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Abstract—Cloud-edge hybrid systems are known to support
delay-sensitive applications of contemporary industrial Internet
of Things (IoT). While edge nodes (ENs) provide IoT users with
real-time computing/network services in a pay-as-you-go man-
ner, their resources incur cost. Thus, their profit maximization
remains a core objective. With the rapid development of 5G
network technologies, an enormous number of mobile devices
(MDs) have been connected to ENs. As a result, how to maximize
the profit of ENs has become increasingly more challenging since
it involves massive heterogeneous decision variables about task
allocation among MDs, ENs, and a cloud data center (CDC),
as well as associations of MDs to proper ENs dynamically. To
tackle such a challenge, this work adopts a divide-and-conquer
strategy that models applications as multiple subtasks, each of
which can be independently completed in MDs, ENs, and a CDC.
A joint optimization problem is formulated on task offloading,
task partitioning, and associations of users to ENs to maximize
the profit of ENs. To solve this high-dimensional mixed-integer
nonlinear program, a novel deep-learning algorithm is developed
and named as a Genetic Simulated-annealing-based Particle-
swarm-optimizer with Stacked Autoencoders (GSPSA). Real-life
data-based experimental results demonstrate that GSPSA offers
higher profit of ENs while strictly meeting latency needs of user
tasks than state-of-the-art algorithms.

Index Terms—Autoencoders, computation offloading, high-
dimensional optimization algorithms, mobile-edge computing
(MEC), particle swarm optimization.

I. INTRODUCTION

OBILE applications of Internet of Things (IoT) are
often-times computation intensive and require fast
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execution [1]. However, energy and computing resources of
mobile devices (MDs) are typically limited, which makes it
a big challenge for MDs to accomplish mobile application
tasks within their execution delay limits. To overcome such
a challenge, the concept of mobile-edge computing (MEC) is
coined [2] to utilize the computing resources of edge nodes
(ENs), each of which hosts an MEC server and a small base
station (SBS) to assist MDs in quickly processing applica-
tions with strict delay limits. In recent years, 5G technologies
have enabled a large number of MDs to connect to ENs,
and all MDs share available energy, computing resources, and
communication networks of ENs [3]. Apparently, it may be
difficult for ENs to provide low-latency services to satisfy all
MDs. To overcome such difficulty, ENs may offload some of
its tasks that support partitioning to a cloud data center (CDC)
for processing [4]. In this way, tasks of MDs are distributed
among MDs, ENs, and CDC to reduce service latency and
realize load balancing among these entities.

When ENs provide computing services to MDs, they charge
MDs [5]. ENs bear the cost of executing tasks, and when
they request CDC’s help, they have to pay CDC as well [6].
Therefore, each EN strives to maximize its profit. Such an
optimization problem is complicated as it typically involves
various constraints of MDs, ENs, and CDC, e.g., association
limit of MDs, latency limit of tasks, and resource and energy
limits of MDs, ENs, and CDC. It also involves many deci-
sion variables, including association of MDs with ENs, and
task offloading ratios. Furthermore, the number of MDs is
rapidly increasing, thereby resulting in a dramatic increase in
the number of decision variables. As a result, this problem
has become a typical high-dimensional complex optimization
problem; and moreover, it has to be solved in a reasonable
time frame.

Several studies have tackled the problem of profit
maximization in hybrid cloud-edge systems. Aiming at max-
imizing the profit of network management, Yi et al. [7]
formulate a resource optimization problem that integrates link
scheduling, channel assignment, and power control, and pro-
pose a suboptimal and greedy algorithm. Yu et al. [8] develop a
successive convex approximation algorithm to jointly optimize
unmanned aerial vehicles’ positions, task splitting decisions,
and communication and computing resource allocation in
MEC to minimize service delay and energy consumption.
However, the number of MDs handled by these studies is
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quite limited. Their optimization problems are of low dimen-
sion and their methods fail to solve the high-dimensional ones
considered in this work.

This work intends to make the following three new contri-
butions to the field of MEC:

1) A novel hybrid cloud-edge architecture is created to

include multiple MDs, ENs, and CDC. Based on it,
a large-scale constrained profit maximization problem
for ENs is formulated. The problem is a typical high-
dimensional mixed-integer nonlinear program (MINLP),
including massive heterogeneous decision variables
about task allocation among MDs, ENs, and CDC, as
well as associations of MDs to ENs; and

2) To solve the high-dimensional problem, this work

proposes a deep-learning-powered hybrid optimization
algorithm called Genetic Simulated-annealing-based
Particle-swarm-optimizer with Stacked Autoencoder
(GSPSA). It synergistically combines a stacked autoen-
coder (SAE) [9] and a Genetic Simulated-annealing-
based Particle Swarm Optimizer (GSPSO) algorithm
to achieve great optimization ability. GSPSA has two
subpopulations that evolve asynchronously: one subpop-
ulation evolves in high-dimensional space with GSPSO,
and the other evolves in low-dimensional space by inte-
grating feature extraction and dimension reduction of
SAE into GSPSO. During each iteration, SAE is trained
with newly updated excellent particles selected from
two subpopulations, thereby investigating the features
of highly adaptable solutions and assisting GSPSA in
evolving toward high-fitness directions.

Our extensive experiments have demonstrated that GSPSA
obtains better results than other typical optimization algo-
rithms, including genetic algorithm (GA) [10], simulated
annealing-based PSO (SAPSO) [11], and GSPSO.

The remainder of this article is organized as follows.
Section II briefs related studies. Section III illustrates the
architecture of a hybrid system and states the problem.
Section IV presents GSPSA. Section V discusses performance
evaluation results. Section VI concludes this article.

II. RELATED WORK

This section discusses related work in two perspectives:
1) computation offloading/resource allocation and 2) profit
maximization in MEC.

A. Computation Offloading and Resource Allocation in MEC

A number of methods have been proposed for realizing com-
putation offloading and resource allocation in MEC systems in
recent years [12], [13], [14], [16], [17], [18]. Zhao et al. [12]
formulate a problem of collaborative computation offloading
for cloud and MEC systems, which is NP-hard and noncon-
vex. They then propose a distributed resource allocation and
computation offloading algorithm. Dong et al. [13] present
a caching computation offloading algorithm in mobile-edge
networks, by considering the competition of cache resources.
A mixed caching algorithm and an enhanced offloading one are
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proposed to jointly optimize computation offloading and con-
tent caching. Nevertheless, they aim to minimize the response
time of all tasks, which is different from our goal of maximiz-
ing profits of ENs. In addition, they do not consider energy
limits of MDs and edge servers.

Chen et al. [14] formulate an energy-minimized computa-
tion offloading problem with energy, delay, and resource con-
straints. An alternating minimization algorithm is developed
to jointly optimize transmission power, offloading ratios, and
CPU computation speeds, etc. Nevertheless, they only consider
computation offloading in fog and cloud servers in industrial
IoTs, while this work considers user association between MDs
and ENs. The work in [15] can be viewed as the first work
to integrate imitation learning with vehicular edge computing,
with an objective of minimizing system energy consumption
and satisfying latency constraints of tasks. Lu et al. [16] pro-
pose a multitask offloading method for a lightweight offloading
framework to handle intensive offloading tasks from MDs.
However, it ignores the optimization of intelligent user asso-
ciation between MDs and edge servers. Wu et al. [17] design
a nonorthogonal multiple access-enabled computation offload-
ing method, where many mobile terminals offload some of
their computation tasks to edge servers. They aim to mini-
mize the total latency for completing all computation tasks
of mobile terminals by optimizing computation offloading,
uploading duration and downloading duration. However, they
only consider a small-scale system with 11 mobile termi-
nals. Zhou and Hu [18] formulate a maximization problem
of computation efficiency in wireless-powered MEC networks
under partial and binary computation offloading. They aim
to maximize the computation efficiency with a criterion of
max-min fairness. However, they fail to consider the user asso-
ciation between MDs and ENs, and their system contains five
MDs only.

Different from those existing studies, this work focuses
on the offloading of multiple computing-intensive tasks in a
large-scale hybrid system, including MDs, ENs, and CDC.
Specifically, this work proposes a profit-maximized compu-
tation offloading method by considering various constraints
related to task latency, MDs’ connection, available energy, and
total resources of MDs and ENs.

B. Profit Maximization in MEC

Profit maximization is important for MEC providers [5], [6],
[19], [20], [21]. Wang et al. [6] provide an incentive method in
a noncompetitive MEC environment and presented a market-
based pricing model to build the relation between resources in
edge clouds and prices paid by MDs. Huang et al. [5] design
a resource purchasing method with multiarmed Bandit learn-
ing, and an online and greedy task scheduling approach for an
MEC system. Sun et al. [19] formulate a long-term stochastic
optimization problem with profit constraints of application ser-
vice providers. Then, it is transformed into a single time slot
optimization problem with a Lyapunov optimization technique.
An online GA is proposed to yield a near-optimal strategy.
Nevertheless, they ignore energy limits of MDs and ENs, and
user association between them. Li et al. [20] formulate a profit
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model for edge providers, by properly placing edge servers for
low access delay and energy consumption. A particle swarm
optimizer algorithm is used to solve this problem by properly
assigning base stations. However, they do not consider lim-
its of energy, computing resources, and computational speeds
of MDs and ENs. Zhang et al. [21] formulate a problem of
computing resource management, which manages a scheme
of wholesale and buyback for edge servers, and determines
wholesale pricing and computing resources of the cloud. The
problems are solved from perspectives of maximization of
social welfare and profit. Different from it, our method is
designed for complex optimization problems to handle tasks
among MDs, ENs, and CDC by considering the characteristics
of large-scale MEC systems comprehensively.

In contrast to existing profit maximization efforts, this work
aims to maximize the profit of a large-scale MEC system such
that latency of tasks is strictly met. It jointly optimizes task
allocation among MDs, ENs, and CDC, and user association
between MDs and ENs. To realize it, GSPSA is proposed
to solve a high-dimensional MINLP by combining SAE and
GSPSO, which is never seen in any prior work.

In contrast to our preliminary work [22], this work makes
three major enhancements. First, it designs novel genetic oper-
ations (crossover, mutation, and selection) in GSPSO. The
improved crossover operation enables each particle to have the
chance to be integrated with the globally best particle, thereby
increasing search efficiency. In addition, this work designs
a novel mechanism evolving two subpopulations in high/low
dimensional spaces asynchronously for significantly reducing
space and time complexity of GSPSA. Second, it formulates
the MEC scheduling problem into an unconstrained MINLP
instead. Particularly, a penalty function method is designed
to handle all the constraints in the optimization problem. In
addition, the profit computing model is enhanced. For exam-
ple, a realistic method to calculate the revenue of ENs is
adopted. Third, this work evaluates the proposed algorithm in
a much more comprehensive manner. For example, it stud-
ies SAE with different structures, activation functions, and
preprocessing methods of samples, thereby determining the
best structure and parameters of SAE. In addition, this work
evaluates GSPSA’s convergence processes to demonstrate its
superiority to solve the formulated MINLP over its peers.

II1. PROBLEM FORMULATION

This section introduces the overall system architecture
and optimization problem. For clarity, Table I summarizes
abbreviations, and Table II lists main notations.

A. System Architecture

Fig. 1 illustrates the overall architecture of a hybrid MEC
system. The system works as follows. First, each SBS
calculates the number of computing tasks for MDs connected
to it, and transmits the information to the CDC to determine
the optimal computation offloading strategy. Each MD then
transmits part of each task to its connected MEC server and
remote CDC through the SBS according to the scheduled
results. Finally, the MEC server and CDC return the execution
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TABLE I
LIST OF ABBREVIATIONS

Abbreviation  Definition

MDs Mobile Devices

MEC Mobile Edge Computing

ENs Edge Nodes

SBS Small Base Station

CDC Cloud Data Center

MINLP Mixed Integer NonLinear Program

PSO Particle Swarm Optimization

SAE Stacked AutoEncoder

GSPSA Genetic Simulated annealing-based PSO with SAE
GSPSO Genetic Simulated annealing-based PSO

GA Genetic Algorithm

SAPSO Simulated Annealing-based PSO
GSPSOT High-dimansional GSPSO
GSPSO™ Low-dimansional GSPSO
Cloud data center = Subtask of MD 1
© Subtask of MD 2
* Subtask of MD K
«--»Wireless connection
<> Wired connection
77777 _ -7 EN1 T
== T~ mmm SBS
7 EN J \\\ *hk 7 @ MEC server|
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Fig. 1. Architecture of the hybrid cloud-edge system.

results to the MD through the SBS. J denotes the number of
ENs and K denotes that of MDs. I denotes the set of MDs.
Let xt; denote a binary variable. If MD k (1 < k < K) is
associated with EN j (1 < j < J), x;j = 1; otherwise, 0.
Without losing generality, we assume that each MD is con-
nected to only one EN at most. 73 denotes an EN set that can
be associated by MD k, i.e.,

X =0V j¢my. (D

To decrease the execution time of each task, it is assumed
that its subtasks can be divided into three parts, which are
executed in parallel in MDs, ENs, and CDC, respectively. Let
J denote the set of ENs. oy, B, and yy; denote ratios of
subtasks executed in MD k, EN j, and CDC. If x;; = 0,
no subtasks are executed in ENs/CDC, ie., B = ykj = 0.
Clearly, we have

0<PBrj, vj=<xxj, kek, jeJ. (2

Due to the conservation of tasks for MD k, we have

J J
Y Bty wi=1 kek. 3)

Jj=1 J=1

B. Execution Time Model

1) Execution Time in MDs: I denotes the input data size
(in bits) of each task of MD k. z; denotes the number of
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TABLE 11
MAIN NOTATIONS IN SECTION III

Notation  Definition

J Number of ENs

K Number of MDs

. Binary variable that represents association relationship between
k. MD k and EN j

J Set of ENs

g Ratio of MD £’s subtasks executed in MD k

Bk.j Ratio of MD k’s subtasks executed in EN 7

Vi Ratio of MD £’s subtasks executed in CDC

Set of MDs

Iy Input data size (in bits) of MD k

2k Number of CPU cycles for executing each bit of MD £’s tasks
é MD £’s computational speed (CPU cycles/sec.)

f]2 EN j’s computational speed (cycles/sec.)
2 CDC'’s computational speed (cycles/sec.)

Ti Execution time of tasks in MD k

Tg J Execution time of MD k’s subtasks in EN j

7'2 J Execution time of MD k’s subtasks in CDC

S Channel number for EN j

W Channel bandwidth for each EN

Py Transmission power of MD k

Pk Distance between MD k and EN j

v Value of path loss exponent

h1 Random variable of circularly symmetric complex Gaussian

No White Guassian noise power

Ry Transmission rate (bits/s) of MD k associated with EN j

T]?j Transmission time from MD & to EN j

b Transmission time of delivering MD &’s subtasks to CDC
k.j through EN j

7—1% Time when EN j starts running MD k’s subtasks

~a Time from the beginning of running MD £’s subtasks at EN j

Tk,j to that at CDC

Ty Time after completely running all subtasks from MD k

Ty Maximum limit of Tk

(;3} Maximum number of CPU cycles in EN j

qb? Maximum number of memories in EN j

Number of memories needed to run each bit of subtasks from
Wk MD k

qi Constant dependent on chip architectures of MD k
f]% Maximum limit of f]i
Ey, MD £’s maximum amount of energy
EA]2 EN j’s maximum amount of energy
q]2. Constant reflecting chip architectures of EN j
P Cost per CPU cycle of each EN
Pa Cost per CPU cycle in CDC
Maximum revenue brought by completing all tasks of MD &
Bk before T}
k
T Maximum revenue brought by each CPU cycle of each MD k
Ch Cost of ENs’ performing all subtasks
C2 Cost of CDC for executing subtasks of all MDs
Tl ENs’ actual revenue brought by completing all tasks of MD k
R Revenue of ENs
A Profit of ENs
i Vector of at, 3, «, and @
/ New objective function for calculating the fitness value of
each solution in GSPSO
?Ij Large and positive number
Q Sum of all penalties of constraints
ﬁ (N) Number of inequality (equality) constraints

CPU cycles for executing each bit of MD k’s tasks. fkl denotes
MD k’s computational speed (CPU cycles/s). rkl denotes the
execution time of executing tasks in MD k. Then
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) = Zkkk 4)
k 1
fi

2) Execution Time in ENs: Each EN executes subtasks
in parallel with MDs, and it equally schedules computing
resources to its associated MDs. §; is the channel number for
EN j, implying EN j can handle at most S; MDs. Then

K
Y aui<S.jeJ. )

k=1

f? denotes EN j’s computational speed (cycles/s). Then, the
number of MD k’s bits executed in EN j is B jlx. EN j’s
computational speed for MD k is ];2/(2,’;1 xkj). Then, the
execution time of MD k’s subtasks in EN j is

2 Br.jlkzk
U= g (6)
J
ZkK:l Xk.j

3) Execution Time in CDC: It is assumed that MD k’s
offloaded subtasks are first transmitted to their associated EN j.
Afterward, EN j executes its allocated subtasks, and also trans-
mits some to CDC. ‘(k denotes the execution time of MD k’s
subtasks transmitted through EN j in CDC. Then

3 Vejlkzk

7). =
k.j 3
P

where f,f’ denotes computational speed in CDC.

@)

C. Communication Time Model

Let W denote the channel bandwidth for each EN. Pj
denotes the transmission power of MD k, ¢y ; denotes the dis-
tance between MD k and EN j, v denotes the value of path
loss exponent, 41 denotes a random variable of circularly sym-
metric complex Gaussian, and Ny denotes the white Guassian
noise power. Let Ry ; denote the transmission rate (bits/s) of
MD k associated with EN j. From [23], we have

A4 2
Wlog(l . Pk(fﬂk,é\)lo Ih | )

ZkK=1 k.j

Each MD needs to transmit the input data of subtasks
offloaded to its associated EN and CDC via its uplink chan-
nel. (B + vk j)Ir denotes the data size (in bits) transmitted
through SBS, t,ff ; denotes the transmission time from MD k
to EN j, i.e.,

Ryj= ®)

(Brj + vrj) I (Zsz | xk,j)
- AT A
Wlog(l + Pk(wk,jlgo |7y | )

Each EN is associated with CDC by a wired link of a back-
haul network, and its transm1s51on rate is M;. The wired link
is equally allocated to all ENs. l'k ' denotes the transmission
time of delivering MD k’s subtasks to CDC through EN j, i.e.,

K
Vil (Zk=1 xw)

M;

o (Brj+ v
k,j - Rk,]

b

T = (10)
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Note that we ignore transmission time of delivering returned
results from ENs and CDC to MDs, because its size is
negligible in comparison with input data size following [24].

D. Completion Time Model of MDs

This work considers applications comprising multiple
interdependent subtasks. The output of each subtask is the
input to its subsequent one. This work splits all subtasks into
three dependent components, which are run in three stages.
The subtasks in stage 1 are first executed in each MD, which
starts to transmit other offload subtasks to its associated EN
meanwhile. Then, each MD delivers the output result to its
associated EN. Upon receiving the output, the EN starts run-
ning its offloaded subtasks in stage 2, and transmits other ones
to be executed in CDC. After the EN completes its subtasks,
it delivers the output to CDC. Then, CDC delivers final output
to the MD once it completes its subtasks in stage 3. ?kl is the
time when EN j starts running its subtasks, i.e.,

?kl =max{rkl, fka,j}' 11

rk denotes the time from the beginning of running MD k’s

subtasks at EN j to that at CDC, which is obtained as
?,ijmax{t,ij, t]?j}. (12)

Ty denotes the time after completely running all subtasks

from MD k. Then

n._@-+§:afmj+§:n”@] (13)

J=1 J=1
For each MD k, there is only one x;;j(1 < j < J) that
equals 1. Therefore, Zle Xk TR ; is the time from the begin-
ning of running MD k’s subtasks at CDC, and Z]!:l xk,jr,i ;s
the execution time of MD k’s subtasks in CDC. The sum of
them and ?kl is the total execution time for MD k’s tasks.

fk denotes a maximum limit of Tk. Then

Ty < Ty. (14)
E. Modeling of CPU and Memories in ENs

(;Abjl denotes the maximum number of CPU cycles in EN j.
Then, the number of CPU cycles needed by all its associated
MDs is no larger than gb-l, i.e.,

K
Zlkﬂk,jzk < ¢j1-

k=1

5)

<13/2 denotes the maximum number of memories in EN j.
Then, the memories needed by all its associated MDs is no
larger than ¢j2, ie.,

K
> hBrjwi < &7 (16)

k=1

where wy denotes the number of memories needed to run each
bit of subtasks from MD k.
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F. Energy Models of MDs and ENs

According to [1], the power of MD & is obtained by qk (fk )3
qk denotes a constant dependent on chip architectures of MD k.
fk denotes a maximum limit of fk Then

0<f <fl. fl eN".

The time of executing subtasks in MD k is (Ixzxoex)/ fkl, and
the amount of its energy consumption is Ikzkakq}( (fk])2. Then,
we have

A7)

2 n
Mmﬁ@)i& (18)

where Ej denotes MD k’s maximum amount of energy.
In addition, the total amount of energy consumptlon of
running all subtasks in EN j cannot exceed E

K

> (Ikaﬂk,jqu (f,z)z) <E;

k=1

19)

where qj2 denotes a constant reflecting chip architectures of

EN j, ];2 denotes the computational speed of EN j, and EJZ
denotes EN j’s maximum amount of energy.

G. Modeling of Revenue and Cost of ENs

We consider the case of billing by the amount of computa-
tion. Let y; denote the cost per CPU cycle of each EN. The
cost of ENs’ performing all subtasks is

K J

Ci =) (vihabij).

k=1 j=1

Yo denotes the cost per CPU cycle in CDC. The cost of
CDC for executing subtasks of all MDs is

=) (Wehaw,))-

k=1 j=1

(20)

21

Ry denotes the maximum revenue brought by completing
all tasks of MD k before 1%, i.e.,

Ri = Lizi? (22)

where 7 denotes the maximum revenue brought by each CPU
cycle of each MD k.

However, ENs may not complete all tasks within their spec-
ified time limits. Thus, the revenue decreases if the actual
latency of tasks exceeds their limits. r; denotes ENs’ actual
revenue brought by completing all tasks of MD k. As shown
in Fig. 2, r; changes with respect to latency time Ty, ie.,

Ri- 1, Ty < Tu
Tk 1.25 ~ ~ ~
no= AR (1=(3-1)7), Te<Ti=2hi @3
0, ’Tk > 27A1k.

If ENs complete tasks of MD k within Tx, they obtain the
maximum revenue of Ry. If the latency time exceeds 7A"k, the
actual revenue decreases rapidly. In particular, if Ty > 21y,
they obtain no revenue. There are two reasons to design the
revenue function, which are given as follows.
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Tk

0 Ty 2T,

Ty

Fig. 2. Variation of ry with respect to 7"/(.

1) It meets users’ willingness to pay for computing
services. Users are more willing to pay for high-quality
services. In general, excessive latency leads to the
decrease in the quality of service, and users’ willingness
to pay may decrease. In this system, ENs compensate
users for the inconvenience caused by the latency by
reducing the avenue.

2) It enables GSPSA to search for high-quality solutions
meeting the latency limit. GSPSA aims to maximize the
profit of ENs, and this revenue function gives the relation
between the profit and the latency, which allowing it to
take tasks’ execution time into account when searching
for the optimal solution with the maximum profit. Thus,
it guides GSPSA to solve the proposed MINLP.

Let R denote the revenue of ENs, i.e.,

K
R, = Z re. (24)
k=1
Let X denote the profit of ENs, i.e.,
A=R;—Cy — (. (25)

H. Constrained Optimization Problem

With all notation preparation, the optimization problem is
formulated as

Max {)\} (26)
o, By.x
subject to (1)-(3), (5), (14)—(18), and (19).
Xej =0V j¢my 27
0<PBrj vej<xxj kek, jeJ (28)
J J
Y Bt Y =1 kek (29)
j=1 j=1
K
Yoxj<S.jed (30)
k=1
Ty < Ty 31
K
> hBrja < ¢ (32)
k=1
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K
Z LPijwi < 6}

(33)
k=1
O<f<f flent (34)
(gl 2 7
naagi(f)” < B (35)
K ) X
X:<Ikz;r</3k,jqj2 <sz> ) <k (36)
k=1

A is nonlinear with respect to ay, Bk, Yk, and xi ;. The
former three variables are real numbers and the last one is
integer. Thus, the problem is a typical MINLP [25]. This work
adopts a penalty function method [26] to handle these linear
or nonlinear constraints. Each equality/inequality constraint is
converted into a nonnegative penalty. As a result, if the final
penalty is zero, all constraints are strictly met; otherwise, they
are not

(37)

f _one R
o=y <max{0, —hy, (h)}) + 3 ha(R)] G®)
(39)

(40)

where & denotes a vector of a, B, ¥, and x, F denotes a
new objective function for calculating the fitness value of each

o0
solution in GSPSO, N denotes a large and positive number,

#
Q2 denotes the sum of all penalties of constraints, and N and

N denote the number of inequality and equality constraints,
respectively. The penalty function method, thus, transforms the
constrained profit maximization problem into an unconstrained
minimization one, which will be solved in the next section.

IV. PROPOSED GSPSA

For the MINLP specified above, when the number of deci-
sion variables is low, typical optimization algorithms, such
as GA, PSO, and differential evolution [27], show acceptable
problem solving abilities. However, as the number of MDs (K)
increases, the number of decision variables increases exponen-
tially, and so do the dimension and the search space of each
particle, thereby leading to the dimension curse [28].

In order to solve such a high-dimensional MINLP, this
work designs a deep-learning powered, two-stage hybrid high-
dimensional optimization algorithm, called GSPSA. GSPSA is
built on: 1) SAE and 2) GSPSO proposed in this work, which
are integrated in a highly cohesive manner. GSPSO serves
as the main component of the optimizer; while SAE enables
the conversion of evolving particles between low-dimensional
space and high-dimensional one.

The reasons for selecting SAE as a dimension reduction
model are given as follows.

1) Meta-heuristic algorithms often suffer from the dimen-

sional curse when dealing with high-dimensional
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MINLP problems, and we mitigate it by reducing the
dimension of each particle.

2) We need a model to reduce the dimension of the orig-
inal space ensuring that the process of evolution takes
place in the low-dimensional space. In addition, we also
need the model to recover the original dimension of low-
dimensional particles. This is because particles in the
low-dimensional space have no real meaning, and there
is no way to calculate their fitness values. Therefore,
it is necessary to reconstruct the particles before calcu-
lating their fitness values, which are used to guide the
evolution process. Above all, we need a model that sup-
ports both dimension reduction and reconstruction in the
training process, and an autoencoder well realizes this.

3) SAE has a larger number of network layers than an
autoencoder. It can capture more high-quality particle
features, and reduce the dimension of particles more
flatly. In addition, the layer-by-layer training method
enables SAE to achieve particle reconstruction more
precisely than other models, as proven in [29].

In the first stage of GSPSA, high-dimensional particles are
initialized to form a population, which then evolves through
GSPSO. This stage allows the high-dimensional population
to converge to the best solution that GSPSO can search. In
addition, the evolutionary process in the first stage provides
samples for the training of SAE. In the second stage, the
high-dimensional population is cloned to produce two iden-
tical subpopulations, which evolve asynchronously to share
the currently best solution. Specifically, one subpopulation
evolves through high-dimensional GSPSO by following steps
in the first stage. The other subpopulation evolves through
low-dimensional GSPSO that incorporates SAE. To sum up,
GSPSA includes three major components, i.e., SAE, high-
dimensional GSPSO, and low-dimensional GSPSO. Fig. 3
illustrates the stepwise process of GSPSA, which will be dis-
cussed in detail in the following sections. For clarity, Table III
summarizes main notations in this section.

A. SAE

SAE is a deep neural network with a symmetric struc-
ture, and it consists of two parts, i.e., encoder and decoder.
In an ideal SAE, for a particle i, i.e., the input of SAE,
its reduced result by the encoder can be perfectly recon-
structed through the decoder. Particles in GSPSO are reduced
to low-dimensional ones by the encoder, which allows the
optimization process to take place in the low-dimensional
space, thereby alleviating the dimension issue. Nevertheless,
in the low-dimensional space, there is no way to calculate
the objective function value of a particle by using (37). The
decoder is able to transform a newly generated and low-
dimensional particle back into a high-dimensional one, which
is used to calculate its F to guide the evolution of population
in the low-dimensional space.

The trained SAE grasps important features of training sam-
ples and reconstructs the input through them. In MINLP,
particles with lower F values have more obvious features.
Thus, we adopt higher-quality particles as training samples
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Initialize positions and velocities of particles

Perform GSPSO" to obtain D and
optimize P,
i
Train SAE to obtain S, ]
!
Replicate population P, to obtain [P, |<7
P

Condition for
retraining
SAE

Yes Train SAE to obtain S, l

Remove particles in D |

No

Condition for
adopting S,

Perform GSPSO" with S, Perform GSPSO"
[ J

Sort particles in P, and P, in an ascending
order according to objective function values
i
Extract particles in odd positions in
PP, and PP, , and put them into
)

I P - P I

l A
l Update the globally best position g l

Termination
condition

Output the globally best solution g

Fig. 3. Process of GSPSA.

to train SAE to learn their features. Note that higher-quality
particles in GSPSO have lower F values. Then, when other
particles are fed into SAE, they are provided with the features
of higher-quality particles, thereby resulting in new particles.
Similar to the mutation in GA, such new particles have larger
chances to yield lower F values due to the integration of new
features, thereby accelerating an optimization process.

In summary, SAE brings two benefits to GSPSO. First,
SAE enables GSPSO to search in the low-dimensional space
to alleviate the dimension curse issue. Second, the imperfect
reconstruction gives particles new features of higher-quality
particles, and it gives the population a chance to produce
new particles with lower F values, thus, facilitating the whole
optimization of GSPSO.

SAE’s training set 7 comes from the sample set D. Thus,
the samples are |D| particles produced by high-dimensional
or low-dimensional GSPSO. To learn the features of higher-
quality particles, SAE sorts the particles in D in an ascending
order according to their f values, and adopts the first €%
samples as 7.

B. High-Dimensional GSPSO

We design GSPSO as a typical meta-heuristic optimization
algorithm that combines GA, SA’s Metropolis acceptance rule
and PSO, in order to solve MINLP problems. The specific
principles of GSPSO are given as follows.
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TABLE III
MAIN NOTATIONS IN SECTION IV

Notation Definition

i Particle ¢ in GSPSA

i Position of particle ¢

Di.d Entry d of p;

F Objective function defined in Section III

D Sample set consisting of candidate solutions with original
dimension

|D| Size of D

e (o) Constant

T Training set drawn from the sample set D

Py Population in GSPSOT

P2 Population in GSPSO™

|P1] (JP2])  Population size of Py (P2)

Di Locally best position of particle ¢

g Globally best position of current population (P;UP2)

D Number of entries in p;

e; Superior exemplar for particle ¢

€id Entry d (1<d<D) of e;

p Entry d of p;

Pi,d
Jd Entry d of ¢

c1 (c2) Constant of cognitive (social) acceleration for p; 4 and gq

n1 (M2, ng) Random number from O to 1

0; Offspring particle

Pr Position of a particle < randomly chosen from P31 (P2)

Dr,d Entry d of p,

¢ Specified possibility of mutation

Aa Ag) Maximum (minimum) bound of entry d of particle ¢

nt Temperature in iteration ¢

v; Velocity of particle ¢

Vi.d Entry d of v;

c Acceleration constant showing the effect of the difference
between p; 4 and e; 4

13 Random number from O to 1

t (to) Current iteration count

t Number of iterations

to Number of iterations of the while loop

t1 Number of iterations of GSPSOH before the while loop

i Number of iterations of GSPSOY and GSPSO within the
while loop

Wt Inertia weight in iteration ¢ (1<t<t)

w (W) Maximum (minimum) bound of w¢

So Trained SAE

Sto Trained SAE within the while loop

Po (Pty) Low-dimensional population yielded by So (St,)

g* Best particle in Pg and Py,

P Temporary population consisting of P and P2

0 Number of epochs in the training of SAE

Each population has |P| particles in PSO. p; and g are
locally and globally best positions of particle i (i € {Py UP,})
and the current population. D denotes the number of entries
in each p;. Here, we design a superior exemplar ¢; for each
particle i, and its dth (1 <d < D) entry is e; 4, i.€.,

ciniPid + c2m8a
id =
cin1 + can2

(41)

where p; 4 denotes the dth entry of p;, g4 denotes that of g, ¢
(c2) denotes a constant of cognitive (social) acceleration for
pi.a and gq, and 11 (12)€(0, 1).
We develop four core operations in GSPSO: 1) crossover;
2) mutation; 3) selection for exemplars; and 4) position update.
1) Crossover Operation: Different from the random selec-
tion in the crossover operation of GAs, our designed crossover
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operation adopts historical search of each particle to enhance
search efficiency. The crossover operation is performed on g
and p; to produce an offspring o;. p, denotes the position of a
particle « randomly chosen from current population, and p, 4
denotes its dth entry. Specifically, if F (p;) > F (p,), 0; inher-
its more entries from p, where F (p;) (F (p,)) denotes the F
value of p; (p,) calculated by (37). We compute

01g = { Na-Pia+ (L —na)-8a. (i) < F (i)
id =

Dic.d> otherwise (42)

where 74 is a random number in (0, 1), i.e., ng €(0, 1).

2) Mutation Operation: ¢ denotes the specified possibility
of mutation, )A»d and )v\d denote maximum and minimum bounds
of entry d of particle i. For each entry d, if ng < ¢, 0j4 is
updated with a random number in (id, ):d), ie.,

0id = rand(id, id), if g < . (43)

In this way, the diversity of superior exemplars can be
improved with the mutation operation.

3) SA-Based Selection Operation: SA’s Metropolis accep-
tance rule is adopted to specify whether o; or its previous
version e; will be chosen in the next iteration. Specifically, if
F (0;) < F(e;), o; is chosen. 7j; denotes the temperature in
iteration 7. If F (0;) > F (¢;) and explF D=F @)/ ¢
where & €(0, 1), o; is chosen. If F(0o;) > F(e;) and
exp(_[F(Ol’)_F(ei)]/ﬁ’) < £, e; keeps unchanged. Thus, we have

oi, F(0) < F(e)
(- L=t )
ei=140i, F(0)>F(e) and exp g >§

(_ F("i)—F("i)>
ei, F (o)) > F(e;) and exp " =<

(44)

4) Position Update of Particles: v; denotes the velocity of
particle i. and its dth entry is v; 4, which is obtained as

Vid = @rvid + cna-(eid — pid) 45)

where ¢ denotes an acceleration constant showing the effect
of the difference between p; 4 and ¢; 4.

Pi.a is updated as
Pid = Pid + Vid (46)
Hd— @

(47)

where @ and @ denote maximum and minimum bounds of @y,
@, denotes the inertia weight in iteration ¢ (1 <t <7) and 7
denotes the number of iterations.

To obtain the sample set D, GSPSO for high-dimensional
space, denoted GSPSOM, has a condition that judges whether
the current population is added into D, as shown in Fig. 4.
GSPSO! terminates if > 7 where 7 is the iteration count. 7;
() denotes the number of total iterations in the first stage.
Here, 7 € {11, 1}.

C. Low-Dimensional GSPSO

We further design GSPSO for low-dimensional space,
denoted GSPSO. It highly integrates with SAE, and it
searches for solutions in low-dimensional space. Its details
are shown in Fig. 5. In each iteration, a subpopulation Py is
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Input particles and their velocities, and
the globally best particle

Perform crossover and mutation on
each dimension of each individual

!

Perform selection according to the
Metropolis acceptance rule

!

Update particles' velocities and positions
Add population to
¢ the sample set
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Condition for
adding
population to the
sample set

Output population and the globally best
particle

Fig. 4. GSPSO used for high-dimensional space.

compressed into low-dimensional space by the encoder. Then,
GSPSO’s operations, including crossover, mutation, and the
SA-based update are performed. In addition, the fitness value
of each low-dimensional particle is calculated as follows. Each
low-dimensional particle is reconstructed to yield its high-
dimensional one by the decoder, such that its fitness can be
computed. Before the termination condition is met, GSPSO™
adds particles to the sample set D. Finally, the particles pro-
duced in low-dimensional space are reconstructed to form a
high-dimensional population P,.

It is worth noting that GSPSO’s particles have upper
and lower limits for each element. However, each element
of a low-dimensional particle has no real meaning, which
makes it impossible to specifically set their upper and lower
limits. Therefore, the trained SAE encodes all particles in
D, and compares values of the same element of all low-
dimensional particles to obtain upper and lower limits of the
low-dimensional space.

D. GSPSA

GSPSA synergistically integrates SAE, GSPSOM, and
GSPSOY. In detail, it replicates the population to yield two
identical subpopulations, each of which evolves with GSPSO!
and GSPSOV, respectively. First, GSPSO ensures that GSPSA
obtains the excellent global search ability when the dimen-
sion is low. Second, SAE enables GSPSA to achieve better
optimization ability in dealing with optimization problems
with higher dimensions. However, the population of GSPSA
is constantly evolving, but the features grasped by SAE keep
unchanged before training it again. Thus, in the later stage
of the optimization, excellent individuals in the current pop-
ulation are given obsolete features by previous SAE, which
hinders the particles from improving their quality. To solve this
problem, this work periodically retrains SAE, which allows
SAE to capture higher quality features intermittently.

Algorithm 1 summarizes GSPSA. Line 1 initializes param-
eters of GSPSO. Line 2 initializes velocities and positions of
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Algorithm 1 GSPSA
1: Initialize parameters of GSPSO
2: Randomly initialize velocities and positions of particles to

obtain P,
3. Execute GSPSO! for 7| times to obtain D and g, and
optimize P
: Train SAE with a training set 7 to obtain SAE Sy

4
5: 10 < 1

6: while tof?o do
7 Replicate P to obtain P,

8 if t1p%0o ! = 0 then

9 Retrain SAE to obtain Sy,

10: Remove all particles in D

11: Reconstruct P with So and Sy, to yield Py and Py,

12: Calculate the fitness value of each particle in Py and

Py, to yield g*

13: if g* € P, then

14: So < S;O

15: end if

16:  end if

17:  Execute GSPSO™ with SAE So for 7, times to optimize
P,

18:  Execute GSPSOY for 7, times to optimize Py

19:  Sort particles in P; and P, in an ascending order
according to f values

20.  Extract particles in odd positions in P and P, and then
put them into P

21: P, « I@’

22:  Update g

23: tg<to+1

24: end while

25: return g

particles to obtain IP;. Line 3 executes GSPSOM to iterate f
times to optimize Py, builds a sample set D and outputs the
globally best solution g. Line 4 trains SAE with a training set
T to obtain SAE Sy. The while loop terminates if fy < 7o holds
in line 6. Line 7 replicates IP; to yield a subpopulation P>. o
is a constant used in line 8. Line 9 retrains SAE to obtain Sy .
Line 10 removes all particles in D. Line 11 reconstructs P;
with Sp and S;, to yield Py and P;,. Line 12 calculates the
objective function value of each particle in Py and Py, to yield
g*, which is the best particle in Py and Py,. If g* € IP;,, So is
updated by S;, in lines 13-16. Line 17 executes GSPSO" with
SAE for 7, times to optimize P,. Line 18 executes GSPSOH
for 7, times to optimize P;. Line 19 sorts particles in Py and
P> in an ascending order according to objective function val-
ues. Line 20 extracts particles in odd positions in P; and I,
and then puts them into IP. Line 21 updates P; with P. Line 22
updates the globally best particle g. Finally, line 25 returns g,
which is converted into decision variables.

The complexity analysis of GSPSA is given as follows. As
shown in Section IV-B, the complexity of GSPSOM in each
iteration is O(|IP{|D). Besides, it is worth noting that D = 4K,
and the complexity of each iteration is O(4|P|K). Thus, the
complexity of GSPSOM before the loop is O(#|P|K), and
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Fig. 5. GSPSO used for low-dimensional space.

that of GSPSOH and GSPSO™ within the loop is O(%>|P;|K).
The complexity of the training SAE is O(4K|T |o), where o
denotes the number of epochs in the training of SAE, and |7 |
denotes the size of the training set 7. In addition, the number
of epochs in the training of SAE is much larger than that of
MDs, i.e., 0 > K. Thus, the complexity of the training SAE
is O(|T o). According to the above analysis, the time com-
plexity of GSPSA is O |P1|K+|T o +1o(|T o +25|P1|K)).
However, GSPSA’s running overhead is mainly caused by the
while loop, which terminates after 7y iterations. Thus, the time
complexity of GSPSA is O@io(|T |o + 12|P1|K)).

In summary, GSPSA alleviates the dimensional curse
problem and solve the high-dimensional MINLP. However,
the bipopulation evolution and SAE inevitably increase the
computational overhead, thus, making the solution time longer.
Thus, when it is actually applied in hybrid cloud-edge systems,
it needs to be deployed in CDC to exert advantages of GSPSA.

V. EXPERIMENTS

This section evaluates the performance of GSPSA. This
work considers an area with at most ten randomly placed ENs,
i.e., J = 10. In the area of each EN, MDs are evenly located.
GSPSA is coded in Pycharm 2020 and runs in a server with
an 8-GB memory and an Intel Core i5-7300HQ CPU with
2.50 GHz.

A. Setting of Parameters

Following [30], parameters of MDs are set as follows.

wr = 2 ytes/bit, fkl = 4x108 cycles/seconds, Py = 0.1 W,
E, =61J, T = 35, q,i = 1072, fkl = 4x108 cycles/sec.,

I €[153 600, 13 824 000] bits, and z; = 100 cycles/bit. In addi-
tion, for each MD k, if the distance between it and EN j is less

than 1000 m, j € my; otherwise, j¢my. Similarly, parameters of
ENs are set as follows. M; = 12,800 bits/s, v = 4, hy = 0.98,
W =10 Mhz, §; =5, ¢! = 8x10°, ¢? = 2048 GB, E? = 20
J, ¥ =5.71x1071% $ per CPU cycle, J = 5, g7 = 107/, and
];-2 = 8x10® cycles/second. In addition, parameters of CDC
are set as follows. ¥, = 1.142x107° $ per CPU cycle, and
f,? = 2.5x10° cycles/second. Following previous studies [22],
[31], [32], main parameters of GSPSA are set as follows.
The population size (|P1] and |P>]) is 60. The coefficients (c;
and ¢p) of individual and social acceleration are set to 0.5. The
acceleration coefficient (c) of each superior particle is 1.5. The
mutation possibility (¢£) is 0.05. The starting temperature is
108. The cooling rate of temperature is 0.95. The upper limit
of inertia weight (@) is 0.95 and the lower one (@) is 0.4. In
addition, o = 1, #; = 1000, 7> = 500, and 7y = 8.

B. Setting of SAE

The parameters and structure of SAE are set as follows.

1) Structure of SAE: The performance of SAE is closely
related to its network structure. When a neural network is too
shallow, the feature loss between the high-dimensional input
to low-dimensional expression is large, thereby increasing the
error of data reconstruction. However, if the neural network is
too deep, SAE is difficult to be trained and reconstructed. We
collect three equal-sized sets of individuals from iterations of
GSPSO, which are marked as sets 0, 1, and 2, respectively.
Given any set, SAEs with different layers and different num-
bers of neurons in hidden layers are used to reconstruct its
individuals. Then, in each set, the best objective function value
before reconstruction and that after reconstruction are shown
in Table IV.
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TABLE IV
IMPACT OF STRUCTURES OF SAE ON FINAL OPTIMIZATION RESULTS
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TABLE V
IMPACT OF PREPROCESSED SAMPLES OF SAE ON THE BEST OBJECTIVE
FUNCTION VALUES OF EACH SET

Best / in each set
Preprocessing methods of samples | Set 0 | Set I | Set 2
106.6 | 107.2 | 972
All samples 110.5 | 1004 | 97.7
Best 75% of samples 1054 | 914 84.3
Best 50% of samples 106.0 | 92.7 98.7
Best 25% of samples 110.3 98.2 95.2

Best [ in each set
Structure of encoder in SAE | Set 0 | Set 1 Set 2
106.6 | 107.2 97.2
1-Z2-1o1 107.7 | 87.7 [ 895
1_>§_>%_>§ 104.2 92.1 92.0
7 3 T
1=-45—>751g 104.9 93.3 91.7
12535251 98.7 | 933 | 83.6
1-3515152 949 [ 858 | 835
7 1 .3 T
12952323010 97.1 89.3 89.4
9 . : :
. -~ Linear & Linear
. Linear & Relu
ol Y Linear & Sigmoid}
' -¢-Tanh & Sigmoid
s -+ Tanh & Tanh
-3 * 3|
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Fig. 6. Objective function values of five combinations of activation functions.

For example, in Table IV, 1—(2/3)—(1/3)—(1/5) means
that the encoder adopts a four-layer structure. A number of
neurons in layers 2, 3, and 4 are set to 2/3, 1/3, and 1/5 of
that of the input layer. The structure of the decoder and that
of the encoder are symmetrical. Table IV shows that better
solutions with lower / values can be yielded through SAE.
For example, the best objective function value in Set O before
reconstruction is 106.6, and that after reconstruction with the
SAE of 1-3/4)—(1/2)—(1/4)—(1/8) is 94.9.

2) Activation Function of SAE: The activation function
adopted by the encoder and decoder in SAE is also impor-
tant to its performance. Fig. 6 shows the results of SAEs
with different combinations of activation functions in GSPSA.
Here, f is calculated with (37). As shown in Fig. 6, when
Ir = 13 824000 bits, the encoder and decoder with linear acti-
vation functions yield the best objective function value among
all different combinations. It is also observed that when SAE
is combined with GSPSO, GSPSA with a linear activation
function yields the best optimization result.

3) Preprocessing of Samples in SAE: SAE needs enough
samples for training from iterations of GSPSO and GSPSO'.
The features captured by SAE are relevant to the training sam-
ples. Thus, not all samples are suitable for the training. It is
very important to preprocess the samples in D to obtain the
training set 7. Table V shows the impact of different prepro-
cessing methods of D on the best objective function values in
each set.

As shown in Table V, when the samples in D are sorted
according to their objective function values in an ascending
order, the best f in each set is obtained when the first 75%
samples in each set are used to train SAE. The reason is given

TABLE VI
PARAMETER SETTING OF SAE

Parameter

Value

Loss function

Mean squared error

Activation function

Linear function

Number of layers 9
Number of nodes in layers 1 and 9  Particles” original dimension 4K
Number of nodes in layers 2 and 8 3K
Number of nodes in layers 3 and 7 2K
Number of nodes in layers 4 and 6 K
Number of nodes in layer 5 05K
0 250
1 O [ =t GA - &
SAPSO e .
GSPSO I
8/-~GsPsA :
s .
& g -
1-»5 /’,’ ‘—"‘__,*
o 4+ Il S - d
pa LT
2;»” ‘,A'”—‘— 7
0 1 1 1 1 1 1 1 1
2 3 4 5 6 7 8 9
I;. (bits) «10°
Fig. 7. Profits of GSPSA, GSPSO, SAPSO, and GA given different Ij.

as follows. When € is too small, SAE’s error is large due
to insufficient training samples, which makes SAE unable to
complete the compression and reconstruction. However, when
€ is large, some samples have large objective function val-
ues and high penalty, thereby resulting in poor compression
and reconstruction. Therefore, we select the best 75% of all
samples as the training set.

We design the encoder and decoder of SAE with four lay-
ers and linear activation functions. The neuron counts in each
layer are set to 3/4, 1/2, 1/4, and 1/8 of that in the input
layer, respectively, and € = 75. More details are shown in
Table VI

C. Experimental Results

This work compares GSPSA with its recently proposed
peers, i.e., GA [10], SAPSO [11], and GSPSO. Fig. 7 shows
profits of GSPSA, GSPSO, SAPSO, and GA when [} €
[153600, 9216000]. It is shown that GSPSA always yields
the highest profit among them. When ; < 9216000 bits, the
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profit of GSPSA increases linearly, i.e., the profit of 1 dol-
lar is brought if 1024000 bits of data is executed, which
demonstrates its stability and accuracy.

Fig. 8 shows the penalty of four algorithms given different
dimensions. Given the same [, four algorithms obtain effective
solutions when the dimension number of solutions is below 80.
However, when K € [20, 30], the penalties of GA, SAPSO,
and GSPSO increase, and only GSPSA still yields the penalty
close to 0. This shows that GA, SAPSO, and GSPSO fail to
cope with higher-dimension problems. In addition, compared
with the peers, GSPSA improves the dimension of the solved
problem by more than 50%. Fig. 9 shows that the profit of
GSPSA is always higher than that of GA and SAPSO. When
k > 7, the profit of GSPSA is always higher than that of
GSPSO. This means that, GSPSA has global search ability of
GSPSO in low-dimensional space, and the optimization ability
in high-dimensional space due to SAE.

Figs. 10 and 11 show the penalty and profit curves of the
four algorithms when K = 7 and D = 28. Here, J = 10,
Iy = 13824000 and S; = 5. Fig. 10 shows that all four algo-
rithms achieve valid solutions with the penalty of O at the end
of iterations. Fig. 11 shows that SAPSO converges with the
fewest iterations, but its final profit is the lowest. GA’s con-
vergence speed is slow, and its final profit is also low. GSPSO
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Fig. 12. Penalty curves of four algorithms when K = 30.

converges to a suitable solution with higher profit than those of
SAPSO and GA. GSPSA converges to the best solution with
the highest profit among four algorithms. In a word, GSPSA
has better search ability than GSPSO for the low-dimensional
case.

Figs. 12 and 13 show penalty and profit curves of four algo-
rithms when K = 30 and D = 120. Here, J = 10, I; =
13824000 and S; = 5. Fig. 12 shows that when the dimension
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of the problem is 120, GA and SAPSO fail to solve the
problem. Figs. 12 and 13 show that although GSPSA’s profit
almost remains unchanged after it reaches locally optimal solu-
tions in the beginning, its penalty keeps decreasing, indicating
it constantly jumps out of local optima and finally converges
to high-quality solutions. GSPSO reduces the profit, but it fails
to jump out of local optima due to the high dimension of the
problem. Compared with its three peers, GSPSA achieves the
best results for high-dimensional problems.

VI. CONCLUSION

Mobile computing enables computation-intensive tasks of
MDs to be executed fast. Edge computing providers, e.g., ENs,
face a problem of profit maximization in a hybrid cloud-edge
system. Furthermore, 5G technologies have enabled a dra-
matically growing number of MDs to be connected to ENs,
which makes the above-mentioned high-dimensional problem
a big challenge. To overcome it, an MINLP is formulated for
maximizing the profit of ENs. Furthermore, a novel hybrid
meta-heuristic algorithm named GSPSA is newly proposed
to solve it. Real-life data-based experimental results prove
that GSPSA outperforms GA, SA-based PSO, and genetic
SA-based PSO in terms of the profit. In addition, compared
with them, GSPSA improves the dimension of the solved
problem by more than 50%.

We plan to further improve GSPSA by integrating more
improved variants of autoencoders, e.g., denoising and vari-
ational autoencoders. In addition, other ways of combing
optimization algorithms [33] and feature learning of SAEs can
be considered.
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