
Self-adaptive Teaching-learning-based Optimizer with Improved RBF
and Sparse Autoencoder for Complex Optimization Problems

Jing Bi1, Ziqi Wang1, Haitao Yuan2, Junfei Qiao1, Jia Zhang3 and MengChu Zhou4

Abstract— Evolutionary algorithms are commonly used to
solve many complex optimization problems in such fields as
robotics, industrial automation, and complex system design.
Yet, their performance is limited when dealing with high-
dimensional complex problems because they often require
enormous computational resources to yield desired solutions,
and they may easily trap into local optima. To solve this
problem, this work proposes a Self-adaptive Teaching-learning-
based Optimizer with an improved Radial basis function model
and a sparse Autoencoder (STORA). In STORA, a Self-adaptive
Teaching-learning-based Optimizer is designed to dynamically
adjust parameters for balancing exploration and exploitation
during its solution process. Then, a sparse autoencoder (SAE)
is adopted as a dimension reduction method to compress search
space into lower-dimensional one for more efficiently guiding
population to converge towards global optima. Besides, an
Improved Radial Basis Function model (IRBF) is designed
as a surrogate model to balance training time and prediction
accuracy. It is adopted to save computational resources for im-
proving overall performance. In addition, a dynamic population
allocation strategy is adopted to well integrate SAE and IRBF
in STORA. We evaluate it by comparing it with several state-
of-the-art algorithms through six benchmark functions. We
further test it by applying it to solve a real-world computational
offloading problem.

I. INTRODUCTION

Evolutionary algorithms (EAs) have been widely applied
to solve different types of benchmarks and real-world engi-
neering problems in a variety of fields, e.g., computer vision
[1], robots [2], cloud computing [3]–[5] and manufacturing
scheduling problems [6]. Some practical problems have a
large number of decision variables and can be characterized
as high-dimensional problems [7]. These problems present a
exponentially growing search space with many decision vari-
ables that bring big challenges for EAs to efficiently explore
the search space. In other words, they often require a large
number of function evaluations (FEs) to yield satisfactory
solutions. However, FEs in many real-world problems can

*This work was supported in part by the National Natural Science
Foundation of China (NSFC) under Grants 62173013 and 62073005, and
the Fundamental Research Funds for the Central Universities under Grant
YWF-22-L-1203.

1J. Bi, Z. Wang and J. Qiao are with the Faculty of Information
Technology, Beijing University of Technology, Beijing 100124, China.
Email: bijing@bjut.edu.cn, wangziqi0312@163.com, junfeiq@bjut.edu.cn.

2H. Yuan is with the School of Automation Science and Elec-
trical Engineering, Beihang University, Beijing 100191, China. Email:
yuan@buaa.edu.cn.

3J. Zhang is with the Department of Computer Science in the Lyle School
of Engineering at Southern Methodist University, Dallas, TX 75205, USA.
Email: jiazhang@smu.edu.

4M. Zhou is with the Department of Electrical and Computer Engineer-
ing, New Jersey Institute of Technology, Newark, NJ 07102 USA. Email:
zhou@njit.edu.

be computationally intensive or highly costly [8]. Moreover,
some of EAs may easily trap into local optima when solving
high-dimensional problems. As a result, it is important to
balance exploration and exploitation abilities of EAs during
their optimization process.

To solve high-dimensional and complex problems, a num-
ber of studies have been proposed, which can be divided into
two types. The first type incorporates surrogate models into
EAs. Surrogate-assisted EAs (SAEAs) have been considered
as viable methods to deal with high-dimensional problems
[9]. A surrogate model can be employed to replace a part
of a true model for evaluating individuals. It takes fewer
computation resources than the true model. However, SAEAs
bring additional surrogate models into the structure that
also brings additional training time especially for a high-
dimensional training set. Moreover, the optimization process
is partially guided by surrogate models whose accuracy
has direct impact on the optimization direction. Inaccurate
surrogate models may mislead the optimization direction and
result in poor or inaccurate search results.

The second type belongs to the dimension reduction,
which is widely adopted to deal with the huge amount of
high-dimensional data because of the curse of dimensionality
[10], [11]. It aims to extract useful features of data to reduce
the dimension of objective functions or the search space for
reducing computational stress [12]. However, although the
feature data is extracted under a specific dimension reduction
method, some data including important information for the
optimization process may be lost. As a result, it is highly
important to choose a proper method and suitable time for
dimension reduction [13].

Motivated by the above analysis, this work proposes a
novel Self-adaptive Teaching-learning-based Optimizer with
an improved Radial basis function model and a sparse
Autoencoder (STORA) to solve high-dimensional problems.
A Self-adaptive Teaching-learning-based Optimizer (STO)
is proposed as EA in STORA to solve high-dimensional
problems. Its parameters are dynamically changed as the
number of iterations increases to balance exploration and
exploitation abilities in different stages. Similar to [14],
[15], a sparse autoencoder (SAE) is adopted as a dimension
reduction tool. SAE can well extract characteristics and the
structure of samples with a large amount of high-dimensional
data [16]. Moreover, an Improved Radial Basis Function
model (IRBF) is proposed as a surrogate model in STORA to
balance prediction accuracy and training time for reducing
computational cost of SAEAs. Finally, a novel framework
is proposed to integrate both dimension reduction and sur-

2023 IEEE International Conference on Robotics and Automation (ICRA 2023)
May 29 - June 2, 2023. London, UK

979-8-3503-2365-8/23/$31.00 ©2023 IEEE 7966

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 R

ob
ot

ic
s a

nd
 A

ut
om

at
io

n
(IC

RA
) |

 9
79

-8
-3

50
3-

23
65

-8
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

RA
48

89
1.

20
23

.1
01

60
44

2

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 15:37:03 UTC from IEEE Xplore. Restrictions apply.

rogate models into STO to solve high-dimensional prob-
lems. Moreover, a dynamic population allocation strategy is
adopted to allow SAE and IRBF to cooperate well. We com-
pare STORA with state-of-the-art peers by using different
unimodal and multimodal high-dimensional functions, and
an energy-minimization problem in performing computation
task offloading to demonstrate its superior performance.

II. PROPOSED FRAMEWORK

A. Self-adaptive Teaching-learning-based Optimizer

Our algorithm aims to find the global optima of a function
f(x) where x is a vector of decision variables and f(x) is
a function to evaluate an individual solution. In this work,
STO is proposed as an EA for STORA. In STO, TF is
a learning factor and bigger TF means better exploration
ability. Moreover, TF dynamically and linearly decreases as
iterations continue. In the early stage of STO, TF is assigned
to a bigger value to enhance the exploration capability.
On the contrary, TF decreases to enhance the exploitation
capability for obtaining high-precision solutions in the later
stage. TF is updated as:

TF=

(
t̂1−t1
t̂1

)2

+2 (1)

where t̂1 is the maximum number of iterations, and t1 is the
current iteration.

Learners adjust their learning progress from the teacher
according to their own current state of knowledge. To reflect
this phenomenon, the progress of each learner is represented
as the step size. The step size of each learner is shown below.

Sj(t)=
f (Xn(t))

f (Xj(t))
, j∈{1, 2, 3, · · ·, N} (2)

where Sj(t) denotes the step size of individual j in iteration
t, Xn(t) denotes the teacher in iteration t, and Xj(t) denotes
individual j in iteration t.

Besides, a knowledge acquisition factor (A) is introduced
to avoid STO falling into local optima. There is a cer-
tain probability that learners can fully grasp the acquired
knowledge controlled by A. Otherwise, learners cannot gain
this knowledge. In addition, A has two different values A1

and A2 in teaching and learning phases, respectively. A1 is
slightly bigger than A2 because the accuracy of knowledge
imparted by teachers is higher than that learned from others.

The knowledge level of the teacher is very important
because other individuals are approaching it. Therefore, some
parts of the teacher’s knowledge are randomly disturbed with
a random learner. Specifically, the teacher is disturbed as:

Xn
d (t)←Xn

d (t)+r·
(
Xn

d (t)−X
j
d(t)

)
(3)

where Xn
d (t) denotes dimension d of the current teacher in

iteration t, Xj
d(t) denotes dimension d of individual j in

iteration t. j denotes a random number in {1, 2, 3, · · ·, N}
and j ̸=n. r is a random number in [0, 1].

Thus, in the teaching phase of STO, individuals are
updated as:

Xj
d(t+1)←A1·Xj

d(t)+Sj(t)· (Xn
d (t)−TF ·Md(t)) (4)

where Xj
d(t+1) denotes dimension d of individual j in

iteration t+1. Md(t) denotes the mean position of the
population at dimension d in iteration t.

The knowledge level of learners is improved with the help
of their peers and the teacher in the learning phase of STO
which further speeds up the optimization process. In the
learning phase of STO, Xj

d(t+1) is updated as:

Xj
d(t+1)←A2·Xj

d(t)+Sj(t)·
(
Xj

d(t)−X
k
d (t)

)
+

Sj(t)·
(
Xn

d (t)−TF ·Xj
d(t)

) (5)

Xj
d(t+1)←A2·Xj

d(t)+Sj(t)·
(
Xk

d (t)−X
j
d(t)

)
+

Sj(t)·
(
Xn

d (t)−TF ·Xj
d(t)

) (6)

If f(Xj)<f(Xk), Xj
d(t+1) is updated with (5); otherwise, it

is updated with (6).

B. Sparse Autoencoder Training

SAE is a kind of autoencoders (AEs) that achieve sparse
effect by suppressing hidden layer neurons. The training data
for AE is the position information of the population, which
is large and high-dimensional. The feature extraction of large
samples by suppressing part of hidden layer neurons has
better performance [17]. Thus, adding extra sparse penalties
can enhance the ability of AE when dealing with high-
dimensional problems. We adopt SAE to compress a high-
dimensional space into a reduced one for facilitating the
evolution. In STORA, its initial generations are conducted by
STO for providing samples to train the SAE. As the popula-
tion is evolving towards better regions, the trained SAE can
extract some important information of promising evolution
directions to compress the dimension of individuals. When
the termination condition is reached, SAE is trained and used
in the next stage. Moreover, the training time of AE is much
lower than that of a surrogate model and can be neglected.

C. STO-assisted Improved Radial Basis Function

The number of center points in traditional RBFs equals
that of the training samples which makes a neural network
overly complex. In this case, it leads to long training time
and overfitting problem of neural networks [18]. This work
proposes an IRBF as a surrogate model to solve this prob-
lem. We extract characteristics of data to construct neural
networks for simplifying the network structure. To realize
it, we adopt the K-means algorithm to select centers of
basis function, which locate important areas of the input
space after the clustering. Thus, it can improve the prediction
accuracy of the model [19], [20]. Moreover, the number of
center points in RBF is significantly reduced by the K-means
algorithm. Therefore, the model structure is simplified, thus
demanding less training time.

7967

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 15:37:03 UTC from IEEE Xplore. Restrictions apply.

However, the clustering result of the K-means algorithm
is easily affected by the initial clustering centers [21]. This
work takes advantage of the excellent global optimization
ability of EAs to choose the initial clustering centers. The
goal of EA in this problem is to find K center points
in the samples to minimize the sum of distances from all
points to the category to which they belong. Then, the K
data points are initial centers of the K-means algorithm.
Genetic learning particle swarm optimization (GLPSO) [22]
is adopted in our structure. It combines particle swarm
optimization (PSO) with genetic algorithm (GA) to avoid
premature convergence of GA and enhance the exploitation
ability of PSO. GLPSO achieves high global optimization
ability and robust performance.

Start

Initialize the population

Perform GA operations

Evaluate fitness values

Learning

information

Genetic

information

Take the globally optimal solutions as initial

clustering centers of the K-means algorithm

Perform PSO operations

Evaluate fitness values

Divide samples to the nearest cluster centers

Take cluster centers as basis function centers

Construct RBF

End

Yes

No

Yes

No

GLPSO

Fig. 1. Construction process of IRBF

Then, we integrate GLPSO and the K-means algorithm
work in a cascade manner. Specifically, GLPSO first finds the
initial clustering centers for the K-means algorithm, which
divides the training dataset into m groups, and m equals the
number of basis function centers. Then, RBF is built based
on the chosen center points. The cooperation of GLPSO
and the K-means algorithm chooses proper centers of RBF,
which leads the model to have less training time and better
prediction accuracy. The flowchart of IRBF is shown in
Fig. 1, where t̂2 and t̂3 represent the maximum iterations
of GLPSO and K-means, respectively. In addition, IRBF is
trained only when enough data is collected to ensure the
accuracy of the model [23]. Before the training of IRBF, all
the positions and fitness values of individuals are collected.

Then, IRBF is trained based on the collected data.

D. STO with Improved RBF and SAE

At the beginning of STORA, population P is initialized
randomly in the decision space by Latin hypercube sam-
pling (LHS) [24]. Then, several generations of evolution
are carried out by STO to collect data samples for the
training of SAE. Once the preset condition is reached, SAE is
constructed based on the accumulated data samples. After the
SAE training, the population is split into two sub-populations
(P1 and P2) with the dynamic population allocation strategy
to be introduced next. Then, P1 and P2 coevolve in a
distributed manner to ensure diversity. P1 is assisted by
SAE to find promising solutions rapidly and P2 is guided
by STO (possibly assisted by IRBF) in the original space.
The diversity of the population helps STORA to jump out of
local optima that are imperative to the optimization process.

Train the IRBF

Start
Initialize the

population

Generate offspring

with STO

Select and update the

population

Train the SAE

Split the population into and according

to dynamic population allocation strategy

Evaluate fitness values

Select and update sub-population

Encode the

sub-population

Generate sub-

offspring with

STO

Decode the sub-

population

Activate IRBF

Generate sub-

offspring with

STO

Predict fitness

values with IRBF

Select individuals

for true model

evaluations

Generate sub-

offspring with

STO

Add positions and

fitness values of

the offspring into

database

Select and update sub-population

Combine and

End

S
A

E
-a

ssisted

IR
B

F
-a

ssisted

Yes

No

Yes

No

Yes

No

L
o
w

-d
im

en
sio

n
a

l

sp
a
ce

H
ig

h
-d

im
en

sio
n

a
l sp

a
c
e

Fig. 2. Framework of STORA

In the SAE-assisted STO, P1 is first encoded by the trained
SAE into a lower-dimensional space. Then, STO is adopted
to generate offspring. In that case, individuals have higher
possibility to find promising offspring in the relatively low-
dimensional space to speed up the optimization process.
Due to the dimensional mismatch, FEs cannot be completed
in the low-dimensional space. After the decoding phase
of the SAE, the population is in the original and high-
dimensional space, its individuals can be directly evaluated
by the fitness function. Finally, new P1 is updated for the
next generation. Furthermore, in the IRBF-assisted STO, P2

evolves with STO before the activation of IRBF. In addition,
all positions and their fitness values in previous iterations
are stored in a database for later training of IRBF. Once

7968

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 15:37:03 UTC from IEEE Xplore. Restrictions apply.

the activation condition is met, IRBF is trained based on
the collected data samples, and it is adopted to prescreen
individuals in the rest of the optimization process. To be
specific, after STO generates the offspring, the positions of
the offspring are the input of IRBF that outputs the predicted
fitness values of those individuals. Furthermore, to ensure the
search accuracy, some individuals still need to be selected
for the true model evaluation. In STORA, individuals are
sorted based on their predicted fitness values, the top M
individuals are selected for the true model evaluation because
they have higher possibility to find optima quickly. Then,
new P2 is updated for the next generation. New P1 and
P2 are combined together to form a new population P
after each iteration. The whole process continues until the
termination condition is met. The flowchart of STORA is
shown in Fig. 2 and its pseudo codes are shown in Algorithm
1. Here, SAEtraining(·) and IRBFtraining(·) denote the
training process of SAE and IRBF, respectively. In addition,
encode(·) and decode(·) denote the encoding and decoding
phases of SAE, respectively. Finally, STO(·) means the
process of generating offspring.

E. Dynamic Population Allocation Strategy

The dynamic population allocation strategy includes two
parts. The first one determines the number of individuals
in each sub-population and the second one determines the
selected individuals assigned to each sub-population. At the
beginning of the evolution, STORA aims to locate promising
areas quickly. The sub-population P1 is assisted by SAE
that compresses the original decision space to the reduced
one, which is benefit to explore the promising region. As
a result, more individuals are assigned to P1 at the begin-
ning. On the other hand, as promising areas are gradually
explored, further compression to lower dimensions may lose
the important area information and affect the optimization
accuracy. Accordingly, the sub-population P2 evolves at the
original space (possibly helped by the IRBF) have more
assigned individuals. Moreover, the individuals with worse
fitness values are assigned to P1 because they are difficult to
evolve towards promising areas due to the high-dimensional
search space. However, they may have higher possibility to
produce better offspring in the compressed space. The two
sub-populations are combined to a whole population again
after each iteration. The dynamic adjustment is given as:

P1=P ·
(
t̂5−t5
t̂5

)3

P2=P−P1

(7)

where t̂5 is the number of maximum iterations for STORA
and t5 is the current iteration count. (t̂5−t5

t̂5
)3 controls the

decreasing rate of P1 for SAE, and an increasing rate of P2

for IRBF. Then, more individuals are assigned to P2 in the
later stage to further exploit more promising areas.

Algorithm 1 STORA
Input: Maximum iterations of STO for SAE (t̂4), maximum number
of iterations in STORA (t̂5), database to train SAE (B1), database
to train IRBF (B2), and M
Output: xbest and fbest

1: Initialize P , B1=∅, and B2=∅
2: while t4≤t̂4 do
3: P ′ = STO(P)
4: Evaluate the fitness value of each individual in P ′

5: B1=B1∪P ′

6: Select P ′ as P for the next generation
7: t4=t4+1
8: end while
9: S= SAEtraining(B1)

10: while t5≤t̂5 do
11: Split P into P1 and P2 according to the dynamic population

allocation strategy
12: P̂1 = encode(S, P1)

13: P̂1
′
= STO(P̂1)

14: P1
′ = decode(S, P̂1

′
)

15: Select P1
′ as P1 for the next generation

16: if the activation condition of IRBF is not met then
17: P ′

2 = STO(P2)
18: Evaluate fitness value of each individual in P ′

2

19: B2=B2∪(f(P ′
2), P

′
2)

20: Select P2
′ as P2 for the next generation

21: t5=t5+1
22: else
23: γ=IRBFtraining(B2)
24: P ′

2 = STO(P2)
25: f(P ′

2)= IRBFpredict(γ, P ′
2)

26: Sort individuals in P ′
2 by their fitness values in an

ascending order
27: Select top M individuals for true model evaluations
28: Select P2

′ as P2 for the next generation
29: t5=t5+1
30: end if
31: P=P1∪P2

32: Update fbest and xbest

33: end while
34: Return fbest and xbest

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Benchmark Functions and Comparative Experiments

We compare STORA with two metaheuristic algorithms
(teaching-learning-based optimization (TLBO) [25] and grey
wolf optimizer (GWO) [26]) and one recently proposed
algorithm (SAEO [27]), which is suitable to solve high-
dimensional problems. We choose six different benchmark
functions including unimodal and multimodal functions. De-
tails of benchmark functions are shown in Table I. For
benchmark algorithms, a population size is set to 50 and
other parameters are used as their optimized values. For each
benchmark function, 20 independent runs are performed and
we record average values and standard deviations of optimal
solutions. For STORA, its population size is set to 50. t̂2
and t̂3 are both set to 100. t̂4 and t̂5 are set to 50 and 1000,
respectively. A1 and A2 are set to 0.8 and 0.7, respectively.
The parameters of GLPSO are set as suggested in [22]. m
is set to 125, and M is set to five. IRBF is activated when
500 FEs are executed as recommended in [28] to balance

7969

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 15:37:03 UTC from IEEE Xplore. Restrictions apply.

the training time and the accuracy of the IRBF. All these
algorithms are implemented in a computer with an Intel(R)
Core(TM) i7 CPU 10750H at 2.60 GHz with 16 GB of RAM.

TABLE I
BENCHMARK FUNCTIONS

Functions D Range

F1(x)=
N∑

i=1

(
|xi+0.5|

)2 100 [-100,100]

F2(x)=
N∑

i=1
|xi|+

N∏
i=1

|xi| 100 [-10,10]

F3(x)=maxi{|xi|, 1≤i≤N} 100 [-100,100]

F4(x)=
N∑

i=1
[x2

i−10cos(2πxi)+10] 100 [-5.12,5.12]

F5(x)=−20exp

−0.2

√√√√ 1
N

N∑
i=1

x2
i

−exp

(
1
N

N∑
i=1

cos(2πxi)

)
+20+e 100 [-32,32]

F6(x)=418.9829D−
N∑

i=1
xisin

√
|xi| 100 [-500,500]

B. Experimental Results

Table II provides statistical results of benchmark functions
after 1000 iterations and Fig. 3 shows corresponding conver-
gence curves. It is shown in Fig. 3 that STORA converges in
fewer iterations because STO can easily find better regions
in a lower-dimensional space because of the SAE. Moreover,
the time cost of STORA per iteration is nearly the same as
the compared algorithms. As for unimodal problems, e.g., F1
in Fig. 3(a), STORA has faster optimization speed and better
search result after 1000 iterations because of the better ex-
ploration ability of STO and the usage of SAE. The results of
F2 and F3 have the similar trend. For multimodal problems,
e.g., F4 in Fig. 3(d), TLBO and SAEO both find the global
optima due to the great performance of TLBO. Among these
three algorithms, STORA still has the steepest slope on its
iterative curve. For F5 and F6, STORA rapidly converges to
high-quality solutions within fewer iterations and it further
exploits the search space to find better solutions. As shown
in Table II, STORA achieves better average results for all
benchmark functions. In addition, the standard deviation of
STORA is particularly small, which indicates that STORA
has stable performance and great robustness. Thus, STORA
achieves the best search result over its peers.

C. Real-world Computation Offloading Problem

We apply STORA to solve a real-world computation task
offloading problem in an edge-computing-enabled large-scale
factory [29]–[31], [39]. This problem considers to migrate
a part of the data processing of mobile applications from
resource-constrained smart mobile devices (SMDs) to high-
performing platforms in a network edge, which is known
as computation offloading [32]–[34]. The optimized decision
variables include the computational speed of each SMD, its
data transmission power, and task offloading ratio. More-
over, the constraints include maximum latency for executing
applications, maximum transmission power and maximum
computational speed of each SMD. The objective of the
problem is to minimize the total energy consumed by all
SMDs and edge servers while guaranteeing above-mentioned

TABLE II
RESULTS OF BENCHMARK FUNCTIONS

Functions Algorithms Mean Std

F1 STORA 1.9062×10−269 3.2402×10−270

SAEO 4.2710×10−179 6.7963×10−179

GWO 1.5261×10−34 1.8280×10−34

TLBO 4.3572×10−166 3.2102×10−166

F2 STORA 2.8283×10−130 3.7592×10−130

SAEO 1.3082×10−93 5.0739×10−93

GWO 8.5767×10−21 4.8600×10−21

TLBO 2.0665×10−86 1.1691×10−86

F3 STORA 5.7237×10−131 1.2064×10−130

SAEO 2.6225×10−25 1.1763×10−25

GWO 0.2582×10+00 0.6141×10+00

TLBO 9.6222×10+00 1.0436×10+01

F4 STORA 0.0000×10+00 0.0000×10+00

SAEO 0.0000×10+00 0.0000×10+00

GWO 1.5438×10−13 1.8907×10−13

TLBO 0.0000×10+00 0.0000×10+00

F5 STORA 3.4409×10−15 1.4584×10−15

SAEO 8.9936×10−15 2.6100×10−15

GWO 3.4195×10−14 3.5310×10−14

TLBO 9.6739×10−15 2.1132×10−15

F6 STORA 3.5527×10−15 6.2970×10−16

SAEO 1.4211×10−14 6.2232×10−15

GWO 7.6233×10−14 8.5868×10+00

TLBO 2.1350×10+01 3.6123×10−01

constraints for prolonging the battery life. It is worth noting
that this problem is a high-dimensional and single-objective
problem that is fit for STORA. A constrained mixed-integer
nonlinear program is formulated. A penalty function method
is used to handle these constraints and integrate them into
an unconstrained optimization problem [35], [36]. Each
constraint is transformed into a non-negative penalty. For
example, zero penalty means all the constraints are strictly
met [37], [38]. The parameter setting is the same as [39].

We compare STORA with GWO, TLBO, SAEO and
GLPSO by applying them to solve the above problem. Fig.
4(a) shows that the total energy consumption of STORA is
the least among all algorithms. In addition, STORA needs
fewer than 150 iterations to converge to its final value, which
is faster than its peers. Fig. 4(b) shows that the total energy
consumption of all algorithms increases with the number of
SMDs. Among all algorithms, STORA achieves the least
energy consumption as the number of SMDs increases. Fig.
4(c) shows their final energy consumption with different
distances between each SMD and its nearest edge server. It
is shown that the final energy consumption of STORA is still
the least among all algorithms as distances increase. Fig. 4(d)
presents the comparison of penalty values of STORA and its
peers. It is shown that the penalty of STORA is quite small
at the beginning and it keeps the least during iterations. Fur-
thermore, the final penalty value of STORA is zero, which
proves that STORA produces a high-quality solution meeting
all the constraints in this problem. Fig. 4(e) shows the final
energy consumption of each SMD, which is a function of
λ under several simulation settings. The minimum energy
consumption can be obtained by adjusting λ and the final
values of λ under different conditions are all 0.6. Moreover,
Fig. 4(f) shows the final energy consumption of STORA

7970

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 15:37:03 UTC from IEEE Xplore. Restrictions apply.

0 200 400 600 800 1000

Iteration count

-300

-250

-200

-150

-100

-50

0

50

lo
g
(F

it
n
es

s)

GWO STORA TLBO SAEO

(a) F1

0 200 400 600 800 1000

Iteration count

-150

-100

-50

0

50

lo
g
(F

it
n
es

s)

GWO STORA TLBO SAEO

(b) F2

0 200 400 600 800 1000

Iteration count

-150

-100

-50

0

lo
g
(F

it
n
es

s) GWO

STORA

TLBO

SAEO

(c) F3

0 200 400 600 800 1000

Iteration count

-15

-10

-5

0

5

lo
g
(F

it
n
es

s)

GWO

STORA

TLBO

SAEO

(d) F4

0 200 400 600 800 1000

Iteration count

-15

-10

-5

0

5

lo
g
(F

it
n
es

s)

GWO

STORA

TLBO

SAEO

(e) F5

0 200 400 600 800 1000

Iteration count

-15

-10

-5

0

5

lo
g
(F

it
n
es

s) GWO

STORA

TLBO

SAEO

(f) F6

Fig. 3. Results of benchmark functions

0 100 200 300 400 500 600 700 800 900 1000

Iteration count

0

1

2

3

4

5

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
J
)

GWO

STORA

TLBO

SAEO

GLPSO

(a) Energy consumption in each iteration for
each algorithm

20 40 60 80 100 120 140 160 180 200

Number of SMDs

0

0.5

1

1.5

2

E
n

er
g

y
 C

o
m

su
m

p
ti

o
n

 (
J
)

GWO TLBO STORA SAEO GLPSO

(b) Energy consumption v.s. the number of
SMDs for each algorithm

0 10 20 30 40 50 60 70 80 90 100

Distance (m)

0

0.2

0.4

0.6

0.8

1

E
n

er
g

y
 C

o
m

su
m

p
ti

o
n

 (
J
)

GWO TLBO STORA SAEO GLPSO

(c) Energy consumption v.s. the distance for each
algorithm

0 100 200 300 400 500 600 700 800 900 1000

Iteration count

0

20

40

60

80

100

P
en

al
ty

GWO

STORA

TLBO

SAEO

GLPSO

(d) Penalty in each iteration for each algorithm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.45

0.5

0.55

0.6

0.65

E
n

er
g

y
 C

o
m

su
m

p
ti

o
n

 (
J
)

(e) Energy consumption v.s. λ of STORA

20 40 60 80 100 120 140 160 180 200

Number of SMDs

0

0.1

0.2

0.3

0.4

0.5

E
n

er
g

y
 C

o
m

su
m

p
ti

o
n

 (
J
)

(f) Energy consumption with different values of
Lmax and numbers of SMDs of STORA

Fig. 4. Results of the real-world problem

given different numbers of SMDs and values of maximum
latency (Lmax). It demonstrates that STORA always finds
the final solution under different latency requirements.

IV. CONCLUSIONS

This work presents a Self-adaptive Teaching-learning-
based Optimizer with an improved Radial basis function
model and a sparse Autoencoder (STORA) for complex
optimization problems. First, to trade off the exploration
and exploitation abilities, a Self-adaptive Teaching-learning-
based Optimizer (STO) is designed to adjust parameters
in the search process. Second, a sparse autoencoder (SAE)
is adopted to speed up optimization in a high-dimensional
space and give more possibility to worse individuals evolving
towards promising areas. Third, an Improved Radial Basis
Function model (IRBF) is designed as a surrogate model to

find better solutions with fewer computing resources and less
training time. Then, a dynamic population allocation strategy
is designed to enhance integration of SAE and IRBF for
improved performance of STORA. Finally, STORA is com-
pared against its peers on six high-dimensional benchmark
functions. Experimental results demonstrate that STORA
yields the best search results with the least time among
all compared algorithms. Then, we apply STORA to solve
a real-world computational offloading problem in an edge
computing environment, and results show that STORA yields
higher-quality solutions meeting all constraints than its typ-
ical peers. Our next work should extend it to solve many-
objective optimization high-dimensional problems with dis-
crete and continuous parameters. In addition, other advanced
surrogate models can be applied to better solve these prob-
lems, thus further improving performance of STORA.

7971

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 15:37:03 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] A. Razjigaev, A. K. Pandey, D. Howard, J. Roberts and L. Wu, “End-
to-End Design of Bespoke, Dexterous Snake-Like Surgical Robots: A
Case Study With the RAVEN II,” IEEE Transactions on Robotics, pp.
1–14, Apr. 2022.

[2] A. Favaro, A. Segato, F. Muretti and E. D. Momi, “An Evolutionary-
Optimized Surgical Path Planner for a Programmable Bevel-Tip Nee-
dle,” IEEE Transactions on Robotics, vol. 37, no. 4, pp. 1039–1050,
Aug. 2021.

[3] J. Bi, H. Yuan, K. Xu, H. Ma and M. Zhou, “Large-scale Network
Traffic Prediction With LSTM and Temporal Convolutional Networks,”
2022 International Conference on Robotics and Automation (ICRA),
Philadelphia, PA, USA, 2022, pp. 3865–3870.

[4] J. Zhai, J. Bi and H. Yuan, “Collaborative Computation Offloading
for Cost Minimization in Hybrid Computing Systems,” 2022 IEEE
International Conference on Systems, Man, and Cybernetics (SMC),
Prague, Czech Republic, 2022, pp. 1772–1777.

[5] H. Yuan, J. Bi, J. Zhang and M. Zhou, “Energy Consumption and
Performance Optimized Task Scheduling in Distributed Data Centers,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol.
52, no. 9, pp. 5506–5517, Sept. 2022.

[6] M. Qin, R. Wang, Z. Shi, L. Liu and L. Shi, “A Genetic Programming-
Based Scheduling Approach for Hybrid Flow Shop With a Batch
Processor and Waiting Time Constraint,” IEEE Transactions on Au-
tomation Science and Engineering, vol. 18, no. 1, pp. 94–105, Jan.
2021.

[7] L. Schramm and A. Boularias, “Learning-Guided Exploration for
Efficient Sampling-Based Motion Planning in High Dimensions,” 2022
International Conference on Robotics and Automation, pp. 4429–4435,
Jul. 2022.

[8] H. Dong, P. Wang, X. Yu and B. Song, “Surrogate-assisted Teaching-
Learning-based Optimization for High-dimensional and Computation-
ally Expensive Problems,” Applied Soft Computing Journal, vol. 99,
no. 5, pp. 1–21, Feb. 2021.

[9] M. Kalweit, G. Kalweit, M. Werling and J. Boedecker, “Deep
Surrogate Q-Learning for Autonomous Driving,” 2022 International
Conference on Robotics and Automation, pp. 1578–1584, Jul. 2022.

[10] R. Lu, Y. Cai, J. Zhu, F. Nie, H. Yang, “Dimension Reduction of
Multimodal Data by Auto-weighted Local Discriminant Analysis,”
Neurocomputing, vol. 461, pp. 27–40, Oct. 2021.

[11] X. Xu, T. Liang, J. Zhu, D. Zheng, T. Sun, “Review of Classical
Dimensionality Reduction and Sample Selection Methods for Large-
scale Data Processing,” Neurocomputing, vol. 328, pp. 5–15, Feb.
2019.

[12] X. Yao, Q. Zhao, D. Gong and S. Zhu, “Solution of Large-scale Many-
objective Optimization Problems Based on Dimension Reduction and
Solving Knowledge Guided Evolutionary Algorithm,” IEEE Transac-
tions on Evolutionary Computation, pp. 1–15, Sept. 2021.

[13] C. Chen, J. Leu and S. W. Prakosa, “Using Autoencoder to Facilitate
Information Retention for Data Dimension Reduction,” 2018 3rd
International Conference on Intelligent Green Building and Smart
Grid, pp. 1–5, Jun. 2018.

[14] J. Bi, H. Yuan, J. Zhai, M. Zhou and H. V. Poor, “Self-adaptive Bat Al-
gorithm With Genetic Operations,” IEEE/CAA Journal of Automatica
Sinica, vol. 9, no. 7, pp. 1284–1294, Jul. 2022.

[15] A. S. Nandan, S. Singh, R. Kumar and N. Kumar, “An Optimized
Genetic Algorithm for Cluster Head Election Based on Movable Sinks
and Adjustable Sensing Ranges in IoT-Based HWSNs,” IEEE Internet
of Things Journal, vol. 9, no. 7, pp. 5027–5039, Apr. 2022.

[16] A. R. Kalantarnezhad and J. Hamidzadeh, “MCRS-SAE: Multi-criteria
Recommender System based on Sparse Autoencoder,” 2022 12th
International Conference on Computer and Knowledge Engineering,
pp. 117–122, Nov. 2022.

[17] Y. Tian, C. Lu, X. Zhang, K. Tan and Y. Jin, “Solving Large-
Scale Multiobjective Optimization Problems With Sparse Optimal
Solutions via Unsupervised Neural Networks,” IEEE Transactions on
Cybernetics, vol. 51, no. 6, pp. 3115–3128, Jun. 2021.

[18] A. Ghasemian, H. Hosseinmardi and A. Clauset, “Evaluating Overfit
and Underfit in Models of Network Community Structure,” IEEE
Transactions on Knowledge and Data Engineering, vol. 32, no. 9,
pp. 1722–1735, Sept. 2020.

[19] M. Xu, G. Feng, Y. Ren and X. Zhang, “On Cloud Storage Optimiza-
tion of Blockchain With a Clustering-Based Genetic Algorithm,” IEEE
Internet of Things Journal, vol. 7, no. 9, pp. 8547-8558, Sept. 2020.

[20] C. Baldassi, “Recombinator-k-Means: An Evolutionary Algorithm
That Exploits k-Means++ for Recombination,” IEEE Transactions on
Evolutionary Computation, vol. 26, no. 5, pp. 991-1003, Oct. 2022.

[21] H. Xiong, J. Wu and J. Chen, “K-means Clustering Versus Validation
Measures: A Data-Distribution Perspective,” IEEE Transactions on
Systems, Man, and Cybernetics, vol. 39, no. 2, pp. 318–331, Apr.
2009.

[22] Y. Gong, J. Li, Y. Zhou, Y. Li, H. Chung, Y. Shi and J. Zhang,
“Genetic Learning Particle Swarm Optimization,” IEEE Transactions
on Cybernetics, vol. 46, no. 10, pp. 2277–2290, Oct. 2016.

[23] Q. Lin, X. Wu, L. Ma, J. Li, M. Gong and C. A. C. Coello, “An
Ensemble Surrogate-Based Framework for Expensive Multiobjective
Evolutionary Optimization,” IEEE Transactions on Evolutionary Com-
putation, vol. 26, no. 4, pp. 631–645, Aug. 2022.

[24] P. S. Shin, S. H. Woo, Y. Zhang and C. S. Koh, “An Application of
Latin Hypercube Sampling Strategy for Cogging Torque Reduction
of Large-Scale Permanent Magnet Motor,” IEEE Transactions on
Magnetics, vol. 44, no. 11, pp. 4421–4424, Nov. 2008.

[25] R. V. Rao, V. J. Savsani, D. P. Vakharia, “Teaching–learning-based
Optimization: A Novel Method for Constrained Mechanical Design
Optimization Problems,” Computer-Aided Design, vol. 43, no. 5, pp.
303–315, Mar. 2011.

[26] S. Mirjalili, S. M. Mirjalili, A. Lewis, “Grey Wolf Optimizer,” Ad-
vances in Engineering Software, vol. 69, no. 10, pp. 46–61, Mar. 2014.

[27] M. Cui, L. Li, M. Zhou and A. Abusorrah, “Surrogate-assisted
Autoencoder-embedded Evolutionary Optimization Algorithm to Solve
High-dimensional Expensive Problems,” IEEE Transactions on Evo-
lutionary Computation, pp. 1–15, May 2021.

[28] H. Wang, Y. Jin and J. Doherty, “Committee-Based Active Learning
for Surrogate-Assisted Particle Swarm Optimization of Expensive
Problems,” IEEE Transactions on Cybernetics, vol. 47, no. 9, pp.
2664–2677, Sept. 2017.

[29] S. Jošilo and G. Dán, “Joint Management of Wireless and Computing
Resources for Computation Offloading in Mobile Edge Clouds,” IEEE
Transactions on Cloud Computing, vol. 9, no. 4, pp. 1507–1520, Dec.
2021.

[30] H. Yuan and M. Zhou, “Profit-Maximized Collaborative Computation
Offloading and Resource Allocation in Distributed Cloud and Edge
Computing Systems,” IEEE Transactions on Automation Science and
Engineering, vol. 18, no. 3, pp. 1277–1287, Jul. 2021.

[31] A. Naouri, H. Wu, N. A. Nouri, S. Dhelim and H. Ning, “A Novel
Framework for Mobile-Edge Computing by Optimizing Task Offload-
ing,” IEEE Internet of Things Journal, vol. 8, no. 16, pp. 13065–13076,
Aug. 2021.

[32] A. Yousafzai, I. Yaqoob, M. Imran, A. Gani and R. Md Noor, “Pro-
cess Migration-Based Computational Offloading Framework for IoT-
Supported Mobile Edge/Cloud Computing,” IEEE Internet of Things
Journal, vol. 7, no. 5, pp. 4171–4182, May 2020.

[33] P. X. Nguyen, et al., “Backscatter-Assisted Data Offloading in
OFDMA-Based Wireless-Powered Mobile Edge Computing for IoT
Networks,” IEEE Internet of Things Journal, vol. 8, no. 11, pp. 9233–
9243, Jun. 2021.

[34] J. Zhao, Q. Li, Y. Gong and K. Zhang, “Computation Offloading and
Resource Allocation for Cloud Assisted Mobile Edge Computing in
Vehicular Networks,” IEEE Transactions on Vehicular Technology, vol.
68, no. 8, pp. 7944–7956, Aug. 2019.

[35] H. Yuan, J. Bi and M. Zhou, “Energy-Efficient and QoS-Optimized
Adaptive Task Scheduling and Management in Clouds,” IEEE Trans-
actions on Automation Science and Engineering, vol. 19, no. 2, pp.
1233–1244, Apr. 2022.

[36] H. Yuan, J. Bi and M. Zhou, “Multiqueue Scheduling of Heteroge-
neous Tasks With Bounded Response Time in Hybrid Green IaaS
Clouds,” IEEE Transactions on Industrial Informatics, vol. 15, no.
10, pp. 5404–5412, Oct. 2019.

[37] H. Yuan, J. Bi, M. Zhou, Q. Liu and A. C. Ammari, “Biobjective
Task Scheduling for Distributed Green Data Centers,” IEEE Trans. on
Automation Science and Engineering, vol. 18, no. 2, pp. 731–742, Apr.
2021.

[38] H. Yuan, J. Bi and M. Zhou, “Geography-Aware Task Scheduling for
Profit Maximization in Distributed Green Data Centers,” IEEE Trans.
on Cloud Computing, vol. 10, no. 3, pp. 1864–1874, Sept. 2022.

[39] Y. Wang, M. Sheng, X. Wang, L. Wang and J. Li, “Mobile-Edge
Computing: Partial Computation Offloading Using Dynamic Voltage
Scaling,” IEEE Trans. on Communications, vol. 64, no. 10, pp. 4268–
4282, Oct. 2016.

7972

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 18,2024 at 15:37:03 UTC from IEEE Xplore. Restrictions apply.

