
468 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 15, NO. 2, APRIL 2018

Web Service Recommendation With Reconstructed
Profile From Mashup Descriptions

Yang Zhong, Yushun Fan, Wei Tan, Senior Member, IEEE, and Jia Zhang, Senior Member, IEEE

Abstract— Web services are self-contained software compo-
nents that support business process automation over the Internet,
and mashup is a popular technique that creates value-added
service compositions to fulfill complicated business requirements.
For mashup developers, looking for desired component services
from a sea of service candidates is often challenging. Therefore,
web service recommendation has become a highly demanding
technique. Traditional approaches, however, mostly rely on static
and potentially subjectively described texts offered by service
providers. In this paper, we propose a novel way of dynami-
cally reconstructing objective service profiles based on mashup
descriptions, which carry historical information of how services
are used in mashups. Our key idea is to leverage mashup
descriptions and structures to discover important word features
of services and bridge the vocabulary gap between mashup
developers and service providers. Specifically, we jointly model
mashup descriptions and component service using author topic
model in order to reconstruct service profiles. Exploiting word
features derived from the reconstructed service profiles, a new
service recommendation algorithm is developed. Experiments
over a real-world data set from ProgrammableWeb.com demon-
strate that our proposed service recommendation algorithm is
effective and outperforms the state-of-the-art methods.

Note to Practitioners—Service recommendation accuracy for
mashup creation is often limited due to poor quality of service
descriptions. Mashup descriptions contain valuable information
about functions and features of its component services, which
can be leveraged to enhance descriptive quality of original
service profiles. Based on the assumption, this paper proposes a
novel two-phase service recommendation framework to facilitate
mashup creation. Specifically, our approach reconstructs service
profiles by extracting appropriate words from historical mashup
descriptions. Then, a novel service recommendation algorithm
is developed by exploiting popularity and relevance measures
hidden in the reconstructed profiles. Moreover, we propose the
rules of dominant words discovery and employ it to further refine
our algorithm.

Manuscript received March 3, 2016; revised July 17, 2016 and
October 20, 2016; accepted October 29, 2016. Date of publication
December 1, 2016; date of current version April 5, 2018. This paper
was recommended for publication by Associate Editor J. Civera and
Editor M. P. Fanti upon evaluation of the reviewers’ comments. This work was
supported in part by the National Natural Science Foundation of China under
Grant 61673230, in part by the National Science and Technology Support
Program of China under Grant 2012BAF15G01, and in part by the National
High Tech Research and Development Program under Grant 2012AA02A613.
(Corresponding author: Yushun Fan.)

Y. Zhong and Y. Fan are with the Department of Automation, Tsinghua
University, Beijing 100084, China (e-mail: zhongy12@mails.tsinghua.edu.cn;
fanyus@mail.tsinghua.edu.cn).

W. Tan is with the IBM Thomas J. Watson Research Center, Yorktown
Heights, NY 10598 USA (e-mail: wtan@us.ibm.com).

J. Zhang is with the Department of Electrical and Computer Engi-
neering, Carnegie Mellon University, Pittsburgh, PA 15213 USA (e-mail:
jia.zhang@sv.cmu.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASE.2016.2624310

Index Terms— Author topic model (ATM), mashup creation,
mashup descriptions, service recommendation.

I. INTRODUCTION

SERVICES computing enables a computing paradigm to
allow service providers to publish various resources as

web services (nowadays usually in the form of Web APIs)
over the Internet [1]. With the popularity of Web 2.0 and
related technologies, the number of web services has been
growing rapidly [2], [3]. To fulfill comprehensive business
goals, mashup has emerged as a popular technique to create
value-added composite services by combining multiple indi-
vidual services as components [4]. The popularity of mashup
has driven the development of several service repositories
(i.e., mashup platform) [5] in recent years, which continuously
collect web services and mashups. Representative examples
include ProgrammableWeb.com1 from Bell Lab (oriented to
generic services) and myexperiment.org2 from the universities
of Southampton, Manchester, and Oxford in the U.K. (oriented
to scientific services). The rapid growth in the number of
available services, however, has laid an obstacle in front of
an inexperienced mashup developer, who has to spend a great
amount of time to search for desired candidate service com-
ponents [33]. Therefore, service recommendation has become
critical to facilitate developers in finding suitable services.
Without causing confusion, we will use (mashup) developer
and (service) user interchangeably in this paper.

Service recommendation has become a demanding research
topic in recent years. Specifically, based on a mashup descrip-
tion given by a user, a desired recommendation algorithm
would come up with a ranked list of services, where higher
ranked services are more likely to meet the user’s need
for mashup creation. Existing approaches mainly depend
on static service descriptions offered by service providers,
usually in the format of Web service description language
(WSDL) documents, tags, and content descriptions. However,
if a service description is poorly described or subjective to
service provider’s understanding, these approaches may fail to
rank the service properly even though the service is relevant
to the query. Furthermore, service descriptions are offered
by service providers, while queries are made by mashup
developers. Thus, there may exist a vocabulary gap between
them.

To overcome these limitations, we propose to reconstruct
service profiles from existing mashup descriptions, in other
words, from how services have been consumed by users.

1http://www.programmableweb.com
2http://www.myExperiment.org

1545-5955 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 23,2020 at 04:33:33 UTC from IEEE Xplore. Restrictions apply.

ZHONG et al.: WEB SERVICE RECOMMENDATION WITH RECONSTRUCTED PROFILE 469

Our rationale is that service usage history carries meaningful
information about services in mashup developers’ vocabulary.
Such constructed service profiles will be more objective based
on user experiences. In addition, the occurrences of services
as components in multiple mashups reflect their popularities,
which provide valuable extra sources to enhance descriptive
quality of service profiles. Furthermore, as time goes by
with more mashups become available, service profiles can be
enriched and become more accurate and objective.

Based on the three intuitions, we propose a novel way of
applying the author topic model (ATM) [18] to generate new
representation for each service from mashup descriptions and
structures. Our key idea is to model component services as
authors and mashup descriptions as documents. By learning
the model, we can extract the co-occurrence of services and
words in mashups, and thus gradually build comprehensive
service profiles.

In addition, we believe the co-occurrence of services and
words in mashups reveals both of their relevance and popu-
larity from a user’s perspective. First, more popular services
get higher exposure to their descriptive words and vice versa.
In addition, the more relevant a word is with respect to a
service, the word is more likely to co-occur with the service
in the same mashup. Based on such two assumptions, we
further develop a novel service recommendation algorithm by
identifying and emphasizing word features in the reconstructed
service profiles.

The main contributions of this paper are summarized
in three-fold as follows.

1) We propose a novel way of generating a new repre-
sentation for services by leveraging mashup descrip-
tions and structures. To the best of our knowledge,
this is the first effort in the services computing area
to automatically and systematically refine and enrich
service profiles from mashup descriptions to facilitate
service recommendation. We employ ATM to jointly
model mashup descriptions and component services. The
model captures the co-occurrence of service and word
in mashups so that the reconstructed service profiles
bridge the vocabulary gap between service providers and
mashup developers.

2) We develop a service recommendation algorithm based
on the reconstructed profiles. A novel term weighting
method is further incorporated to enhance the algorithm
by deriving and exploiting word features contained in
the reconstructed profiles.

3) Comprehensive experiments on a real-world data
set from ProgrammableWeb.com demonstrate that
our proposed algorithm significantly outperforms the
state-of-the-art methods by various evaluation metrics.

The remainder of this paper is organized as follows.
Section II summarizes the related work. Section III introduces
necessary definitions to describe an evolving service repository
and then formulates the service recommendation problem.
Section IV presents the probabilistic generative model for
mashup creation to reconstruct service profiles. Section V
proposes the novel service recommendation algorithm.
Section VI reports the experimental results, and Section VII
concludes this paper.

II. RELATED WORK

Service recommendation is one of the key problems in
the field of services computing. In this section, we discuss
some prior works related to this paper divided into three
categories: semantic-aware recommendation, QoS-aware rec-
ommendation, and network-aware recommendation.

A. Semantic-Aware Recommendation

Early works on semantic-aware service recommendation
focused on the application of techniques from information
retrieval, such as TF/IDF and vector space model (VSM),
on the WSDL documents of services [6], [34]. They repre-
sented both user query and services as vector of words and
calculated relevance scores using Cosine similarity between
corresponding vectors. However, these methods require exact
matching between queries and services, which is responsible
for their unsatisfactory performance in practice. Reference [23]
represented user’s preferences by keywords and proposed a
user-based collaborative filtering (CF) algorithm for service
recommendation. However, its performance depends on the
quality of domain thesaurus, which usually calls for great
human effort.

To address the challenge, [7] proposed a probabilis-
tic approach for service discovery based on latent dirich-
let allocation (LDA), which introduced latent topics as a
bridge between services and words extracted from corre-
sponding WSDL documents. Relevance scores of services
against user query are calculated based on query likelihood.
Recently, [8] further proposed a user tagging augmented
LDA (TA-LDA) model for service clustering and discovery,
which integrated both the WSDL documents of services and
tagging data. However, the prevalence of RESTful services
makes it difficult to obtain WSDL documents of services.
Moreover, due to business interest and other issues, service
providers are unwilling to offer WSDL documents [9]. So, in
this paper, we employ unstructured description data of services
and mashups as sources of content rather than structured
WSDL documents.

Another group of researchers focused on logic-based
approaches. Reference [10] employed OWL-S to describe
services and proposed an ontology-based method for service
discovery. A hybrid discovery approach, which combines logic
and content similarity, is also proposed in [26]. However,
construction of ontology often involves a huge amount of
human effort and is trapped in high computational complexity,
which makes it intractable over large service candidates.
Reference [36] presented a unified framework to facilitate and
accelerate mashup development. Our recommendation algo-
rithm can be integrated into the framework to help developers
discover interesting component services for further develop-
ment and deployment.

B. QoS-Aware Recommendation

A number of research work centered on nonfunctional
properties of services (QoS) [11]. QoS-aware service recom-
mendation aims to help users find services that can meet
their QoS requirements among a list of functionally equivalent
service candidates.

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 23,2020 at 04:33:33 UTC from IEEE Xplore. Restrictions apply.

470 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 15, NO. 2, APRIL 2018

Collaborative filtering, which is based on the assumption
that similar users tend to consume similar items, has been
introduced for QoS prediction recently [12], [35]. Reference
[27] employed temporal information to refine the similarity
measurement in neighborhood-based CF. Location information
is also incorporated to cluster services and users, and person-
alized recommendation is conducted based on the clustering
results [25]. Reference [24] proposed a hidden Markov model-
based approach to help users locate services with the optimal
response time for their requests.

The aforementioned methods focused on individual ser-
vices, while other methods concentrated at composition level.
Reference [28] employed Monto Carlo simulations to predict
the probability distributions of a WS-BPEL service orchestra-
tion. Reference [29] used partial selection technique to find the
optimal service composition defined by an abstract workflow.

However, QoS information is not always available. There-
fore, instead of using QoS attributes, we leverage objective
description data about services and mashups to support service
recommendation.

C. Network-Aware Recommendation

Another group of researchers proposed to exploit network
analysis for service recommendation. In [13], service usage
patterns of an evolving service repository, myExperiment, are
studied and a recommendation algorithm is proposed based
on service correlations in the network [14]. Wang et al. [32]
investigated user behavior patterns in a service repository by
analyzing user-API and user-tag network. The static structure
and dynamic evolution of another popular service repository,
ProgrammableWeb, is studied in [30] by means of network
analysis. Furthermore, [15] presented a service recommen-
dation approach based on link prediction in a dynamic ser-
vice co-occurrence network. A recent work [16] employed
association mining techniques over service network to under-
stand positive and negative collaboration patterns among
services.

However, these network-based methods do not take into
account users’ functional requirements, and therefore fail to
exploit content information for recommendation.

In this paper, we have proposed a novel way of reconstruct-
ing service profiles from mashup descriptions and structures,
which differentiates this paper from traditional methods based
on original provider-offered service profiles. The reconstructed
profiles from mashup descriptions have the following benefits
to improve the accuracy of service recommendation.

1) When searching a service, mashup developers may not
use the exact terms used by service providers. The
reconstructed profiles describe the functions and features
of services in mashup developers’ vocabulary, and thus
bridge the vocabulary gap between service providers and
mashup developers.

2) The original provider-offered service profiles are some-
times poorly described, and even may be unavailable
under certain circumstances. However, the reconstructed
profile of a service is collectively described by mashups
calling it, which guarantees its descriptive quality.

Fig. 1. Overview of the proposed service recommendation framework. The
generative model for mashups is trained on all historical mashups to generate
reconstructed service profiles, based on which recommendation algorithms are
developed to recommend services in response to user queries.

III. PROBLEM DEFINITION

In this section, we first present several definitions concern-
ing data schema of mashup and service in an evolving service
repository, and then formulate the problem considered in this
paper.

Definition 1 (Service): We denote S as the set of all services
in a service repository. Each service comprises a collection of
words offered by its provider as its original profile, which typ-
ically describes the functionality of the corresponding service.

Examples of original service profile in practice include
WSDL documents, tags, and content descriptions.

Definition 2 (Mashup): We denote M as the set of all
mashups in a service repository. Similarly, we associate a col-
lection of words for each mashup as its mashup descriptions.
component servicem represents the collection of component
services employed by mashup m.

Based on the above-mentioned definitions, we formulate the
problem of service recommendation for mashup creation as
follows.

Problem (Service Recommendation for Mashup Creation):
Based on the text descriptions of services and mashups, service
recommendation algorithms need to receive user query and
return a ranked list of services, where higher ranked services
are more likely to meet the user’s need for mashup creation.

Such service recommendation algorithms for mashup devel-
opers can be deployed in an online web service repository,
such as ProgrammableWeb.com. Based on the data, especially
textual content on mashups and services collected by the
service repository, our algorithm can conduct analysis and
build objective service profiles. Our recommendation method
can be added as a new feature at ProgrammableWeb.com,
showing users a ranked list of services when she inputs a
query in natural language.

To solve the problem, we propose a recommendation frame-
work as shown in Fig. 1. Mashups are first modeled by
ATM [18], where mashup descriptions are viewed as doc-
uments and component services as authors. The model is
trained with all historical mashups available in the service
repository to identify which word corresponds to which service
in a mashup. Words assigned with the same service in all
mashups constitute a reconstructed service profile. With the

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 23,2020 at 04:33:33 UTC from IEEE Xplore. Restrictions apply.

ZHONG et al.: WEB SERVICE RECOMMENDATION WITH RECONSTRUCTED PROFILE 471

new representation of services, a recommendation algorithm is
designed based on co-occurrence count of service–word pairs
to calculate relevance scores of services against user queries.
Finally, services are ranked in a descending order of relevance
scores and returned to the requesting user.

IV. MODEL FRAMEWORK

In this section, we will discuss the probabilistic generative
model for mashups and subsequent parameters estimation for
service profile reconstruction (SPR).

A. Generative Model for Mashups

Original service profiles are provided by service providers,
and are mainly about their functions and features. However,
mashup developers may not exactly know what terms they
need to use when searching a service. For example, a service
may contain a phrase like “local restaurant recommendation”
that describes its function. If a user searches for “find nearby
food” that has no common words with the original profile, then
traditional algorithms will not rank the aforementioned service
high even though the two phrases are about the same function.
In such cases, the mashup descriptions may play a role to
bridge the vocabulary gap between service providers and
mashup developers. Assume that there is an existing mashup
that calls the aforementioned service and whose description
contains the phrase “locating food nearby,” the service may
be assigned with words such as “food” and “nearby” in its
reconstructed profile. In this way, the service can be discovered
by matching query terms with its reconstructed profile. More-
over, original service profiles are sometimes poorly described
and even may be unavailable under certain circumstances [9].
Therefore, we resort to mashup descriptions for new service
representations.

Mashup description is usually a mixture of descriptions of
its component services. Therefore, not all terms in a mashup
description are relevant to a specific component service. We
take an actual mashup Lunchbox from ProgrammableWeb.com
for example. The mashup employs Google Maps and Yelp as
component services and has description text as follows: “This
tool shows you restaurant ratings around your location. If
you want to go beyond your normal lunch places, this is a
great app.” As we can see, italic words describe the functional-
ity of Google Maps, while bold words refer to Yelp. Therefore,
we need to design a method to automatically identify relevant
terms for each component service from mashup descriptions.

We resort to ATM to accomplish this goal. In ATM, each
author is represented as a multinomial distribution over topics,
and each topic is modeled as a multinomial distribution over
words. The model represents each document as a mixture
of topics, where the mixture weights are determined by its
corresponding authors. We apply a similar idea to ATM, and
analyze the mashup creation process in a probabilistic manner.
Specifically, we assume that the mashup descriptions are
generated by its component services. Each service is modeled
by a mixture of topics, and each topic is represented by a
probability distribution over words.

Table I summarizes the notations used in this model. Word
tokens in descriptions of mashup m can be defined as a

TABLE I

NOTIONS USED IN THIS MODEL

Fig. 2. Graphical model of mashup creation process.

word vector wm = (wmi)
Nm
i=1. For brevity, we concatenate

all mashups’ word vectors to obtain a vector form of all
mashups’ descriptions W = (wm)

|M |
m=1. Vector form of service

assignment X and topic assignments Z can be defined in a
similar way.

The generative process of mashup creation can be described
as follows.

1) For each topic z = 1:T, draw φz ∼ Dirichlet (β).
2) For each service s in S, draw θs ∼ Dirichlet (α).
3) For each word wmi :

a) draw a service xmi uniformly from component
servicem ;

b) draw a topic zmi ∼ Multinomial (θxmi);
c) draw a word wmi ∼ Multinomial (φzmi).

The graphical model corresponding to this process is shown
in Fig. 2. x indicates the service responsible for a given word,
chosen from component servicem . Each service is associated
with a multinomial distribution over topics θ , chosen from a
Dirichlet prior α. The mixture weights of the chosen service
is used to select a topic z and a word is finally generated
according to the distribution over words specific to the chosen
topic, which is drawn from a Dirichlet prior β.

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 23,2020 at 04:33:33 UTC from IEEE Xplore. Restrictions apply.

472 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 15, NO. 2, APRIL 2018

Algorithm 1 : Gibbs Sampling
Input:
1) Hyper-parameters α and β
2) The set of mashups M
3) Iteration number N
4) Number of topics T
5) Mashup descriptions W
6) Component services CS
Output
1) Service by word count matrix RSP
Procedure
01. Initialize Z and X randomly
02. For iter = 1:N
03. For each word token wmi in W
04. Sample zmi and xmi according to

equation (1)
05. End
06. End
07. Initialize a |S| × |V | zero matrix RSP
08. For j = 1:|W |
09. RSP(X (j), W (j)) = RSP(X (j), W (j)) + 1
10. End

B. Model Learning

We complete the service profile reconstruction by solving
the generative model for mashups. There are four sets of
unknown variables in the model: 1) distribution over topics of
services θs ; 2) distribution over words of topics φz ; 3) topic
assignments Z ; and 4) service assignments X . A variety of
algorithms have been proposed to estimate parameters of topic
models. In this paper, we employ an approach analogous to
[19] to derive a Gibbs sampler for our model.

We sample the topic zmi and service xmi for word token
wmi according to the following equation:

P(zmi = j, xmi = k|wmi = l, Z¬i , X¬i , W¬i , CSm)

∝ c¬i
kj + α

∑
z

(
c¬i

kz + α
) × n¬i

j l + β
∑

v

(
n¬i

jv + β
) (1)

where ckz is the number of times that topic z has been
associated with service k, and njv is the number of times that
word v has been assigned to topic j . The superscript ¬ denotes
a quantity excluding the current instance.

After sampling a sufficient number of iterations, we can
get an estimation of the four sets of parameters. Traditional
topic models employ topic distributions for query likelihood
calculation. On the contrary, we omit the hidden topics and
directly reconstruct service profile by converting all service–
word pairs, i.e., W and X into a service by word count
matrix denoted by RSP. Entries in RSP, which is a |S| × |V |
matrix, represent the number of times some word (indicated
by column index) have been employed by users to describe
a particular service (indicated by row index) in all historical
mashup descriptions.

Note that services adopted by more mashups have a greater
chance to be exposed to words and vice versa. In addition,
the more relevant a word is with respect to a service, the

word is more likely to co-occur with the service in the same
mashup. Therefore, the matrix captures both the popularity
and relevance through the count number. The details of Gibbs
sampling is summarized in Algorithm 1.

V. RECOMMENDATION ALGORITHM

In this section, we introduce our algorithms based on service
profile reconstruction.

A. Basic Version

Specifically, for each word in the vocabulary V , we define
a conditional probability distribution on the set of services S,
which can be instantiated as follows:

p(s|w) = RSP(s, w)
∑

k RSP(k, w)
. (2)

We can interpret p(s|w) as the probability that service s
will satisfy user’s need if she inputs a word w in her query.
A basic version of our algorithm calculates the relevance score
of service s with respect to query Q by the following equation:

r(s, Q) =
∑

w∈Q

p(s|w). (3)

Note that we accumulate the contribution of every word
in the query, rather than getting the product. Summing over
the words contributions is equivalent to calculating arith-
metic mean, which is more sensitive to extreme values com-
pared with geometric mean strategies (multiply all words’
contributions).

B. Dominant Words

Now, we present how to refine the basic algorithm by
incorporating dominant words, which will be introduced in
this section.

In the basic algorithm, we calculate the relevance score
through (3), where words occurred in the query are equally
weighted. However, we discover from RSP that a particular
service may account for a large portion of co-occurrences with
a given word. In other words, p(s|w) is close to 1 for some
service–word pair (s,w) in the reconstructed profile, which
means that the occurrence of word w in user query nearly
indicates the adoption of service s by the user. Naturally,
words with this property should have more weight in rele-
vance calculation. We name such words as dominant words
to emphasize their important role in identifying desirable
component services from user query.

In this paper, we propose two simple but effective rules to
discover such dominant words based on (2).

1) p(s|w) ≥ g, where g is a constant between 0 and 1.
2) RS P(s, w) ≥ h, where h is a constant positive integer.
The first rule comes from the essential nature of dominant

words. Since the numerator of p(s|w) is RSP(s,w), the second
rule requires that service-word pair should have co-occurred
for at least a certain number of times to support the high
confidence of p(s|w).

To exploit dominant words for better recommendation, we
propose to assign them overwhelming weight in calculating
relevance scores such that services with dominant word can be

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 23,2020 at 04:33:33 UTC from IEEE Xplore. Restrictions apply.

ZHONG et al.: WEB SERVICE RECOMMENDATION WITH RECONSTRUCTED PROFILE 473

placed ahead of others without dominant word. Our algorithm
accomplish this goal simply by adding the length of user query
to p(s|w) when calculating relevance scores by (3) if w is
a dominant word and s is the identified service. We prove
the following theorem to demonstrate why this adjustment is
effective.

Theorem: For any two services s1 and s2, where s1 has at
least one dominant word w in user query Q of length L, while
s2 has none, if a constant C is added to the relevance scores
of s1 calculated by (3) to guarantee r(s1, Q) + C ≥ r(s2, Q),
then C should satisfy the following condition: C ≥ L − g.

Proof: It is obvious that r(s2, Q) ≤ L, since p(s|q) ≤ 1
for every word q in Q. Moreover, r(s2, Q) can reach L when
p(s2|q) = 1 and RSP(s2,q) < h for every word q in Q.
Therefore, C should guarantee r(s1, Q) + C ≥ L, leading to
C ≥ L − r(s1, Q). For any service s1, r(s1, Q) ≥ p(s1, w) ≥
g, which can be simply derived from (3) and the definition
of dominant word. Since C is shared by all services with
dominant word, C should satisfy the following condition:
C ≥ maxs1(L − r(s1, Q)) = L − g.

The theorem ensures that any constant greater than L − g
can satisfy our need. Since g is greater than 0, we simply
set C to be L. Finally, the proposed algorithm is summarized
in Algorithm 2.

The proposed algorithm can be divided into two stages:
offline (Lines 01–09) and online (Lines 10–22). The offline
part only needs to be conducted when more mashups are
collected by the service repository. On the other hand, the
online part performs every time when receiving a user query
for mashup creation. Line 01 is the implementation of SPR
based on ATM; Lines 02–09 describe the generation of dom-
inant words from RSP; Lines 10–18 evaluate the relevance of
services against online user query; Line 19 generates a ranked
list of services for the user by sorting all services in descending
order of the calculated relevance scores.

C. Computational Complexity

This section discusses the upper bound on the computational
complexity of SPR. In the following discussion, we assume
that the online query has a number of P word tokens on
average.

The complexity of Gibbs sampling (Line 01) to estimate
the generative model for mashups is bounded by O(NT |W |).
From (2), we know the complexity of dominant words
discovery (Lines 02–09) is O(|S||V |). Therefore, the over-
all complexity of the offline part is O{(|S| + NT)|W |},
since |V | is always less or equal to |W |. Similarly,
the complexity of calculating relevance scores of services
(Lines 10–18) is bounded by O(P|S|), and the ranking of
services (Line 19) is O(|S| log |S|). Therefore, the overall
complexity of the online part is O{(P + |S|) log |S|}.

From the previous discussion, we have demonstrated that
our recommendation algorithms have polynomial complexity,
and thus are computationally feasible in practice (both offline
and online) to support real-time query.

Algorithm 2 : SPR
Input:
1) S: The set of all services
2) M: The set of all mashups
3) V : The set of unique words
4) component service: Vector form of all mashups’ com-
ponent services
5) W : Vector form of all mashups’ mashup descriptions
6) T : Number of topics in ATM
7) N : Number of iterations in Gibbs sampling
8) α and β: Hyper-parameters in ATM
9) g and h: Thresholds for dominant words generation
10) Q: User query
Output:
1) LS: Ranked list of services
Procedure:
01. RS P = GibbsSampling(α, β, N, T, M, W, C S)
02. For each word w in V
03. For each service s in S
04. Calculate p(s|w) by equation (2)
05. If p(s|w) ≥ g and RSP(s, w) ≥ h
06. Add (s,w) to DW
07. End
08. End
09. End
10. L = length(Q)
11. For each service s in S
12. Calculate relevance score r (s, Q) by equation (3)
13. For each word w in Q
14. If (s,w) ∈ DW
15. r(s, Q) = r(s, Q) + L
16. End
17. End
18. End
19. Return LS = sort (S, r (s,Q), ’descend’)

VI. EXPERIMENTS

In this section, we evaluate the proposed methods on a
real-world data set crawled from the ProgrammableWeb.com.
A collection of experiments were conducted to compare
the state-of-the-art methods with our approaches for service
recommendation.

A. Experimental Setup

1) Data Set Construction: We extracted the metadata of ser-
vices and mashups from ProgrammableWeb.com, the largest
online repository of web services and mashups [30]. The
data used in our experiments spans from September 2005
to July 2013. Each service contains metadata such as name,
tags, and descriptions. Every mashup contains the information,
such as name, tags, creation date, descriptions, and a list of
component services.

For each mashup in the data set, there is an unstructured
description consisting of a bag of words that describe its
functionality and features. Before the descriptions can be
used in our experiments, we have to apply several natural

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 23,2020 at 04:33:33 UTC from IEEE Xplore. Restrictions apply.

474 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 15, NO. 2, APRIL 2018

TABLE II

BASIC PROPERTIES OF PROGRAMMABLE WEB DATA SET

language preprocessing techniques to the data. In this paper,
we extended the preprocessing method similar in [31] to the
raw texts to extract meaningful words as follows.

1) Words Extraction: First of all, we tokenize the text data
according to the separator.

2) Pruning: The second task is to discard words that are
not meaningful for recognizing the service. Examples
include some articles, such as a, an, the; some preposi-
tions, such as in, on, with, by, for, at, about, from, and
so on; some adverbs, such as where, when, quite, and
so on.

3) Suffix Striping: Third, suffix stripping is performed to
get stem words. For example, map, mapping, maps, and
mappings will be replaced with the same stem map.

4) Error Correction: Special characters not identified by
natural language processing tools are recovered. Mean-
ingful words, such as EC2 and S3, are added back, which
are usually filtered by natural language processing tools,
since they are not standard words.

5) Text Augmentation: Since the name and tags of a
mashup may contain meaningful words to complement
its description data, we enhance the semantics of mashup
description by including its name and tags. For example,
a mashup named “Tweets and Diggs” has word “tweet,”
which can substantially improve the descriptive quality
of its description that originally does not contain it.

Similar actions are performed on the descriptions of ser-
vices, and the processed description of a service can be viewed
as original profile offered by its provider. Table II summarizes
the basic properties of our data set.

To examine the performance of the proposed approach, we
divided the whole data set into two parts at four different time
points, and thus get four test cases denoted from D1 to D4.
As shown in Fig. 3, we use the historic data (data before the
dividing point in the timeline) for training and the rest part
for validation. For each mashup appeared in the testing data
set, we use its descriptions as user query and its component
services as the ground truth.

2) Evaluation Metric: Following previous works [20], [22],
we evaluate the recommendation performance of different
methods with two metrics, namely mean average preci-
sion (MAP), and recall (Rec@K).

MAP is a widely used evaluation metric in recommender
systems. In this paper, it measures how well an approach can
rank adopted services higher in the recommendation list. The
equation for calculating average MAP is presented as follows:

MAP = 1

|CSm |
∑

s∈CSm

top(s, m)

rank(s, m)
(4)

rank(s,m) is the ranking position of service s in the recom-
mended list of services for a testing mashup m, and top(s,m)

Fig. 3. Generation of training and testing data sets.

is the number of component services of mashup m, which
appear in the Top-K result of the ranked list, where K is equal
to rank(s,m).

MAP is a real number between 0 and 1. Methods with
higher MAP present a better recommendation performance
than those with lower MAP.

Another commonly used metric Rec@K is the fraction
of adopted services that are contained in the Top-K recom-
mendations. Equations for calculating Rec@K are presented
as follows:

Rec@K = |Top − K (m) ∩ CSm |
|CSm | (5)

where Top-K(m) is the Top-K recommended services for
mashup m. Since the average number of component services
per mashup is close to two according to Table II, and K is
fixed at five in our experiments.

3) Comparison Methods: We compare the following meth-
ods with our approach (SPR and its basic version Service
Profile Reconstruction-BAsic version) for service recommen-
dation.

a) Vector space model: It represents each service as a
feature vector of words ws based on corresponding original
profile offered by its provider [6]. User query Q is also
modeled as a vector of words wq and Cosine similarity is
adopted to score the relevance between service and user query

Sim_vsm(s, Q) = ws · wq

‖ws‖‖wq‖ . (6)

b) Latent Dirichlet allocation: It employs LDA to model
the generation of service descriptions with latent topics as a
bridge between services and words [7]. With a model learned,
we can leverage the estimated parameters, topic distribution
of services p(k|s), and word distribution of topics p(w|k), to
calculate the relevance score of services against user query Q
as follows:

Sim_LDA(s, Q) =
∏

w∈Q

∑

k

p(w|k)p(k|s). (7)

c) Tagging augmented LDA: It incorporates tags into
the LDA framework introduced previously. The relevance
calculation is almost identical to LDA with a minor difference
that the topic distribution of a service is obtained by averaging
over topic distribution of its included tags [8].

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 23,2020 at 04:33:33 UTC from IEEE Xplore. Restrictions apply.

ZHONG et al.: WEB SERVICE RECOMMENDATION WITH RECONSTRUCTED PROFILE 475

d) Service usage frequency (SUF): It recommends ser-
vices in descending order of service usage frequency regard-
less of mashup descriptions.

e) Collaborative filtering: It leverages service composi-
tions of past mashups to make recommendation. The basic
idea is that if the query mashup mq has the same or similar
functionality as some mashup m, then mq is likely to employ
the same component services as m. CF recommends services
for user query Q using the following equation:

Sim_c f (s, Q) =
∑

m∈M

r(m, Q)I (s, m) (8)

where r (m,Q) is the similarity between historical mashup m
and the user query Q. Similar to [21], we model the mashup
descriptions by the LDA and calculate the similarity as the
likelihood of generating the current user query according to
the estimated parameters specific to mashup m. The indicator
function I (s,m) is 1 if the service s belongs to CSm and
0 otherwise.

All baselines are evaluated under the optimal settings.
Next, we set up the parameters of SPR and SPR-BA. For
hyperparameters in the ATM, we empirically set α = 50/T and
β = 0.01. The number of topics is set to 50 and the number
of iterations in Gibbs sampling is set to 100. For threshold
parameters in dominant words of SPR, we set g = 0.5 and
h = 1 empirically by experiments, which will be explained in
Section VI-B. All experiments were conducted on a Core 2
Duo 3.00-GHz machine with 4-GB RAM.

B. Quantitative Analysis

1) Recommendation Performance: Table III lists the com-
parison of performance of service recommendation for mashup
creation using various methods on four test cases.

The methods leveraging mashup descriptions (CF and our
proposed methods) perform much better than those depending
on original service profiles (VSM, LDA, and TA-LDA) and
SUF. The reason for the performance gap is that mashup
descriptions can bridge the vocabulary gap between mashup
developers and service providers. Moreover, our proposed
algorithm SPR and its basic version clearly outperform the
CF. The reason is twofold. On one hand, our proposed
algorithms derive word features based on co-occurrence of
service and word in mashup descriptions, which integrates
both popularity and relevance measures. On the other hand,
SPR and SPR-BA employ the weighted average mean strategy
to aggregate the contribution of individual words in user query,
which is more sensitive to extreme feature values. Finally, the
proposed algorithm SPR obtains significant improvement over
its basic version SPR-BA by discovering dominant words, and
emphasizing them in relevance evaluation, which demonstrates
the effectiveness of dominant words.

2) Impact of T: In this section, we examine how parameters
influence the recommendation performance of the proposed
methods. With prior knowledge that there are about 40 service
domains in ProgrammableWeb.com, we display in Fig. 4 the
MAP of SPR and SPR-BA on D1 with T varied from 10 to 70
with a step length of 10. All the other parameters are fixed as
before.

TABLE III

RECOMMENDATION PERFORMANCE BY DIFFERENT METHODS

Fig. 4. MAP of the proposed methods with the number of topics varied.

Taking SPR for example, we can see that although the
performance changes with T varied, the largest difference is
less than 0.02. This demonstrates that the SPR is not sensitive
to the number of topics. Similar conclusion can be drawn for
the SPR-BA.

Since the computational complexity of both the SPR and the
SPR-BA are linear with T , T should be as small as possible

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 23,2020 at 04:33:33 UTC from IEEE Xplore. Restrictions apply.

476 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 15, NO. 2, APRIL 2018

Fig. 5. MAP of the proposed methods with a number of iterations in Gibbs
sampling varied.

Fig. 6. MAP of SPR on D1 with g = 0.5 and h varied.

to save computation cost. We can observe that the MAP is
the highest when T is equal to 50 and changes a little with
T increased. So, we choose T to be 50 in our experimental
settings.

3) Impact of N: In this section, we examine the effect of the
number of Gibbs sampling iterations N on recommendation
performance of our proposed methods.

Fig. 5 shows the MAP of the SPR and the SPR-BA on D1
with N varied. We can see that both the algorithms can get
good performance in just 100 iterations and their MAP become
stable with N increased. This suggests that our algorithms are
efficient, and have a good convergence property.

4) Impact of g and h: In this section, we examine the effect
of the constants g and h on recommendation performance
of the SPR. According to the definition of dominant word,
g should be large enough to ensure that the word is dominant.
So, we first fix g at a typical level 0.5, and study the effect
of h on the performance of the SPR.

Fig. 6 shows the MAP of the SPR on D1 with g = 0.5 and
h varied from 1 to 30 with a step value of 5. The MAP of
the SPR decreases as h increases, and becomes stable when
h is up to 20. The explanation is that increase in h narrows
the range of dominant words. As h becomes sufficiently large,

Fig. 7. MAP of SPR on D1 with h = 1 and g varied.

there will be no dominant words and the SPR is reduced to
SPR-BA. Therefore, h should be as small as possible, and
we fix h at 1 to further investigate the effect of g on the
performance of SPR.

Fig. 7 shows the MAP of SPR on D1 with g varied from
0.3 to 0.9 with a step value of 0.1 and h fixed at 1. The MAP
of SPR improves as g increases from 0.3 and reach a peak at
g = 0.5, then declines as g goes beyond 0.5. The reason for the
trend is twofolds. As g increases from 0.3 to 0.5, some false
dominant words are filtered out, while true dominant words
are still preserved. When g further increases beyond 0.5, the
SPR drops more and more true dominant words, which leads
to its decline in the MAP. Therefore, we set g at 0.5 in this
experiment.

C. Qualitative Analysis

1) Service Profile Comparison: To further explore the rea-
son why the SPR and the SPR-BA outperform those baselines,
we compare the original service profile offered by service
providers with reconstructed service profiles from mashup
descriptions.

Take Google Maps for example, we list the Top-10 frequent
words of both original and reconstructed profile along with
their occurrence times in Table IV. The original profile comes
from service descriptions, while the reconstructed profile is
obtained from service by word matrix the RSP, the output of
Algorithm 1 applied to data set D4 with the same parameter
settings as before.

As we can see from Table IV, the reconstructed service
profile is significantly different from the original one. Only two
words, map and google, of the Top-10 words in the original
profile remain in the list of the reconstructed service profile.
Moreover, the occurrence times of words in the reconstructed
profile have increased a lot compared with the static descrip-
tions offered by its provider, since Google Map is the most
popular web service in the Programmable.com. According to
the generative model for mashup creation, Google Maps is
employed by many mashups, so it has a much greater chance
to be assigned to different words in mashup descriptions.
Therefore, the occurrence times can be used as an integrated
measure of popularity and relevance. Furthermore, words, such

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 23,2020 at 04:33:33 UTC from IEEE Xplore. Restrictions apply.

ZHONG et al.: WEB SERVICE RECOMMENDATION WITH RECONSTRUCTED PROFILE 477

TABLE IV

SERVICE PROFILE COMPARISON

TABLE V

DOMINANT WORDS GENERATION

as location and show, presented in the reconstructed profile are
not contained in the original one, which reflects the vocabulary
gap between mashup developers and service providers. With
the same user query, all these features of the reconstructed
service profiles contribute to a more comprehensive relevance
score, and thus better recommendation performance.

2) Dominant Words Generation: In this section, we inves-
tigate dominant words generated by the SPR on D4, where
the parameters are set as before. We list part of the dominant
words with their identified services in Table V.

As we can observe from Table V, the majority of dominant
words can be divided into three categories. The first one is
the service’s name, which is the most representative word of
a service. Examples include Flickr, Facebook, Last.fm, and so
on. The second category can be named as the featured word
of services. Words in this category are usually peculiar to a
particular service. Therefore, the occurrence of these words in
user query can be a decisive signal to adopt the corresponding
services. Taking Digg for example, one of its dominant word,
bury, is the name of a button by which users of Digg express
their voting to pages. The last category contains words used
to describe the core function provided by the service. For
example, call in Twilio, auction in eBay, and storage in
Amazon S3 fall into this category. These words demonstrate
the popularity of their corresponding identified services.

By analyzing the results of dominant words generation from
the SPR, we can conclude that it is meaningful to emphasize
dominant words in relevance evaluation.

VII. CONCLUSION

In this paper, we have presented a novel way of generating
comprehensive profiles for services based on service usage
history to bridge the vocabulary gap between mashup devel-
opers and service providers. Specifically, we leverage the ATM
to capture co-occurrence of service and word in mashups,
based on which service profiles are reconstructed, refined,
and enriched dynamically. Furthermore, we have developed
a service recommendation algorithm by deriving and exploit-
ing word features hidden in the reconstructed profiles. The
experimental results on a real-world data set demonstrate the
effectiveness of the proposed methods.

For the future work, we plan to incorporate users explicitly
into our model to generate user profiles to support personalized
service recommendation.

REFERENCES

[1] Z. Zhou, M. Sellami, W. Gaaloul, M. Barhamgi, and B. Defude, “Data
providing services clustering and management for facilitating service
discovery and replacement,” IEEE Trans. Autom. Sci. Eng., vol. 10, no. 4,
pp. 1131–1146, Oct. 2013.

[2] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-
oriented computing: A research roadmap,” Int. J. Cooperat. Inf. Syst.,
vol. 17, no. 2, pp. 223–255, Jun. 2008.

[3] M. Maleshkova, C. Pedrinaci, and J. Domingue, “Investigating web
services on the World Wide web,” in Proc. IEEE 8th Eur. Conf. Services
Comput., Dec. 2010, pp. 107–114.

[4] D. Benslimane, S. Dustdar, and A. Sheth, “Services mashups: The new
generation of web applications,” IEEE Internet Comput., vol. 12, no. 5,
pp. 13–15, Sep. 2008.

[5] A. P. Barros and M. Dumas, “The rise of web service ecosystems,” IT
Prof., vol. 8, no. 5, pp. 31–37, Sep. 2006.

[6] C. Platzer and S. Dustdar, “A vector space search engine for web
services,” in Proc. 3rd IEEE Eur. Conf. Services Comput., Nov. 2005,
pp. 62–71.

[7] C. Li, R. Zhang, J. Huai, X. Guo, and H. Sun, “A probabilistic approach
for web service discovery,” in Proc. IEEE 20th Int. Conf. Services
Comput., Jun. 2013, pp. 49–56.

[8] L. Chen, Y. Wang, Q. Yu, Z. Zheng, and J. Wu, “WT-LDA: User
tagging augmented LDA for web service clustering,” in Service-Oriented
Computing. Berlin, Germany: Springer, 2013, pp. 162–176.

[9] C. Ye and H.-A. Jacobsen, “Whitening SOA testing via event exposure,”
IEEE Trans. Softw. Eng., vol. 39, no. 10, pp. 1444–1465, Oct. 2013.

[10] M. Klusch, B. Fries, and K. Sycara, “Automated semantic web service
discovery with OWLS-MX,” in Proc. 5th Int. Joint Conf. Auto. Agents
Multiagent Syst., May 2006, pp. 915–922.

[11] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang, “QoS-aware middleware for web services composition,” IEEE
Trans. Softw. Eng., vol. 30, no. 5, pp. 311–327, May 2004.

[12] Z. Zheng, H. Ma, M. R. Lyu, and I. King, “QoS-aware web service rec-
ommendation by collaborative filtering,” IEEE Trans. Services Comput.,
vol. 4, no. 2, pp. 140–152, Apr./Jun. 2011.

[13] W. Tan, J. Zhang, and I. Foster, “Network analysis of scientific
workflows: A gateway to reuse,” IEEE Comput., vol. 43, pp. 54–61,
Sep. 2010.

[14] J. Zhang, W. Tan, J. Alexander, I. Foster, and R. Madduri, “Recommend-
as-you-go: A novel approach supporting services-oriented scientific
workflow reuse,” in Proc. IEEE 9th Int. Conf. Services Comput.,
Jul. 2011, pp. 48–55.

[15] K. Huang, Y. Fan, and W. Tan, “Recommendation in an evolving service
ecosystem based on network prediction,” IEEE Trans. Autom. Sci. Eng.,
vol. 11, no. 3, pp. 906–920, Jul. 2014.

[16] Y. Ni, Y. Fan, W. Tan, K. Huang, and J. Bi, “NCSR: Negative-
connection-aware service recommendation for large sparse service net-
work,” IEEE Trans. Autom. Sci. Eng., vol. 13, no. 2, pp. 579–590,
Apr. 2016.

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 23,2020 at 04:33:33 UTC from IEEE Xplore. Restrictions apply.

478 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 15, NO. 2, APRIL 2018

[17] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet allocation,”
J. Mach. Learn. Res., vol. 3, pp. 993–1022, Mar. 2003.

[18] M. Rosen-Zvi, T. Griffiths, M. Steyvers, and P. Smyth, “The author-topic
model for authors and documents,” in Proc. 20th Conf. Uncertainty Artif.
Intell., Jul. 2004, pp. 487–494.

[19] I. Porteous, D. Newman, A. Ihler, A. Asuncion, P. Smyth, and
M. Welling, “Fast collapsed gibbs sampling for latent Dirichlet allo-
cation,” in Proc. 14th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, Aug. 2008, pp. 569–577.

[20] B. Xia et al., “Domain-aware service recommendation for service
composition,” in Proc. IEEE 21st Int. Conf. web Services, Jun. 2014,
pp. 439–446.

[21] Y. Zhong, Y. Fan, K. Huang, W. Tan, and J. Zhang, “Time-aware service
recommendation for mashup creation in an evolving service ecosystem,”
in Proc. IEEE 21st Int. Conf. web Services, Jun. 2014, pp. 25–32.

[22] Q. Yuan, G. Cong, and C. Lin, “COM: A generative model for group
recommendation,” in Proc. 20th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Aug. 2014, pp. 163–172.

[23] S. Meng, W. Dou, X. Zhang, and J. Chen, “KASR: A keyword-aware
service recommendation method on MapReduce for big data applica-
tion,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 12, pp. 3221–3231,
Dec. 2014.

[24] W. Ahmed, Y. Wu, and W. Zheng, “Response time based optimal web
service selection,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 2,
pp. 551–561, Feb. 2015.

[25] X. Chen, Z. Zheng, Q. Yu, and M. Lyu, “web service recommendation
via exploiting location and QoS information,” IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 7, pp. 1913–1924, Jul. 2014.

[26] M. Klusch, P. Kapahnke, and I. Zinnikus, “Hybrid adaptive web service
selection with SAWSDL-MX and WSDL-analyzer,” in The Semantic
web: Research and Applications. Springer, 2009, pp. 550–564.

[27] Y. Hu, Q. Peng, and X. Hu, “A time-aware and data sparsity tolerant
approach for web service recommendation,” in Proc. IEEE 21st Int.
Conf. web Services, Jun. 2014, pp. 33–40.

[28] L. Bartoloni, A. Brogi, and A. Ibrahim, “Probabilistic prediction of
the QoS of service orchestrations: A truly compositional approach,” in
Service-Oriented Computing. Springer, Nov. 2014, pp. 378–385.

[29] Y. Chen, J. Huang, and C. Lin, “Partial selection: An efficient approach
for QoS-aware web service composition,” in Proc. IEEE 21st Int. Conf.
web Services, Jun. 2014, pp. 1–8.

[30] K. Huang, Y. Fan, and W. Tan, “An empirical study of programmable
web: A network analysis on a service-mashup system,” in Proc. IEEE
19th Int. Conf. web Services, Jun. 2012, pp. 552–559.

[31] K. Huang et al., “Mirror, Mirror, on the web, which is the most
reputable service of them all?” in Service-Oriented Computing. Springer,
Dec. 2013, pp. 343–357.

[32] J. Wang, H. Chen, and Y. Zhang, “Mining user behavior pattern
in mashup community,” in Proc. IEEE Int. Conf. Inf. Reuse Integr.,
Aug. 2009, pp. 126–131.

[33] M. Weiss and G. R. Gangadharan, “Modeling the mashup ecosystem:
Structure and growth,” R&D Manage., vol. 40, no. 1, pp. 40–49,
Jan. 2010.

[34] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang, “Similarity
search for web services,” in Proc. 13th Int. Conf. Very Large Data Bases,
vol. 30. Aug. 2004, pp. 372–383.

[35] Q. Zhang, C. Ding, and C. Chi, “Collaborative filtering based service
ranking using invocation histories,” in Proc. 18th IEEE Int. Conf.,
Jul. 2011, pp. 195–202.

[36] X. Liu, G. Huang, Q. Zhao, H. Mei, and M. Blake, “iMashup: A mashup-
based framework for service composition,” Sci. China Inf. Sci., vol. 57,
no. 1, pp. 1–20, Jan. 2014.

Yang Zhong received the B.S. degree in control
theory and application from Tsinghua University,
Beijing, China, in 2012, where he is currently
pursuing the Ph.D. degree with the Department of
Automation.

His current research interests include services
computing and data mining.

Yushun Fan received the Ph.D. degree in control
theory and application from Tsinghua University,
Beijing, China, in 1990.

From 1993 to 1995, he was a Visiting Scientist,
supported by A. von H. Stiftung, with the Fraunhofer
Institute for Production System and Design Technol-
ogy, Berlin, Germany. He is currently a Professor
with the Department of Automation, Director of
the System Integration Institute, and Director of
the Networking Manufacturing Laboratory, Tsinghua
University. He has authored ten books in enterprise

modeling, workflow technology, intelligent agent, object-oriented complex
system analysis, and computer integrated manufacturing. He has published
more than 300 research papers in journals and conferences. His research
interests include enterprise modeling methods and optimization analysis, busi-
ness process reengineering, workflow management, system integration, object-
oriented technologies and flexible software systems, Petri nets modeling and
analysis, and workshop management and control.

Wei Tan (M’12–SM’13) received the B.S. and
Ph.D. degrees from the Department of Automation,
Tsinghua University, Beijing, China, in 2002 and
2008, respectively.

From 2008 to 2010, he was a Researcher with
the Computation Institute, University of Chicago,
Chicago, IL, USA, and the Argonne National Lab-
oratory, Lemont, IL, USA. At that time, he was
the technical lead of the caBIG workflow system.
He is currently a Research Staff Member with the
IBM Thomas J. Watson Research Center, Yorktown

Heights, NY, USA. He has published more than 70 journal and conference
papers, and a monograph entitled Business and Scientific Workflows: A web
Service-Oriented Approach (272 pages, Wiley-IEEE Press). His research inter-
ests include GPU accelerated machine learning, NoSQL, cloud computing,
service-oriented architecture, business and scientific workflows, and Petri
nets.

Dr. Tan is a member of the Association for Computing Machinery (ACM).
He was a recipient of the IEEE Peter Chen Big Data Young Researcher Award
in 2016, the Best Paper Award from the ACM/IEEE CCGrid in 2015, the
Best Student Paper Award from the IEEE ICWS in 2014, the Best Paper
Award from the IEEE SCC in 2011, the Pacesetter Award from the Argonne
National Laboratory in 2010, and the caBIG Teamwork Award from the
National Institute of Health in 2008. He is an Associate Editor of the IEEE
TRANSACTIONS ON AUTOMATION, SCIENCE AND ENGINEERING. He has
served in the program committees of many conferences and co-chaired several
workshops.

Jia Zhang (M’03–SM’15) received the M.S. and
B.S. degrees from Nanjing University, Nanjing,
China, and the Ph.D. degree from the University
of Illinois at Chicago, Chicago, IL, USA, all in
computer science.

She is currently an Associate Professor with the
Department of Electrical and Computer Engineer-
ing, Carnegie Mellon University, Pittsburgh, PA,
USA. She has co-authored one textbook titled
Services Computing and has published over
140 refereed journal papers, book chapters, and con-

ference papers. Her recent research interests include center on service oriented
computing, with a focus on scientific workflows, net-centric collaboration, and
big data management.

Dr. Zhang is currently an Associate Editor of the IEEE TRANSACTIONS

ON SERVICES COMPUTING and the International Journal of web Services
Research, and the Editor-in-Chief of the International Journal of Services
Computing.

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 23,2020 at 04:33:33 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

