have developed

a novel deep neural network named Piecewise Recurrent

Neural Networks (PRNN) to predict the tendency of services

invocation.
On the one hand, PRNN aims to capture complicated

characteristics, such as nonlinearity, periodicity and long-

term dependency, of service invocation sequences in general.

Be more specific, PRNN applies Long Short-Term Mem-

ory (LSTM), a special structure of RNN, to treat all the

service invocation sequences as the same to encode them

into hidden states. After sufficient training, such hidden

states will capture the changing patterns of different kinds

of service invocation sequences and will serve as effective

features for service invocation prediction. To further enhance

the prediction accuracy, on the other hand, PRNN develops

a piecewise mechanism by taking into consideration the per-

tinence of service invocation sequences. Concretely, PRNN

trains several parallel fully connected layers to decode the

hidden states into intermediate results. At the same time,

PRNN takes autocorrelation coefficients of service invoca-

tion sequences as input of a softmax function to classify

them into different clusters. During the training process,

PRNN adjusts the methods of clustering and decoding auto-

matically until it finds the best equilibrium. As a result, by

combining these intermediate results, homogeneous service

invocation sequences will be predicted discriminatingly.
By incorporating the aforementioned points, the main

contributions of this paper are summarized as follows:

1) We apply LSTM units to extract complicated charac-

teristics of service invocation sequences. After suffi-

cient training, difficult features can be extracted by

PRNN effectively and generally.

2) We propose a piecewise mechanism to take the per-

tinence into consideration. Taking the autocorrelation

coefficients as priority, several trained fully connected

layers can decode the hidden states diversely and

PRNN can predict the tendency of services invocation

more discriminatingly.

3) Extensive experiments over real-world dataset show

that PRNN outperforms baseline methods in terms of

prediction accuracy. Particularly, PRNN performs far

better than baseline methods when predicting a longer

tendency of services invocation.

The remainder of this paper is organized as follows.

Section II describes the framework of our PRNN model.

Section III introduces the details of parameter learning. Sec-

tion IV reports the experimental results. Section V discusses

the related work. Finally, Section VI draws conclusions.

II. MODEL FRAMEWORK

In this section, we firstly restate the problem mathemati-

cally, and then propose a neural and probabilistic framework

to predict the tendency of services invocation in the future.

A. Notation and Problem Definition

Throughout the rest of this paper, we use xi to de-

note a service invocation sequence for service i in the

service ecosystem, which can be broken down to xi =
{xi0, xi1, . . . , xin} for service i in the past n days, where

xik(k ∈ n) represents the number of invocations on service

xi on day k. Likewise, we use ŷi to denote a prediction

sequence for service i, and use ŷi = {ŷi1, ŷi2, . . . , ŷi(t+1)}
to represent the predicted number of invocations for service

i in the next t days.

Assuming that there are m services in the service ecosys-

tem, we define the problem as using m service invocation

sequences within n days to predict m sequences as tendency

of services invocation in the next t days, reaching a predic-

tion accuracy as high as possible.

To solve this problem, we propose a deep neural network,

named Piecewise Recurrent Neural Networks (PRNN), tak-

ing xi as input and generating ŷi as the prediction, whose

overall framework is depicted in Fig. 1.

B. LSTM-based Feature Extraction

The prerequisite of predicting the tendency of services

invocation is to capture the past changing patterns. Since the

characteristics of service invocation sequences are extremely

complicated and the number of them is enormous, it is

natural to introduce the Long Short-Term Memory (LSTM),

a special structure of RNN, to extract features generally [6].

As shown in Fig. 2, an LSTM unit consists of a cell c acting

as a memory and three gates (input, output, forget) enabling

modification of the cell memory, which can be described as

Eq. 1 – 6 mathematically.
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Figure 1. An overall framework of PRNN. In the orange dashed rectangle, a batch of service invocation sequences {x0, x1, . . . , xn} are used as input
of both LSTM units and autocorrelation function. On the one side, PRNN applies LSTM units to encode them into hidden states h in every time step. On
the other side, in the purple dashed rectangle, PRNN calculates the corresponding probabilities α by utilizing an autocorrelation function and a softmax
function. In the blue dashed rectangle, PRNN first trains several parallel fully connected layers (FC) to decode the hidden states into intermediate results
z and then combine them based on the probabilities to generate the final prediction in every time step.

ft = σ(Wf [ht−1, xt] + bf ) (1)

it = σ(Wi[ht−1, xt] + bi) (2)

c̃t = tanh(Wc[ht−1, xt] + bc) (3)

ct = ft � ct−1 + it � c̃t (4)

ot = σ(Wo[ht−1, xt] + bo) (5)

ht = ot � tanh(ct) (6)

where � represents the dotwise product, Wi, Wf , Wo

and Wc matrices are parameters of gates and the memory

cell, σ(·) and tanh(·) are sigmoid function and hyperbolic

function, respectively.

Once receiving sufficient training, LSTM will extract the

complicated characteristics of service invocation sequences.

Based on these effective features (e.g., the hidden states

from LSTM), a fully connected layer is able to decode them

into prediction values and present an acceptable prediction

accuracy theoretically [7].
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Figure 2. An LSTM unit in the context of PRNN. Memory cell c records
historical information, and three gates (f , i,o) execute sigmoid functions
to modify the memory at every time step. The hidden states will be used
as input of both LSTM units and fully connected layers (FC).

C. Autocorrelation-based Piecewise Prediction

To further improve the prediction accuracy, we make

a reasonable assumption that different kinds of service

invocation sequences have different expression ways from

hidden states, so training several parallel fully connected

layers may be helpful to decode such features in different

ways. Thus, we propose a piecewise mechanism to predict

the tendency of services invocation discriminatingly, which

idea is illustrated in Fig. 3.

On the one hand, to express the features in different ways,

PRNN trains several parallel fully connected layers (e.g.,

FC in Fig. 3) contraposing different types of sequences to

decode hidden states from LSTM into intermediate results,

which can be described in Eq. 7.

zk = w�k · h (7)

where h is the hidden states extracted by LSTM units,

various w are weight parameters of different fully connected

layers and zk is the intermediate result.

On the other hand, to avoid the trained fully connected

layers being too similar, PRNN applies an autocorrelation

function on service invocation sequences to obtain the auto-

correlation coefficients and distinguish sequences effectively

without being affected by the order of magnitude or extreme

values compared with other statistics in Eq. 8. Then based

on these coefficients, PRNN uses a softmax function to

classify service invocation sequences into different clusters

and calculate the corresponding probabilities in Eq. 9.

ρ(τ) =
E [(xt − μ)(xt+τ − μ)]

σ2
(8)

αi =
eω

�
i ·ρ∑nclass

k=1 e
ω�

k ·ρ
(9)
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where ρ(τ) is the autocorrelation coefficient with time lag

τ , E is the expected value operator, μ is the mean value of a

service invocation sequence, σ2 is the variance of a service

invocation sequence, xt is the invocation records of a service

in day t, various ω are the weight parameters affecting

classification, α is probability of service invocation sequence

belonging to different clusters, and the class number nclass

is the number of the clusters predefined.

Through the piecewise mechanism, PRNN will find the

equilibrium between the cluster way and fully connected

layers parameters ceaselessly during the training process,

and will achieve the best prediction accuracy automatically.

For example, service invocation sequences with weekly

periodicity may be clustered into a category, while sequences

with other characteristics may be clustered into another.

In other words, some tailored fully connected layers will

decode the hidden states as features into intermediate pre-

diction result discriminatingly. As a result, service invocation

sequences can be predicted discriminatingly in Eq. 10 and

the prediction accuracy will be improved.

ŷ =

nclass∑
k=1

αk · zk (10)

where αk is the probability of a sequence belonging to

class k that can be calculated by Eq. 9, nclass is the number of

fully connected layers and ŷ is the prediction value generated

by PRNN.

...
FC-1

ŷ

softmax function

...α1 α2 αkα1 α2 αk

z1 z2 zk

autocorrelation coefficient
FC-2 FC-k

hidden states

Figure 3. A diagram of piecewise regression. Various zk are intermediate
results from different fully connected layers, and the combination of them
will generate the prediction value. We apply autocorrelation coefficients as
input of a softmax function, and take the output probability as the weight
for the combination.

III. PARAMETER LEARNING

In this section, we design a tailored loss function and

introduce some delicate setting to ensure PRNN work.

A. Loss Function

To achieve the best prediction accuracy, we design a loss

function (Eq. 11) for PRNN from two perspectives.

Because of the great quantity of services and differences

in the order of magnitude between them, many common

indicators, like mean square error (MSE) and mean absolute

error (MAE), cannot reflect the prediction accuracy properly.

It is apparent that a service invocation sequence with large

order of magnitude will impact more in these indicators than

a sequence with small one. Furthermore, a relative indicator

can be meaningful than an absolute one for this problem.

Thus, we take logarithm for both true and predicting value

to diminish the influence caused by the difference in the

order of magnitude, which can be seen in the former part of

Eq. 11.

Given the significant learning ability of neural network,

however, PRNN may not only capture the real pattens from

service invocation sequences, but also capture the noise

from them. To avoid overfitting, we apply �2 norm, a basic

regularization technique, on all the weight parameters of

fully connected layers, which can be seen in the latter part

of Eq. 11.

L =
1

n

∑
(i,t)

| log yit + 1

ŷit + 1
| +

∑
k

γk ‖ wk ‖2 (11)

where n is the number of prediction value, ŷit is the

prediction value of PRNN for service i in day t, yit is the

true invocation records, k is the number of fully connected

layers, various γ are coefficients determining the intension

of regularization, and various w are the weight parameters

of fully connected layers.

B. Optimization

Since there may be thousands of parameters contained in

PRNN, the efficiency and efficacy of parameters learning

is non-negligible. To achieve the best results, we adopt

RMSprop [8], an extension of stochastic gradient descent

algorithm, to optimize the loss function. To implement back-

propagation through time (BPTT), we also adopt the gradient

clipping method [9] to eliminate the gradient exploding

problem.

During the hyper-parameters tuning, we found that 3 ×
10−4 can be a good initial learning rate, and updating it by

a 0.1 decay every time the validation loss stops decreasing

will be helpful to train PRNN efficiently.

Integrating the aforementioned points in Section II and III,

Algorithm 1 describes the training process and hyper-

parameters settings of PRNN. It is noticeable that PRNN

treats its output as input to make prediction when forecast-

ing.

IV. EXPERIMENTS

In this section, we describe how we tested and verified the

efficiency and usability of PRNN on a real-world dataset.

Our extensive experiments prove that PRNN reaches a

higher prediction accuracy than prior arts.
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Algorithm 1 training process of PRNN

Input: service invocation sequences: {x1,x2, . . . ,xm}.
Initialize: learning rate: lr = 3 × 10−4, iteration times:

niter, batch size: nbatch = 250, clusters number: nclass = 14,

service invocation sequences length: n, hidden states

number: nh = 128, regularization factor γ = 0.01.

Output: prediction sequences: {ŷ1, ŷ2, . . . , ŷm}.

1: for i = 1 to m do
2: xi ← log(xi + 1)
3: end for
4: for i = 1 to niter do
5: Shuffle the order of service invocation sequences

randomly

6: for j = 1 to m
nbatch

do
7: Apply Eq. 8 to calculate the autocorrelation coef-

ficients of service invocation sequences

8: Apply Eq. 9 to calculate the corresponding proba-

bility of service invocation sequences belonging to

different clusters

9: for t = 1 to n do
10: ht = LSTM(ht−1)

11: Apply Eq. 7 to calculate intermediate results z
12: Apply Eq. 10 to generate ŷt
13: end for
14: end for
15: Apply BPTT to backpropagate gradient

16: Use �∞ norm to clip gradient

17: Use RMSprop to set step automatically

18: Update learning rate

19: end for
20: for i = 1 to m do
21: ŷi ← exp(ŷi)− 1
22: end for

A. Dataset and Setup

Wikistat1 is a public dataset, which records millions of

Web Page View (PV) from English, Chinese and other

wiki-projects, hourly since September 2013. Assume a Web

page is viewed as a service, the number of access to the

Web page can be viewed as the number of invocations to

its counterpart service. For its similarity with the service

invocation sequences, therefore, PVs are reasonable to be

used to test and verify our technique. In the following

experiments, we randomly picked up 29,835 pages from

English and Chinese projects, and divided them into two

parts. The first one, starting from July 1, 2015 to June 30,

2017 and containing 731 points for each, are used to train

the models and make prediction. The other one, starting

from July 1, 2017 to August 31, 2017 and containing 62

points for each, are used to evaluate the prediction accuracy

1https://dumps.wikimedia.org

and robustness of our models. Numerical properties of the

dataset are summarized in Table I.

Table I
NUMERICAL PROPERTIES OF DATASET

Item Number

PVs with decadal order of magnitudes 6,327
PVs with hundred order of magnitudes 10,567
PVs with thousand order of magnitudes 8,996
PVs with other order of magnitudes 3,945
samples of PVs for training 2.1× 107

samples of PVs for testing 1.8× 106

Fig. 4 demonstrates some typical original PVs in the

dataset. The blue line is on behave of some PVs with

strong periodicity, which displays a similar tendency when

every period comes. The orange line and green line are on

behave of such PVs that share similar changing patterns for

their similar attributes. From these PVs, we can observe the

complicated characteristics and intricate relations between

PVs, which is similar with service invocation sequences.

2015-07-31 2016-01-31 2016-07-31 2017-01-31 2017-07-31

Time

0

50000
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150000

200000

250000

W
e
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P
a
g
e
V
ie
w
s

Christmas en.wikipedia.org all-access all-agents

Ant-Man (film) en.wikipedia.org all-access all-agent

Captain America en.wikipedia.org mobile-web all-agent

Figure 4. Real page views from Wikistat. For every page, the data before
the dashed line are used for training models and making prediction, while
the data after the dashed line are for evaluation.

B. Evaluation Scheme

Similar with the consideration of loss function design, we

adopt root mean squared logarithmic error (RMSLE) [10] to

evaluate different models. Being a metrics reflecting relative

predicting error, RMSLE is non-sensitive to the order of

magnitude and can be formulated by Eq. 12.

RMSLE =

√√√√ 1

n

∑
i,t

log

(
yit + 1

ŷit + 1

)2

(12)

where n is the number of prediction value from wiki

pages, ŷit is the prediction value of different models, and

yit is the real value of PVs. The value of RMSLE indicates

the relative prediction accuracy of PVs by eliminating the

order of magnitude between them. It is obvious that a lower
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RMSLE value means a higher prediction accuracy. It is

also noticeable that RMSLE presents a larger value when

underfitting, which is conservative for services providers to

maintain the QoS.

C. Benchmarks

To evaluate the performance of PRNN in different views,

we carefully chose three baseline methods as below.

1) Autoregressive Moving Average Model (ARMA):
ARMA model and Autoregressive Integrated Moving

Average model (ARIMA) are classical time series

methods, which will treat each service invocation se-

quence as an individual [5]. Because ARMA (Eq. 13)

is designed for stationary time series and ARIMA is

for non-stationary one, we first apply Dickey-Fuller

test [11] to verify the stationarity of a PV, and then

decide which model to apply. A PV is regarded as

stationary, if its p–value is less than 0.01; or non-

stationary if otherwise. For both models, Bayesian

Information Criterion (BIC) is used to select the

order of both models. For some PVs whose orders

cause singular value decomposition exception in the

experiments, we set the last day of training set (June

30, 2017) as the prediction results.

xt = c+

p∑
i=1

ϕixt−i +

q∑
i=1

θiεt−i. (13)

where various ϕp and θi are parameters of ARMA, c
is a constant, and εt is white noise.

2) Vector Autoregression Model (VAR): Vector autore-

gression is an extension of ARMA model, which

is widely used for multivariate time series forecast-

ing [12], [13]. A p–order VAR model can be described

as Eq. 14:

xt = c+

p∑
i=1

Aixt−i + εt (14)

where various Ai are the matrices of coefficients, x
is the vector of past sequences, ε is zero-mean white

noise, and t = k + 1, . . . , T , where T denotes the

length of time series.

3) Recurrent Neural Networks (RNN): Recurrent neu-

ral networks is one of the best models for sequences.

Particularly, Long Short-Term Memory (LSTM), a

special structure of RNNs, is excellent in capturing

long-term dependency of sequences [14]. As a degen-

erative model of PRNN (see Section II-B), we trained

and predicted PVs by setting all parameters of RNN

the same as that of PRNN.

ARMA VAR RNN PRNN
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0.52

0.54

0.56

0.58

0.60

R
M
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L
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(a) Total RMSLE of four models
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R
M
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(b) RMSLE with growing periods

Figure 5. RMSLE of PRNN, RNN, VAR and ARMA of repeated trials.

D. Quantitative Comparisons

To test and verify the validity and robustness of PRNN,

we designed and conducted 10 experiments with shuffled

data repeatedly, with the baselines methods as comparison.

Fig. 5 (a) demonstrates the RMSLE of PRNN and

baselines methods with two months (62 days) prediction.

The average RMSLE of ARMA, VAR, RNN and PRNN

are 0.5836, 0.5737, 0.5451 and 0.5319, respectively. We

observe that RNN and PRNN are markedly better than other

methods, due to the effective feature extraction by LSTM.

Specially, PRNN reduces the RMSLE by 2.48% than RNN

in terms of prediction accuracy, which is benefited from the

piecewise mechanism. The standard deviation of ARMA,

VAR, RNN and PRNN are 0, 0.0006, 0.0015 and 0.0033,

respectively. The standard deviation of ARMA is the lowest,

because once the order of ARMA is determined by the

algorithm, PVs will be modeled by the same parameters.

The standard deviations of other models are also low enough

to be acceptable, showing their robustness.

Fig. 5 (b) shows the RMSLE of PRNN and the baselines

methods with the increment of prediction days. In the figure,

RMSLE of four methods are close and relatively low in

the first five prediction days. With the increment of pre-

diction days, RMSLE fluctuates and presents an increasing

tendency. In particular, compared with the baseline methods,

PRNN tends to present a far better prediction accuracy as

the prediction days increase.

E. Case Study

To analyze the performance of these models, we observed

lots of prediction results and plotted some typical cases in

Fig. 6, where the upper figures demonstrate the true and

predicting values of three different PVs respectively and

the lower ones represent their autocorrelation coefficients.

Particularly, the blue line represents the true values, while

other colors after the dashed line are predicting ones. Par-

ticularly, the red, purple, orange and green lines represent

the prediction results of ARMA, VAR, RNN and PRNN,

respectively.

Fig. 6 (a) is the typical representative of such PVs, whose

autocorrelation coefficients concentrate on zero, which can

be regarded as noise sequences. In the real case Doomsday
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Figure 6. Above are some typical cases of experiments results. Blue line is the true PV of a wiki–page, and red, purple, orange and green lines represent
the prediction results of ARMA, VAR, RNN and PRNN, respectively. Before the dashed line (July 1, 2017) is a year of real data for training models.
Below are 365 days autocorrelation, which is calculated by training data, corresponded to the above PV.

(comics) en.wikipedia.org all-access spider, all the methods

present similar prediction tendency, centralizing near the

average of the sequence. The RMSLE of ARMA, VAR,

RNN and PRNN are 0.3709, 0.3623, 0.3819 and 0.3535,

respectively, showing that PRNN is the best in this situation.

In other analogous cases, PRNN also predicts the tendency

of services invocation near the average value. Although

the prediction ability of PRNN and the baseline methods

are close in this situation, sufficient experiments show that

PRNN has a narrow advantage than other methods in most

cases.

Fig. 6 (b) and (c) are some typical representatives of a

set of PVs, which have strong relevance with recent days

and barely have relevance with the past. Taking a real

PV Assassin’s Creed (film) en.wikipedia.org mobile-web all-
agents as an example, the prediction tendency of ARMA

is similar with the real PV, while prediction tendency of

RNN and PRNN present a major decreasing trend. How-

ever, the RMSLE of ARMA, VAR, RNN and PRNN are

0.2540, 0.5023, 0.3454 and 0.2301, respectively, showing the

powerful predicting ability of PRNN. In another real case

Ant-Man (film) en.wikipedia.org desktop all-agents, ARMA

predicts an opposite tendency of the PV mistakenly, which

is attributed to an upward trend before prediction and the

limitation of ARMA to capture the long-term dependency.

However, RNN and PRNN predict the PV in the right trend

benefited from long-term dependency features extracted by

LSTM units. The RMSLE of ARMA, VAR, RNN and PRNN

are 0.6547, 0.7083, 0.4331 and 0.3442, respectively. From

these cases, we hold that ARMA does able to capture the

tendency of the sequence, but it is also likely to predict an

opposite trend. On the contrary, PRNN is more stable in

terms of RMSLE, although it only captures the baseband

tendency in sequences.

From the aforementioned cases, we can find that VAR

models are always influenced by other PVs in the same

group, so its performance is week and unstable. The predic-

tion results of ARMA is easily affected by the real PVs near

the prediction boundary. The prediction results of PRNN

is better than RNN in most cases due to our piecewise

mechanism. Particularly, PRNN performs much better than

the baseline methods with prediction days increasing.

V. RELATED WORK

With the development of service ecosystem, predicting

the tendency of services invocation is becoming increasingly

important. Since service invocation records are sequences,

time series prediction models can be a kind of solutions for

the problem.

To predict the tendency of services invocation, some main

characteristics, such as linearity, nonlinearity, periodicity

and long-term dependency, should be paid great atten-

tion to. Among prior arts, Autoregressive Moving Average

Model (ARMA) for stationary time series and Autoregres-

sive Integrated Moving Average Model (ARIMA) for non-

stationary time series have been designed to capture the lin-

earity of time series, thus are acknowledged to be powerful

for time series prediction [5]. However, these linear models

fail to seize the nonlinearity and long-term dependency

of time series. Ding et al. have developed support vector

machine to regress (SVR) the nonlinearity of time series,

which makes up for the limitation of linear models [15].

Since the appearance of LSTM, long-term dependency of

time series have been captured.

Besides the complicated characteristics, the promising

relations between service invocation sequences are also non-

negligible. To utilize such relations to improve the prediction

accuracy, Vector Autoregression (VAR) model, an extension
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of ARMA, models various time series as vector, building

the connection between time series and being a better

solution [12]. Similar with ARMA, VAR can only capture

the linearity of time series. Thus, Bao et al. developed

SVR for multi-variable time series prediction to capture the

nonlinearity [16]. However, if the amount of time series

is too great, these methods will be too time-consuming or

memory-consuming to lose their efficacy. In recent years, the

advancement of neural network supplies another choice to

leverage such relations. Lee et al. used RBF neural network

to predict time series [17]. Dasgupta and Osogami proposed

Nonlinear Dynamic Boltzmann Machines to predict time

series [18]. Further, recent researches have shown that RNN

seems to be more effective in modeling time-series data, and

in particular, LSTM-based RNNs, being able to capture the

long-term dependency, are better in predicting the tendency

of services invocation [7], [19]. Compared to the related

work, we apply LSTM to extract general features of service

invocation sequences, and develop a piecewise instrument to

categorize service invocation sequences into clusters thus to

take into consideration of their discriminations.

VI. CONCLUSIONS

In this paper, we have presented a novel deep neural

network model named Piecewise Recurrent Neural Net-

works (PRNN) to predict the tendency of services invo-

cation. The main ideas include: 1) applying LSTM units

to model the complicated characteristics of service invo-

cation sequences generally; and 2) developing a piecewise

mechanism to predict different types of service invoca-

tion sequences discriminatingly. Extensive experiments have

proved that PRNN performs better than the baseline methods

in prediction accuracy.

Our future work will focus on two aspects: 1) make a

lucubrate research on service invocation sequences to further

improve the prediction accuracy; and 2) predict the tendency

of services invocation in units of hours.
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