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Abstract—Driven by the widespread application of Service
Oriented Architecture (SOA), the quantity of Web services and
their users keep increasing in the service ecosystem. If historical
service invocation records can be gathered and accumulated, it is
meaningful to recommend suitable services that users may invoke
in the near future. However, most existing recommend algorithms
bear major limitation of not taking consideration of dynamic
characteristics of both users and Quality of Service (QoS).
To address this concern, this paper proposes a time-aware
recommendation algorithm for runtime service selection. Firstly,
a QoS Observation Matrix is created integrated with Invocation
Record Matrix. Afterwards, matrix factorization is applied to
extract user-preferences and service-features, respectively. Due
to their dynamic characteristics, the Long Short Term Memory
(LSTM) model is leveraged to learn and predict preferences and
features. Finally, a service recommendation list is generated for
users based on LSTM predictions. Experimental results on a
real-world dataset show that the proposed algorithm outperforms
baseline methods in terms of accuracy and recall.

Index Terms—service recommendation; matrix factorization;
RNN; QoS; time-aware

I. INTRODUCTION

With the extensive adoption of Service Oriented Architec-

ture (SOA) and Cloud Computing in the last decade, numerous

services have been published onto the Internet, and their

user bases have been dramatically increased as well [1]. Web

services can provide electronic tourist guide, online shopping,

social intercourse etc. in an efficient and flexible way. Users

can also get access to these convenient services comfortably

with the help of ubiquitous mobile devices, such as iPhone

or iPad [2]. In theory, anyone can enjoy any service at any

time in the way they like. But how to select one from the sea

of services which can meet user's demand and improve user's

experience? That really makes a challenge.

In the field of service oriented computing, many service rec-

ommendation algorithms have been proposed to find services

which can meet user's functional requirements. For example,

if a user needs navigation in an unfamiliar city, most existing

algorithms can provide a list of recommendations containing

Baidu Maps or Google Maps. Because either of them can meet

user's need, to further recommend the better suitable service,

we should take more attention on the non-functional properties

of services, which have become the major considerations in the

trends of service oriented computing. Quality of Service (QoS)

refers to the non-functional aspects of Web services, such as

response time, throughput and cost [3] [4]. On this specific

issue, if Google Maps has a higher QoS for the specific city,

we would choose this service for recommendation. Note that

QoS may also impact user's Quality of Experience (QoE).

For instance, if a user continues to encounter unsatisfactory

experiences from a service, his related preferences may decline

to some extent. Therefore, for each service, it is meaningful to

pay attention to its QoS value when making recommendations.

In addition to QoS factor in general, to recommend appro-

priate services that users may actually invoke in the near fu-

ture, some other non-negligible facts require special attention:

• User's direct functional demands may not always be

available. For example, if a user consequently invokes

Senic Spot Search and Airline Reservation, we can rea-

sonably infer that the user is planning a trip. Then

services, like Hotel Accommodation and Tourist Guide,

could be recommended. In the era of information and

Artificial Intelligence (AI), the key is to mine user's im-

plicit requirements actively instead of waiting for search

instructions passively.

• The actual behavior of invoking a service is driven by

some invisible features like user's hidden preferences.

For example, if a user shows interest in World Cup and

Sportradar Olympics, he may be an enthusiastic sports

fan. With the help of such a hidden feature, Yahoo Sports
or FIFA would be appropriate recommendations.

• User's preferences always show dynamic characteristics.

On the one hand, user's long-term preferences may drift

over time due to personal internal factors. On the other

hand, the user's short-term interests may jump by occa-

sional leaps. For example, a wonderful experience of a

newborn service is likely to lead to a new preference
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immediately. Therefore, the ability to mine long-short

preferences is an important property of a recommendation

algorithm.

Such non-negligible facts call for new methods. The liter-

ature has witnessed a number of approaches to recommend

Web services. While many works mainly take functional

requirements into consideration [5] [6], most non-functional

properties-based works only handle with static problem-

s [10] [11]. Thus they cannot predict the tendency of future

invocation. Some time-aware methods consider only dynamic

characteristics of user's preferences, however, ignoring the

effect of QoS variety on recommendation results [15] [16].

Only few approaches [20] consider both dynamics of user's

preferences and QoS variety. However, two problems remain

for those approaches. Firstly, they just take the recent QoS

into consideration, without mining the dynamic characteristics

of QoS. Secondly, they take user's preferences and QoS

as two independent variables, while neglecting their latent

connection. To overcome the limitations of previous work,

in this paper, a novel recommendation algorithm, named QI-

Matrix Factorization Based Recurrent Neural Networks (QF-

RNN), is proposed.

Firstly, we integrate QoS metrics into invocation records

with certain rules to obtain QI-matrix, which can compre-

hensively reflect whether the service is invoked or not and

the QoS value of invoked services. Then at every time slice,

the matrix factorization method is used to excavate user's

preferences and service's features at different time points.

After obtaining preferences and features which both show

continuous characteristics, we incorporate Long Short Term

Memory (LSTM) into the analysis of time series, to predict

preferences and features in the future. Based on the prediction

results of LSTM, the QI-matrix of the subsequent moment

can be extended, which is the basis of recommending top-N

services with the highest QoS.

The main contributions of this paper are summarized as

follows.

• We propose a novel QI-matrix factorization-based RNN,

which uses matrix factorization to extract complicated

characteristics and applies LSTM units to make time-

aware service recommendation.

• We fully consider the influence of QoS value on user's

dynamic preferences, regarding QoS as an important

factor affecting recommendation results instead of one

indicator for evaluating recommendation results. To our

best knowledge, this is the first attempt to recommend

top-N services considering dynamic QoS factors over

users.

• Extensive experiments over a real-world dataset WS-

Dream show that QF-RNN outperforms baseline methods

in terms of prediction accuracy.

The rest of this paper is organized as follows. Section

II discusses the related work. The framework of our QF-

RNN model is described in Section III. Experimental results

and analyses are given in Section VI. Finally, Section V

summarizes the paper and puts forward our future work.

II. RELATED WORK

Existing service recommendation approaches mainly con-

sider their functional and non-functional features. As for non-

functional features, the related works can be further divided

into static approaches and time-aware approaches.

A. Functional Approaches

With respect to the functional approaches, the top priority

is to recommend services with the most suitable functions to

users rather than thinking about their indexes like QoS or

ease of use. Some functional approaches exploited content

matching like key-words search [5] [6], while some other

approaches leveraged semantics-based search to increase the

accuracy of the recommendation [7]. Chen et al. [8] proposed a

Time-aware Collaborative Poisson Factorization (TCPF), tak-

ing poisson factorization as the foundation to model mashup

queries and service descriptions separately. Hao et al. [9]

reconstructed service description and developed a new service

recommendation strategy accordingly.

B. Non-functional Static Approaches

Non-functional service recommendation methods pay more

attention to the QoS or service network analysis. Collaborative

filtering, which is based on the assumption that similar users

tend to invoke similar services, has been widely used in

static approaches. Zheng et al. [25] introduced two collabora-

tive filtering based Web service recommendation approaches,

neighborhood-based and region-based approaches, to help

users select Web service with optimal QoS performance. Tang

et al. [10] took location information into consideration and

improved the recommendation performance. Tan et al. [11]

modelled service usage patterns of an evolving service system.

Zhou et al. [12] improved the performance of service ranking

by performing services ranking and clustering mutually in

a heterogeneous service network. Yu et al. [28] integrated

the trace norm as a regularization component into the Non-

negative Matrix Tri-Factorization (NMTF) process and devel-

oped the Trace Norm Regularized Matrix Factorization (TNR-

MF) algorithm for QoS prediction.

In recent years, the Latent Dirichlet Allocation (LDA) [13]

probability preference model in the field of machine learning

has also been introduced into the field of service recom-

mendation. Gao et al. [14] proposed Seco-LDA to discover

meaningful latent service composition including their temporal

strength and services'impacts and then make service compo-

sition recommendation. Liu et al. [15] proposed an iExpand

approach based on the LDA model, which enabled a better

understanding of the interactions among users, items and user

interests.

These static methods neglect the dynamic change of user's

preferences; thus, it is hard to make accurate recommendation

based on user's recent preferences.
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Fig. 1. Structure of QF-RNN. At each time slice, QF-RNN integrates QoS observation matrix into invocation matrix, resulting in QI-matrix. Then matrix
factorization is used to extract latent representations. sending them into U-LSTM unit and S-LSTM unit respectively, after sufficient parameter learning,
QF-RNN obtains model parameters and can predict the score for each user-service pair at time tc. QF-RNN returns the score, which is the basis for service
recommendation.

C. Non-functional Time-Aware Approaches

The research of service recommendation algorithm consid-

ering time information has just arisen in recent years. Yu et

al. [29] took time factor into account when computing degree

of similarity between services and users and proposed a time-

aware collaborative filtering algorithm for QoS-based service

recommendation. Hu et al. improved collaborative filtering by

integrating time information into both the similarity measure-

ment and the final QoS prediction. Blei et al. [17] developed

a dynamic topic model and used it to capture the evolution of

topics in sequentially organized corpus of documents.

Some studies take evolution of service usage over time into

account while making recommendation. Zhong et al. [18]

developed a time-aware service recommendation approach

based on LDA, consisting of three components: temporal infor-

mation, mashup-description-based collaborative filtering and

service-description-based content matching. Huang et al. [19]

explored the evolution mechanism in the service ecosystem

and proposed a three-phased network prediction-based ap-

proach for the service and composition recommendation.

While such time-aware studies existing, very few approach-

es consider both dynamic preferences and dynamic QoS when

making recommendation. Zhang et al. [20] extracted user

preferences, and made final recommendation by leveraging

QoS and matching the interest degree of each user-service

pair with corresponding QoS value on the latest time slice. Its

limitation is that it just takes the recent QoS into consideration

without mining the dynamic characteristics of QoS.

III. MODEL FRAMEWORK

In this section, we firstly restate the problem mathemati-

cally, and then describe the construction of QF-RNN, whose

overall framework is depicted in Fig. 1. Finally, we explain

how to use the trained model to make recommendation.

A. Notation and Problem Definition

Suppose that there are M users U = {u1, u2, · · · , uM} and

N Web services S = {s1, s2, · · · sN}. Split total time into C

time slices, T = {t1, t2, · · · , tc}. At each time slice, we can

use invocation matrix Bt = btij(1 ≤ i ≤ M, 1 ≤ j ≤ N)
to record invocation records. For example, if user i invokes

service j at time interval t, btij = 1. Besides the invocation

matrix, a user can observe a QoS value of the service from his

own perspective. QoS usually contains more than one value

(such as throughput, response time and cost). Similar to Bt,

we use Q1t = q1tij to represent QoS1 (throughput) of one

invocation, Q2t = q2tij to represent QoS2 (response time).

The main goal of this paper is to precisely recommend

what a user will invoke at td using historical invocation Bt

and historical QoS value Qt, t from t1 to td−1. Furthermore,

because services with high QoS values always bring users

better experience, if a user actually invokes P services, we

shall only recommend N services (N≤P) restricting to some

external factors. It is thus meaningful to recommend top-N

services with the highest QoS values for users. It is the further

goal of this paper.
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B. Invocation Matrix and QoS Observation Matrix Integration

As shown in section A, from invocation records and QoS

observations, at any time slice t, we can get invocation matrix

Bt and QoS matrix Q1t, Q2t,· · · . We then integrate Qt into

Bt under a specific rule, which can be described in Eq. 1.

Rt = k0 ·Bt + k1 ·Q1t + k2 · 1

Q2t
+ · · · (1)

where k0, k1, k2 are weight coefficients. We call Rt =
rtij(1 ≤ i ≤ M, 1 ≤ j ≤ N) as QoS Observation Matrix

integrated with Invocation Record Matrix (QI-Matrix). rtij =

0 means user i does not invoke service j at time slice t. If

rtij > 0 , user i invokes service j at time slice t, and we can

obtain QoS property intuitively by observing the value of rtij .

C. QI-Matrix Factorization

Matrix Factorization (MF)-based techniques have been

widely used in Web service recommendation [23]. Given a

user-service QI-matrix R ∈ RM×N from M users and N
services, we can decompose it into two matrixes — user-

preference matrix P, where pu ∈ RK(u = 1, 2, · · ·M) and

feature-service matrix Q, where qs ∈ RK(s = 1, 2, · · ·N).
The principle of matrix factorization is shown in Fig. 2. The

Fig. 2. The principle of matrix factorization. R, P, Q represent QI-matrix,
user-preference matrix, and feature-service matrix, respectively.

rationale is two-fold. Firstly, we can extract hidden features,

which can be set as input of neural network. Secondly, the

dimension of matrix can be reduced effectively.

The solving process of QI-matrix factorization is to estimate

r̃us and make r̃us as close with rus (the truth QI-matrix value)

as possible, which can be carried out using an iterative strategy.

The calculation of r̃us is described in Eq. 2.

r̃us = F (pu, qs | Θ) (2)

where F denotes the interaction function of pu and qs, and

Θ denotes the parameters of F. In this paper, F presents the

inner product of two vectors pu and qs.

D. Long Short-Term Memory

Long Short-Term Memory (LSTM) is an variant of recurrent

neural network (RNN), which can capture temporal dynamics

from the sequence [21]. Shown in Fig. 3, compared to classic

RNN, LSTM introduces a gated unit consisting of input gate

it, forget gate ft, output gate ot, and memory cell state ct. In

our LSTM model, a fully connected (FC) layer is incorporated.

At each time interval t, a new input xt along with the latest

unit output ht−1 will be transformed and accumulated into the

cell state if the input gate is activated. Meanwhile, the past cell

state can be forgotten by forget gate ft. Then, the output gate

ot will determine what information of ct can be the current

unit output ht. The above calculation process can be described

as Eq. 3 - 8 mathematically.

ft = σ(Wf [ht−1, xt] + bf ) (3)

it = σ(Wi[ht−1, xt] + bi) (4)

c̃t = tanh(Wc[ht−1, xt] + bc) (5)

ct = ft � ct−1 + it � c̃t (6)

ot = σ(Wo[ht−1, xt] + bo) (7)

ht = ot � tanh(ct) (8)

where � represents the dot product; Wi, Wf , Wo and Wc

are parameters of gates and the memory cell; σ(·) and tanh(·)
are sigmoid function and hyperbolic function, respectively.

Based on the hidden states ht, a FC layer is able to decode

them into prediction value ỹt+1, which is trained to estimate

the truth value yt+1. It can be described in Eq. 9.

ỹt+1 = w� · ht (9)

where w are weight parameters of fully connected layers.

Fig. 3. An LSTM unit in the context of QF-RNN, consisting of input gate
it, forget gate ft, output gate ot and memory cell state ct. The hidden states
ht will be calculated at each time slice, which will be used as input of both
LSTM units and fully connected layers.

Since user's invocation records can be represented as se-

quences, it is natural to incorporate LSTM into our algorithm.

If we simply use user's historical invocation records to predict

future invocation, however, we may ignore the effect of

user's preferences on recommendation, which results in a poor

performance. Therefore, we propose a novel QI-matrix factor-

ization based RNN to further improve the recommendation

accuracy.

E. QI-Matrix Factorization Based RNN

1) Model Training: In the training phase, our model tries

to excavate the dynamic change rules of user-preferences

and service-features. We adopt a learning strategy of sliding

windows and set the slider size to T. As described in section C,

via the method of matrix factorization, we have obtained user's

preferences and service's features at different time point. At

user-side, for every user i, we set [pt−T+1
i , pt−T+2

i , · · · , pt−1
i ]

as the model input, and set pti as the ground truth, which
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represents the real preferences of user i at time t. The model

will estimate p̃ti for training. Our data for training come from

two sources: on the one hand, select the time interval of length

T from the same user at different time t; on the other hand,

select from different users. We set i from 1 to M and set t
from 64 - T + 1 to 64. Through sufficient iterations, we get

the trained user-side LSTM model U-LSTM.

At service-side, a similar deal is taken. For every service

j, we set [qt−T+1
j , qt−T+2

j , · · · , qt−1
j ] as the model input, and

set qtj as the ground truth, which represents the real features

of service j at time t. The model will estimate q̃tj for training.

We set j from 1 to N and t from 64 - T + 1 to 64. Through

sufficient iterations, we get the trained service-side LSTM

model S-LSTM.

Under this setting, the optimization objective is to find

parameters that yield predictions close to the actual value.

We consider adopting mean square error (MSE) as the loss

function. To avoid overfitting, we apply �2 regularization to

control the model complexity. The cost function L to be

minimized is defined as follows.

LU−LSTM =
∑

u

(ptcu − p̃tcu )2 +
λ

2
‖Θ‖2

LS−LSTM =
∑

s

(qtcs − q̃tcs )2 +
λ

2
‖Θ‖2

(10)

Back Propagation Through Time (BPTT) has been widely

used in existing literature [22] [23], to train the LSTM model.

Moreover, we use Adaptive Moment Estimation (Adam) to

optimize our proposed model. We also adopt the gradient clip-

ping method to eliminate the gradient exploding problem [24].

2) Model prediction: Using the trained model,

if we want to recommend services for users at

time tc , setting [ptc−T+1
i , ptc−T+2

i , · · · , ptc−1
i ] and

[qtc−T+1
j , qt−T+2

j , · · · , qtc−1
j ] as the input of U-LSTM and

S-LSTM respectively, we can calculate latent representations

for ui and sj .

F. Recommendation Based on LSTM Predictions

In this paper, we aim to recommend top-N services with

the highest QoS for users. Using the trained U-LSTM model,

we can calculate p̃tci for user i. For every j in [1, N ], we

use the trained S-LSTM model to calculate q̃tcj . We also

calculate the inner product r̃ij according to Equation (2),

which stands for the score of service j. The Top-N services

will be recommended for user i.
The detailed process can be described as follows: Dataset is

divided into time slices. At each time slice, we can integrate

QoS observation matrix (Qt) into invocation matrix (Bt),

resulting in QI-matrix (Rt). Using matrix factorization to

extract latent representations and sending them into the model,

after sufficient parameter learning and BPTT algorithm we can

obtain model parameters. In order to calculate user-service

matrix at time tc, we send ui into U-LSTM and sj into S-

LSTM, for i in [1,M ], j in [1, N ]. The Top-N services with

the highest scores will be selected into recommendation list.

The pseudo code is shown in Algorithm 1.

Algorithm 1 The QF-RNN algorithm

Input:
User-service invocation matrix Bt, user-service QoS ma-

trix Q1t, Q2t, t ∈ [1,64], user number M , service number

N ,the number of latent dimension K, and other hyper-

parameters.

Output:
Recommendation list for every user

1: for t = 1 to 64 do
2: Integrate Q1t, Q2t and Bt into QI-matrix Rt

3: Use matrix factorization to extract latent dimensions

4: Draw the User-Preference matrix Pt, draw the Feature-

Service matrix Qt

5: end for
6: Choose appropriate sequences as training data from P and

Q
7: for i = 1 to niter do
8: Train U-LSTM

9: Train S-LSTM

10: Apply BPTT to back propagate gradient

11: Use �2 norm to clip gradient

12: Update gradient

13: end for
14: for i = 1 to M do
15: for j = 1 to N do
16: Use the trained U-LSTM to calculate p̃ui
17: Use the trained S-LSTM to calculate q̃sj
18: Calculate r̃us = F (pui, qsj | Θ)
19: end for
20: end for
21: Select Top-N services with the highest score from matrix

R̃us = {r̃us} into recommendation list

22: return Recommandation list for every user

IV. EXPERIMENTS

A. Dataset Description

We adopt a real-world Web service QoS dataset: WS-

Dream dataset [25], which has been widely studied. It contains

two types of QoS properties (response time and throughput)

collected from 4,500 Web services for 142 users in 64 time

intervals.

From the analysis of WS-Dream dataset as shown in

Fig. 4. a, we can see that a total number of 66,617 invocations

are made to the services which are invocated at one time but

not invocated at the next time. Among them, 40,106 times

occur in the case of throughput = 0, and 40,128 times occur

in the case of respond time>1. It can be seen that the QoS

value of the previous time does affect the situation of service

invocation at next time.

We count the average number of services that users invoke

at each time, and select some users’ data to display in Fig. 4. b.

It shows that a user calls up to 3,300 services averagely at a

time slice. Therefore, it is more meaningful to recommend

services with the highest QoS values.
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(a) (b)

Fig. 4. The analyses of WS-Dream dataset: (a) counts the total number of
services which are invocated at one time but not invocated at the next time
under different constraints; (b) computes the average number of services that
users invoke at each time.

B. Evaluation Metrics

We adopt three commonly used metrics to measure the

performance of the algorithm, including precision, recall and

F1. We use {STu} to represent services with the highest QoS

for one user. Ns is used to represent the length of {STu}, and

max(Ns) is set to 100 in our experiments. That means if a

user actually invokes N services, Ns = 100 in the case of

N ≥ 100 and Ns = N when N < 100.

1) Precision: Precision is defined as the ratio of high QoS

services in the recommendation list to all the recommended

services.

P =
Nrs

Nr
(11)

where Nrs is the number of services both in recommenda-

tion list and {STu}, and Nr is the total number of services in

the recommendation list.

2) Recall: The recall rate indicates the probability that high

QoS services are recommended to the user. It is defined as the

ratio of the high QoS services recommended in the list to all

the services with high QoS values.

R =
Nrs

Ns
(12)

3) F1: F1 unifies accuracy and recall, and can fully evaluate

the performance of algorithms. The F1 metrics is expressed as

the reconciled average of precision and recall.

F1 =
2PR

P +R
(13)

where P is the precision rate and R is the recall rate.

C. Baseline Algorithms

In order to evaluate the performance of our QF-RNN

algorithm, we compare it with four baseline methods as below.

1) NMF: Matrix Factorization (MF) based techniques have

been widely used in Web service recommendation. Given a

user-service QI-matrix R ∈ RM×N from M users and N
services, we can decompose it into two matrixes — user-

preference matrix P, where pu ∈ RK(u = 1, 2, · · ·M) and

feature-service matrix Q, where qs ∈ RK(s = 1, 2, · · ·N).

Through this way, we can extract latent features at every

moment. This method is not a time-aware algorithm. We can

use the results of matrix factorization at last time to predict the

future invocation. NMF (Non-negative Matrix Factorization) is

used here [27].

2) LDA + DQ: Latent Dirichlet Allocation [13] is mainly

used in text mining, including text topic recognition, text

classification and text similarity calculation. We use users

as analogy of documents, preferences as analogy of topics,

and services as analogy of words, in which way LDA can

be applied to service oriented computing. Firstly, we only

consider the original invocation matrix when using LDA. Note

that the QoS value in previous time slice will affect the user’s

service choice in the subsequent time slice. We use the DQ

algorithm, proposed by Yanmei Zhang [20], to take the QoS

value in previous time slice into consideration. Finally, we can

get the score of user m on service n as Eq. 14.

smn = imn + (QoSmn)t−1 (14)

where smn denotes the final score, imn is the score calcu-

lated by LDA model, and (QoSmn)t−1 is the QoS observation

of the last time.

3) LSTM: Long Short Term Memory (LSTM) is a kind

of variants of the recurrent neural network (RNN), which

can capture temporal dynamics from the sequence. In this

comparative experiment, we directly set user-service sequence

as input of LSTM. What is different in our QF-RNN model is

that the input of LSTM is latent features extracted by matrix

factorization.

4) ARMA: ARMA (Autoregressive Moving Average Mod-

el) [26] as described in Eq. 15 is a classical time series

method, which will treat each service invocation as an in-

dividual. For each user-service unit in QI-matrix, we set

[rus,1, rus,2, · · · , rus,tc−1] as input. The ARMA model can

thus be applied to predict rus,tc.

xt = c+

p∑

i=1

ψt−i +

q∑

i=1

θiεt−i (15)

where various ψp and θi are parameters of ARMA, c is a

constant, and εt is white noise.

D. Experimental Results Analyses

1) Experiment 1: The purpose of this experiment is to find

out how user’s preferences change over time. We select four

representative preferences from the experimental results to

observe the changing trend, as shown in Fig. 5. Preference 1

indicates a certain degree of stability during the experimental

observation period. Preference 2 shows an upward trend, while

preference 3 declines in fluctuations. As to preference 4, it

maintains a high value in the early stage, but hovers around

a relatively low level after time slice 56. There may be

several reasons for preference 4 to change in this way, such

as sudden changes in throughput and response time, or other

occasional leaps of environment. This experiment shows that

the preferences of users fluctuate over time. Although the trend
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Fig. 5. Variation trend of user preferences

of the whole sequence is stable in the long run, the single value

of the time series shows uncertainty in the short term. This is

the deep reason why users call different services at different

time slices.

2) Experiment 2: This experiment aims to compare the

performance of QF-RNN with the baseline methods in terms

of precision, recall and F1, respectively. Setting recommend

number from 10 to 100, we can get Fig. 6, Fig. 7 and Fig. 8,

respectively.

Fig. 6. Comparing of precision

Fig. 6 shows that, with the number of recommendations

increasing, precision decreases. It also reveals that Our QF-

RNN algorithm proposed in this paper always maintains a high

accuracy rate. Besides, QF-RNN is the only method with over

90% precision. Even in the case of recommend number = 100,

our method still shows a precision over 75%, which performs

better than other state-of-the-art methods.

Fig. 7 shows that, as the recommend number increases, the

recall rate of each algorithm increases. Although there is only

a subtle difference when the number of recommendations is

small, we can still observe the slight lead of our method.

Moreover, with the increase of recommendations, QF-RNN

Fig. 7. Comparing of recall

Fig. 8. Comparing of F1

algorithm has the fastest growth rate.

We can see from Fig. 8 that, the change trend of F1 is

consistent with recall. Because F1 takes both precision and

recall into account, the leading performance of F1 shows the

powerful predicating ability of our QF-RNN algorithm.

The detailed performance of the methods tested is sum-

marized in Table 1. We set recommend number = 50 and

100, respectively to examine the F1 indicators of various

methods. When recommend number = 50, the F1 of QF-RNN,

LSTM, ARMA, LDA+DQ and NMF are 56.27%, 54.06%,

52.09%, 49.26% and 49.91%, respectively. When recommend

number = 100, they are 72.91%, 69.03%, 65.36%, 62.33% and

63.23%, respectively. The table shows that QF-RNN, LSTM

and ARMA perform better than LDA+DQ and NMF. The

reason could be that the latter are not time-aware algorithms,

and they only use the invocation record and QoS observation

of the last time to predict the future invocation. Among the

three time-aware methods, the deep-learning powered methods

perform better than ARMA. Traditional LSTM also uses deep-

learning to mine long short-term dependencies of sequences.
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However, when recommending services, the latent dimensions

are not deeply excavated, and the changing trend of user-

preferences (service-features) are not considered, instead, the

end-to-end learning and prediction are carried out directly.

Therefore, the overall performance of traditional LSTM is not

as good as our QF-RNN. Overall, our QF-RNN method is

nearly 3% better than the state-of-the art methods.

Recommendation Method F1@50 F1@100
QF-RNN 56.27% 72.91%

LSTM 54.06% 69.03%
ARMA 52.09% 65.36%

LDA+DQ 49.26% 62.33%
NMF 49.91% 63.23%

TABLE I
COMPARING OF F1

V. CONCLUSION

In this paper, we propose a novel QI-matrix factorization-

based RNN (QF-RNN) method, which uses matrix factoriza-

tion to extract complicated characteristics and applies LSTM

units to make time-aware service recommendation. We fully

consider the influence of QoS values on user's dynamic

preferences, regarding QoS as an important factor affecting

recommendation results instead of only for evaluating purpose.

To our best knowledge, this is the first attempt to recommend

services with the highest QoS values for users. Extensive

experiments have proved that our QF-RNN performs better

than the baseline methods in terms of accuracy, recall and F1.

Our future work will focus on two aspects: 1) use other

datasets to further validate the effectiveness of our method; 2)

explore more efficient models to extract features, or use more

complex neural network based on LSTM model to further

improve the accuracy of recommendation.
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