
A Community-Driven Workflow Recommendations and Reuse Infrastructure

Jia Zhang1, Chris Lee1, Sean Xiao1, Petr Votava2, Tsengdar J. Lee3, Ramakrishna Nemani2, Ian Foster4

1Carnegie Mellon University, USA
2NASA Ames Research Center, USA

3Science Mission Directorate, NASA Headquarters, USA
4University of Chicago and Argonne National Lab, USA

jia.zhang@sv.cmu.edu, chris.lee@sv.cmu.edu, petr.votava@nasa.gov, tsengdar.j.lee@nasa.gov, rama.nemani@nasa.gov,
foster@mcs.anl.gov

Abstract—NASA Earth Exchange (NEX) aims to provide
a platform to enable and facilitate scientific collaboration
and knowledge sharing in the Earth sciences, as current
satellite measurements rapidly magnify the accumulation of
more than 40 years of NASA datasets. One of the main
objectives of NEX is to help Earth scientists leverage and
reuse various data processing software modules developed
by their peers, in order to quickly run value-added
executable experiments (workflows). Toward this goal, this
paper reports our efforts of leveraging social network
analysis to intelligently extract hidden information from
data processing workflows. By modeling Earth science
workflow modules as social entities and their dependencies
as social relationships, this research opens up new vistas for
applying social science to facilitate software reuse and
distributed workflow development. As a proof of concept, a
prototyping system has been developed as a plug-in to the
NEX workflow design and management system (VisTrails)
to aid Earth scientists in discovering and reusing workflow
modules and extending them to solve more complex science
problems.

I. INTRODUCTION

NASA’s Earth observing satellite measurements rapidly
magnify the accumulation of more than 40 years of
scientific datasets. To analyze such vast amounts of data,
Earth scientists in many laboratories have developed highly
specialized software components (tools) and processes. The
software components are often composited as workflows in
order to define more comprehensive data analysis processes
and explore various approaches. Aiming to provide a novel
platform to facilitate knowledge sharing, scientific
collaboration, and direct access to NASA compute resources,
NASA Earth Exchange (NEX) [1] seeks to connect the
Earth science community to accelerate the rate of discovery
in Earth sciences. It is a collaborative compute platform that
improves the availability of Earth science data, models,
analysis tools and scientific results.

In recent years, workflow has become a popular
technique for scientists to define executable multi-step
procedures [2]. To help NEX users develop workflows,
NEX has adopted VisTrails [3] as its workflow management
system and has been working with the VisTrails team to

provide baseline implementation of a number of tools as
reusable VisTrails modules. Such VisTrails modules will
allow NEX users to make data and computational resources
on NEX accessible through both VisTrails’ graphical
development interface [4] as well as command-line
interface.

The ability to discover and reuse knowledge (sharable
workflows or workflow components - throughout this paper,
the term artifact will be used to refer to either one) is critical
to the future advancement of science especially in this
information age. Many data projects in other domains (such
as Kepler [5] in phylogeny, caGrid [6] in life science, and
Science Gateway [7] in chemistry) have adopted similar
approaches to help domain scientists find related artifacts.
However, as reported in our earlier study in the biomedical
domain [8], the reusability of scientific artifacts at current
time is very low.

Scientists often do not feel confident in using other
researchers’ tools and utilities. For example, many Earth
science processes and models have known input formats;
input data thus usually have to undergo preprocessing steps.
This is where everyone reinvents the wheel with each
researcher or a research group creating their own version of
tools for data reprojection, subsetting, mosaicking and so
on. One major reason is that researchers are often unaware
of the existence of others’ data preprocessing processes.
Meanwhile, researchers often do not have time to fully
document the processes and expose them to others in a
standard way. These issues cannot be overcome by the
existing workflow search technologies used in NEX and
other data projects.

Therefore, this project aims to develop a proactive
recommendation technology based on collective NEX user
behaviors. In this way, we aim to promote and encourage
process and workflow reuse within NEX. Particularly, we
focus on leveraging peer scientists’ best practices to support
the recommendation of artifacts developed by others.

Our underlying theoretical foundation is rooted in the
social cognitive theory [9], which declares people learn by
watching what others do. Our fundamental hypothesis is
that sharable artifacts have network properties, much like
humans in social networks [10]. For instance, workflows
reveal “who knows what” (by one module calling another).
More generally, reusable artifacts form various types of
social relationships (ties) based on their invocation

2014 IEEE 8th International Symposium on Service Oriented System Engineering

978-1-4799-3616-8/14 $31.00 © 2014 IEEE

DOI 10.1109/SOSE.2014.23

162

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:50:28 UTC from IEEE Xplore. Restrictions apply.

Fig. 1 Service-oriented workflow reuse.

dependencies, and may be viewed as forming what
organizational sociologists who use network analysis to
study human interactions [11] call a “knowledge network.”

In particular, we will tackle two research questions:
R1: What hidden knowledge may be extracted from

usage history to help Earth scientists better understand
existing artifacts and how to use them in a proper manner?

R2: Informed by insights derived from the computing
contexts, how could such hidden knowledge be used to
facilitate artifact reuse by Earth scientists?

As shown in Fig. 1, our study of the two research
questions will provide answers to three technical questions
aiming to assist NEX users during workflow development: 1)
How to determine what topics interest the researcher? 2)
How to find appropriate artifacts? and 3) How to advise the
researcher in artifact reuse?

In this paper, we report our efforts of leveraging social
networking theory and analysis techniques [12, 13] to
provide dynamic advice on artifact reuse to NEX users
based on their surrounding contexts. As a proof of concept,
we have designed and developed a plug-in to the VisTrails
workflow design tool. When users develop workflows using
VisTrails, our plug-in will proactively recommend most
relevant sub-workflows to the users.

The remainder of the paper is organized as follows. In
Section 2, we use a motivating example to explain the
technical challenges. In Sections 3 and 4, we present our
service social network and candidate service selection
techniques, respectively. In Section 5 and 6, we present
system implementation and preliminary experimental results,
respectively. In Section 7, we discuss related work. In
Section 8, we draw conclusions.

II. STRATEGY

In this section, we briefly introduce our strategy of
building and testing a recommendation engine on top of
existing techniques: VisTrails and ProgrammableWeb.

A. Plug-in to VisTrails

VisTrails is a popular open-source scientific workflow
management system that provides support for data-oriented
simulations, exploration and visualization [14]. It provides a
visual programming language, so that domain scientists can
drag and drop reconfigurable, predefined building blocks to
visually define executable data processing workflows.
Workflow components can be linked together through their
input/output ports, to define execution order between them.
VisTrails also supports web service technology, where
workflow components can be specified as external software
applications wrapped as web services with standard
interfaces.

Known for its facility supporting data provenance,
VisTrails has been adopted at NEX for scientists to design
and execute data analysis workflows through VisTrails’
graphical development interface [4]. Therefore, our strategy
is to build our technique on top of the VisTrails, to design
and develop a plug-in to VisTrails as a seamless workflow
recommendation engine. With the formed partnership, this
project will make sure that it aligns with the VisTrails to
ensure the sustainability of the plug-in.

B. ProgrammableWeb as Testbed

As explained earlier, this project aims to design the next-
generation of tools for scientific collaboration. One
significant challenge is an inherent lack of user data. Our
strategy is two-fold. First, we select a reusable software
repository as our testbed to evaluate our technique and plug-
in. Second, studying an existing repository will help us
decide features useful for workflow recommendation to
build next-generation workflow repository.

Based on our earlier study [15], we have decided to use
ProgrammableWeb as our testbed, which is a repository of
APIs (reusable software services) and mashups (service
composition). We draw a natural analogy between the
concepts in ProgrammableWeb and our study domain. An
API, or Web 2.0 API, refers to a web application that can be
remotely invoked (programmable) through its standard
interface (e.g., REST or WSDL). Such web services are
analogous to reusable scientific components that can be
shared and recommended to peers. A mashup refers to a
web application comprising published APIs in
ProgrammableWeb. In other words, a mashup is a
synergistic composition of APIs for a value-added service.
Thus, a mashup is analogous to a scientific workflow that is
typically and intentionally comprised of multiple existing
software modules. Throughout the paper, we will use two

163

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:50:28 UTC from IEEE Xplore. Restrictions apply.

Fig. 2 Module-Workflow network.

sets of terms interchangeably: (1) workflow and mashup; (2)
module, service, and API.

By modeling the APIs and mashups as a social network,
we can analyze their usage history and use it to formulate
recommendations. Due to the natural mappings between
workflow/module and mashup/API, we believe that similar
analysis will hold true for scientific workflows.

Another reason why we chose ProgrammableWeb as our
testbed is its rapid growth. Since its inception in late 2005,
the number of APIs and mashups published at
ProgrammableWeb has been increasing rapidly. Up to
September 17, 2013, 9985 APIs and 7185 mashups have
been published. Such rapid growth will help us evaluate the
effectiveness and efficiency of our approach.

III. SERVICE SOCIAL NETWORK

A. Network Construction

All services and workflows are modeled as social nodes
in a multi-modal, multi-relational, and multi-featured
network called Service Social Network (SSN): a graph SSN
= (V, E) where V is a finite set of nodes, and E is a finite set
of edges. An SSN shows as a multiplex network. Multiple
types of nodes co-exist: e.g., services and workflows. Edges
may be classified according to the nature of the relationships
that they represent, for example, usage or authorship. Each
edge type may further carry an influential coefficient with
respect to a given criterion, e.g., user ranking.

We start by modeling the “use” relationship between a
workflow and a service. If a workflow invokes a service, a
social edge is identified between them. A workflow-service
network is thus established based on their inclusive
relationships. Fig. 2 illustrates a segment of a constructed
SSN, where an edge exists between a workflow (blue nodes)
and a service (red node) if the service is used in the
workflow. A workflow may uses multiple services; and a
service may be used by multiple workflows. Therefore,
there is a many-to-many relationship between them. Fig. 2
illustrates that a service is socially connected to many
workflows based on the “use” relationship. From a
workflow repository, the constructed SSN may be
disconnected, comprising connected subgraphs and isolated

nodes.
The SSN can be formalized as a matrix Q that describes

the involvement relationships between m workflows and n
services:

[], 0 ,0ijQ q i m j n� � � � � , where:

1�ijq if workflow i calls service j.

Based on the relation Q, another relation S can be
retrieved from matrix calculation:

njisQQS ij
T ����� ,0],[, where:

sij = the number of workflows where both services i and j
are used; sii = number of workflows where service i is used.

Relation S represents a “social network” among services
based on their collaboration relationship. The semantic
meanings of its comprising edges are: if two services are
used in the same workflow, a social tie is established
between them. Note that rich context information may be
carried by the edges in the network as labels. For example,
an edge between two services may be labeled with the
corresponding workflow that uses them. If two services are
used together in multiple workflows, multiple edges can be
created with proprietary labels. By analyzing the profile of a
specific workflow, we may understand under which
conditions the two services can be used together. Such a
collaboration relationship maps to the association rules in
social network analysis.

Collaboration ties can be further classified into various
levels. The more workflows in which two services are used
together, the tighter collaboration tie between them. In the
SSN, a tight tie implies that multiple edges exist between a
pair of service nodes. In contrast to direct collaboration
relationship between two services where there exists edges
between them, an indirect collaboration relationship is
defined when a path exists between two service nodes. The
collaboration tie can be thus calculated as follows. Assume
that a path exists in SSN between services si1 and sik with
(ik-2) intermediate service hops:

���������	 ��
� � � � ���	 ���	 ���	 � 	 ��
 �
������������������������������ � ��������	������
����� ,

Where � � ��	�� is a coefficient to weigh the
collaboration relationship of an edge.

B. Network Analysis

After establishing the workflow-service networks, we
calculate various metrics over them to comprehend the
interaction patterns between services and workflows, as well
as patterns among service usages. We adopt the tradition of
calculation of centrality and prestige in social network
analysis, including degree centrality (popularity),

164

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:50:28 UTC from IEEE Xplore. Restrictions apply.

(a) Generate word TF-ICF for each category

�
(b) Multi-categorize service/query

�

(c) Use RBO similarity to generate candidates
Fig. 3 Generate candidate list

betweenness centrality, and clique. Through degree
centrality analysis, highly reused services can be identified
based on the popularity of corresponding nodes. Through
betweenness centrality analysis, hinge services can be
identified. Through clique, we can identify collaborative
services, i.e., association rules among services.

If a service is used multiple times in multiple workflows,
popularity can be considered as an annotation to be used for
future purpose. Using the k-path betweenness algorithm, we
can identify the key services, in the sense that they
collaborate with other services in user queries.

Through these analyses, we can answer user queries
regarding service query (usage) behaviors. For example,
“how are different services used together in workflows?”
and “in what types of workflows is a service usually used?”
As another example on service-service relationship, we can
answer questions such as “are there many services that
collaborate with each other in workflows, and how?” and
“what are the key services in these collaborations?” Such
information will help to construct service recommendation
engine.

IV. CANDIDATE SERVICE GENERATION
When services are published, their service providers

usually also publish some metadata such as its category,
descriptions, and development team information. Such
metadata will help shorten the candidate lists, before
network analysis is conducted that may become expensive
in large-scale service networks. Our earlier work extends the
Support Vector Machine (SVM)-based text classification
technique to enhance service-oriented categorization [15]. In
this project, we will apply the similar method to categorize
user interests in addition to services to generate shortened
candidate list.

C. Label Services and User Interests

TF-IDF (Term Frequency-Inverse Document Frequency)
is a traditional metric that calculates the weight of every
term comprised in a document. Applying the idea to service
repositories, we can use TF-ICF (Term Frequency-Inverse
Category Frequency) to weight every term contained in a
category [15]. Based on our previous work [16], Equations
(1-3) show how to calculate TF-ICF for a term (�) in
category ():

�� � ! "�#$ � %& � � $�
%�'

���������������������������������(�
�������) � *+)&), -*���.�

����/�0/�	 � 123��	 �
1�4 5 �6 5 �� 7 �

89: *;* < �
1�

� < ��

7 6�
5 123��	 �
� 123��	 �=;

����������������������������>�

where ?@A��	 %� represents the frequency of the term (�)
used in the category (%), and C represents a collection of
categories. It is divided by the number of services (n_s) in
the category for normalization purposes. The frequency of
the term is further adjusted by the distribution of terms over
the corresponding category in a service repository. B is a
coefficient that can be adjusted in specific categories. Terms
with high TF-ICF are keywords of the category. TF-ICF is
pre-calculated for every term in each category, over the
entire service repository.

Since a service may be relevant to more than one category,
Algorithm 1 illustrates how TF-ICF is used to label a service
(metadata) over multiple categories. After metadata is
tokenized, we sum up TF-ICF for all comprising terms
regarding each category, and rank the categories based on the
summation. The top-K category list will be associated with
the service. Labeling (categorizing) user interests follow the
similar procedure as that of services.

Algorithm: Label_Service(metadata)
Loop�� in C
 �DEF � � �/�0/�G	� , +��- H �IJJ��KLE��GM�EK�INI�I
�OL�KNPDE� � ��OL���DE�Q
�ORSCI�KTOLGK�� � �UQ
Loop G from � to S 7 �
If sortedSum[i] == 0 Then Break;
EndIf

End Loop
�I�KTOLVWG��X IRRKMN��OL�KNPDEYGZX �I�KTOLV�

End Loop
[\�@[?��ORSCI�KTOLGK�();

D. Generate Candidate List

165

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:50:28 UTC from IEEE Xplore. Restrictions apply.

(a) (b)
Fig. 4 Workflow recommendation plug-in to VisTrails.

Fig. 3 shows how to generate candidate list. A user's
query is assigned with a category rank list using Algorithm
1, which will be matched with service categories in the
repository. TF-ICFs of all services are calculated (Fig. 3(a)).
All services are multi-labeled using Algorithm 1 (Fig. 3(b)),
so as to user interest when a user query comes. Fig. 3(c)
shows how a candidate list is created using RBO similarity.
The category list for user query is compared with all
services’ category list. Candidate services are ranked from
most similar to least similar.

A score function is used to measure the relevance
between user’s query and the services in the repository. All
services ranked with relevant score will be provided as a
candidate list to enter service analysis phase.

The score function measures the similarity between two
ranked lists. The ranking algorithm should handle non-
conjointness, favor higher ranks, and be monotonic with
increasing depth of evaluation. Such features allow us to
model the issue as an indefinite ranking problem [17],
whose rank-biased overlap (RBO) is calculated in Equation
(2).

]^_��W	 P	 J	 �� �
���`

` a� bc
c

de�� Re <�� bf�cgf�
fc

de�h�� Rei < �jk�jf
d < jf

h �Rd (2)
�
L and S are two ranked lists with length J and � ,

respectively (J l ��). R is the probability that the user
intends to continue the comparison (e.g., R� � ��Xmn). od
represents the overlap on the seen lists at depth J.

V. SYSTEM IMPLEMENTATION

Centered on the SSN, we have designed and developed a
service search engine, as shown in Fig. 4. It comprises four
major components as shown in Fig. 4(b): (1) data collection:
Workflows and modules are collected incrementally from
various data repositories. (2) annotation: Automatic
annotation and statistical data generation creates additional
knowledge to support module-oriented workflow
composition. (3) search: Based on the SSN networks, this
module supports relation-aware cross-workflow search

function. (4) recommendation: This component provides
guidance on workflow reuse during workflow development.
Recommendations can be either passive (requested by users)
or proactive (automatically delivered when a need is
perceived). So we call it a Collection, Annotatoin, Search,
rEcommendation (CASE) plugin.

The prototyping system is implemented as a plug-in to
VisTrails. A local CASE engine will dynamically
communicate with the central CASE engine at the server
side to retrieve related modules and workflows. The service
side CASE engine spawns several agents, each monitoring a
data source (such as NEX workflow or data repositories).
Any relevant event (e.g., publication of a new workflow)
detected on the data sources will trigger a recalculation and
subsequent changes to the SSN networks maintained at the
server side. While a NEX user is building a workflow in
VisTrails, our plug-in will observe the user’s contextual
environments, such as past workflows and the incomplete
workflow.

As shown in Fig. 4(a), VisTrails provides a visual
interface that displays the module composition in a
workflow. Since our prototype is a plug-in to VisTrails, we
provide a graphical interface to support workflow
recommendation to NEX users, to keep consistent with
VisTrails. For example, we allow NEX users browse
PDMW networks and comprised (social) relationships.

A. System Architecture

Fig. 5 illustrates the internal architecture of our plugin. A
Source Manager is in charge of loading historical usage
information from external data sources, e.g.,
ProgrammableWeb. A Context Manager is in charge of
modeling and managing the context of a user in the process
of a workflow design. A Search Engine is connected to a
typical keyword-based search engine to conduct syntactical
match making.

External data sources are monitored by the Source
Manager. When changes happen, the Parser module will
filter the related information and input to the Social
Analyzer that will alter the PDSW network. As shown in
Fig. 5, Python-oriented graphical tools (PyQt and PyPlot)

166

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:50:28 UTC from IEEE Xplore. Restrictions apply.

Fig. 5 System architecture.

are used to provide visualization to the service network.
As explained earlier, our recommendation engine is

implemented as a plug-in to VisTrails. Thus, working with
the VisTrails team, we have identified the least amount of
four modules where changes are applied, as summarized in
Table I. All plug-in code stays under the “package”
directory, while corresponding menu items and their event
handlers are initiated by overwriting the function
menu_items in __init__.py file under the plugin package.

Table I. Changed VisTrails modules

All functions in the plugin are triggered with the
VisTrails’ in-context GUI. After initializing a menu and the
handler, one has to display the GUI components to present
the features in the VisTrails GUI framework, which is
constructed in pyQt. For example, when a search form is
needed for a user to input keywords, an object containing an
instance of QWidget class will be created as the frame of the
VisTrail in-context GUI.

The graphical analysis is realized by integrating
matplotlib with VisTrails’ in-context GUI. Service networks
are modeled using networkx package, and then plotted by
matplotlib and Qt4 libraries. When analyzing the mashup-
API relationships, if two APIs are shared in the same
mashup, an edge will be created between the two API
nodes.

B. Usage Scenarios

We have implemented our workflow recommendation
engine as a plug-in to VisTrails. The following usage
scenarios will briefly depict how our plug-in can be used in
the process of a workflow design to facilitate productivity,
as illustrated in Fig. 6.

Naturally, when designing a workflow, the user has some
general ideas about its purpose. These ideas can be written
into a short description of the experiment. We can conduct
some simple natural language processing procedures to
identify keywords that mainly represent the intended aims.
The set of resulting keywords will be used as a query into
the search engine. For example, for a user interested in
analyzing the efficiency of roads in a certain area, a
keyword may be identified as “map.” The built-in API
search module in our plug in will look up related APIs from
the API repository, and return with a collection of
candidates, as shown in Fig. 6.

After the user picks up an API from the list, our plug-in
will dynamically generate a network of all related APIs that
are usually used together in some existing mashups. As
shown in Fig. 6, the selected node is colored red and
enlarged. A node is blue most of the time, and is enlarged if
it has already been added to the project. If the user decides
to take one recommended API, the process will iterate and
more recommendations will be provided.

Alternatively, if the user decides to reuse a mashup, our
plug-in will recommend related mashups, at the current
time, based on the historical usage that some mashups use
mutual APIs (in other words, they have similar goals).

VI. Experiments and Evaluations

A. Environmental Setup

As explained in earlier section, ProgrammableWeb is
used as our testbed. ProgrammableWeb publishes a set of
REST interfaces that can be leveraged to retrieve APIs and
mashups in their repository. Note that one must first register
for a developer key in order to access the REST interfaces.

167

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:50:28 UTC from IEEE Xplore. Restrictions apply.

Fig. 6 Usage history-supported recommendation.

We have studied ProgrammableWeb since 2011 [15].
The metadata of all APIs can be retrieved through REST

calls, divided by pages. The results are in either XML or
JSON format. However, we found that an API may have
multiple entries (e.g., multiple versions). Our solution is to
first identify all duplicate entries, then use the API name to
query ProgrammableWeb to get the latest API and discard
other entries. A similar approach is applied to retrieve all
mashups from ProgrammableWeb. In the metadata of a
mashup, a field “apis” records the APIs used by the mashup.
Such information helps us to identify all API-mashup
connections (i.e., edges) of the service network. Derived
networks are generated subsequently. Currently, all
networks are stored in MongoDB, which is a nosql database
that possesses a hybrid collection concept that can represent
various types of nodes and edges in our network.

B. Experimental Setup

We have carefully designed a set of experiments to
evaluate the effectiveness of our approach. Specifically, we
focus on examining under which circumstances our method
complements the existing search methods and enhances
service discovery and recommendation. Our experiments are
designed as follows.

Since ProgrammableWeb contains a set of predefined
categories, we study the APIs in corresponding categories
separately. For each category, all APIs published in the
category are gathered to form a corpus. At this stage, the
tags of APIs are considered and accumulated. A vector is

constructed to represent every category.
We examined the relevance of each API in the

corresponding category. Based on the built category vector,
the relevance of each comprised API is calculated as
follows. A vector is first built for every API. The similarity
between the API and the category is calculated using the dot
product. Thus, the top m (e.g., pq) APIs are identified
based on their usage of the popular keywords in the
category. Our assumption is that, the APIs tagged with
popular keywords are more likely to be searched by users,
and consequently more likely to be used by mashups in the
past. Such past usage history can be leveraged by our
presented method to refine API recommendation.

Now we simulate user requests: all contained tags of an
API form a valid user request. Thus, we simulate a
collection of reasonable user requests for a category from its
comprised APIs. For each user request, we again use its
contained tags to build a vector. It is used to conduct
keyword search with all other APIs in the category. For each
API under examination, its tags and descriptions are used to
construct a vector for the API. The similarity (dot product)
between the constructed API vector and the user request
vector is calculated and used to decide its ranking in the
recommendation list.

Since each user request will correspond to the API used
to build the request, we further examine the historical usage
of the API: 1) whether it is used by other mashups and how
many; and 2) whether it is used together with other APIs in
some mashups and how many. The more connections found,
the more likely that our method can better adjust the

168

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:50:28 UTC from IEEE Xplore. Restrictions apply.

Fig. 7 Overall reuse status.

recommendation.
Our assumption is that a category with more APIs will

attract more attention and thus imply more historical usage
data. We have thus focused on the following top 10
categories, in a descendent order: Tools (726), Internet
(609), Social (501), Financial (454), Enterprise (439),
Reference (345), Mapping (341), Shopping (337),
Government (314), and Science (313).

C. Experimental Results and Analysis

Our study reveals that current API reusability is very
low. Fig. 7 shows the API reuse status at
ProgrammableWeb on September 17, 2013. Most mashups
call one to two APIs; only a very small number of mashups
call more than three APIs (380 mashups as 5% of the total
of 7188 mashups). 8694 APIs (87%) are not used in any
mashups. Fig. 7 compares the status in 2013 and 2012: the
enhancement is not significant. On September 2, 2012, 7142
APIs were published, 5993 APIs (83%) were not used by
any mashup.

Table II summarized our experimental results on testing
the effectiveness of our approach. We measure three
numbers for each category: total number of APIs; reused
indicating the number of times the APIs are contained in the
'apis' field of at least one mashup; collaborated indicating
the number of mashups containing at least two APIs. The
top 10 categories with the most APIs are listed. Take
category Tools in Table II as an example. It contains 726
APIs; 46 APIs are used by some mashups (6.34%); 37 APIs
are paired with other APIs (5.1%). According to our
recommendation algorithm, the rankings of these APIs will
be raised and highlighted. Consider the category Shopping
as another example. About 25% of the APIs are reused, and
over 20% of them have collaboration relationship. Such
historical data usage analysis will help to proactively
recommend such modules. As shown in Table II, similar
findings were supported by other categories.

As revealed by Table II, although many more APIs are
published to ProgrammableWeb, the reuse of existing APIs

remains quite low. The highest record is less than 25% in
the Mapping category. On one hand, this fact strengthens
the necessity of our study and the usefulness of our
technique. On the other hand, this fact has resulted
insufficient dataset for our technique to leverage. Besides, it
appears that although 'Tools' contains a much larger number
of APIs (726), the reuse of its APIs (6.43%) lags behind
many other categories.

Table II. Experiments on testbed
Snapshot on 9/23/2013

Category #APIs Reused Collaborated
Tools 726 46 (6.34%) 37 (5.1%)
Internet 608 84 (13.8%) 77 (12.66%)
Social 501 95 (18.96%) 89 (17.76%)
Financial 454 18 (3.96%) 13 (2.86%)
Enterprise 439 19 (4.32%) 18 (4.10%)
Reference 345 58 (16.81%) 46 (13.33%)
Mapping 341 83 (24.34%) 72 (21.11%)
Shopping 337 71 (21.06%) 64 (18.99%)
Government 314 32 (10.19%) 24 (7.64%)
Science 313 8 (2.55%) 7 (2.23%)

Snapshot on 9/2/2012
Category #APIs Reused Collaborated
Internet 470 80 (17.02%) 73 (15.53%)
Tools 467 37 (7.92%) 28 (5.99%)
Social 405 83 (20.49%) 81 (20%)
Financial 282 13 (4.60%) 9 (3.19%)
Enterprise 282 16 (5.67%) 15 (5.31%)
Reference 272 51 (18.75%) 39 (14.33%)
Mapping 264 79 (29.92%) 68 (25.75%)
Shopping 253 64 (25.29%) 57 (22.52%)
Telephony 233 24 (10.30%) 22 (9.44%)
Government 227 26 (11.45%) 18 (7.92%)

Nevertheless, our experiments have demonstrated that
our method may complement the keyword-based search
method to enhance service and workflow discovery. As
more past usage history becomes available, our method
becomes more effective. In addition, our method can help
find services that are relevant but assigned to other
categories, i.e., cross-category search.

Fig. 8 further examines the correlation between
collaboration and reuse status, for the top 10 categories at
ProgrammableWeb based on the number of APIs contained.
For each category, we focused on its most “popular” 25
APIs, based upon their similarity with the test cases
(detailed can be found in Section VI.B). Similarity is
measured by taking the dot product of the description vector
of a particular API with the category vector that contains the
descriptions of all APIs in the category. The rationale is
that, we focus on the APIs that more likely to be found by
users. In other words, we intend to establish a benchmark
for our study. For the selected most related APIs, we

169

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:50:28 UTC from IEEE Xplore. Restrictions apply.

 (a) Tools (b) Internet (c) Social (d) Financial (e) Enterprise

 (f) Reference (g) Mapping (h) Shopping (i) Government (j) Science

Fig. 8 Correlation between popularity and reuse for top 10 categories.

examined its reusability and collaboration history.
In Fig. 8, the horizontal axis represents the indices of the

top 25 APIs using an arbitrary index, and the vertical axis
represents the counts. “Reuse” (represented by diamond
dots) means the number of mashups that use a particular
API. “Collaboration” (represented by square dots) means
the number of other APIs that are used in the same mashup
as a particular API.

As shown in Fig. 8, it is noted that reuse is not too
common and that popularity does not necessarily equate
with “easy to find” (“similarity”) using the description
vector metric. Less than 15% of APIs are actually used by
mashups, and less than 15% of APIs collaborate with other
APIs. For example, in the category Financial, only one
popular API is used by one mashup; and there is no
collaboration relationship found in APIs. Only for some
established categories such as Tools, Internet, and Mapping,
it is more likely for easy-to-search APIs to be reused. For
example, in category Tools, five most popular APIs (20%)
collaborate with other APIs; two popular APIs (8%) are
used by mashups.

This finding implies that using previous historical usage
to help determine recommendations will likely to have
effective results than using standard keyword search alone.
Our finding also suggests that the two approaches can
complement each other. It should be noted that whether or
not the results are “good” requires a human to come in and
evaluate them. In summary, our experiments prove that our
techniques will be able to improve the effectiveness of
service and workflow recommendation.

VII. RELATED WORK

Workflow recommendation has been gaining more
attention in the recent years. VisComplete [18] provides
auto-complete suggestions by mining frequent patterns in
existing pipelines. Leake et al. [19] propose a CASE-based
approach to suggest the possible next step(s) aiding reuse of
portions of prior workflows. In recent years, workflows
allow reusable services as components. Thus, workflow
recommendation largely relies on service discovery and
recommendation.

Most work on service discovery and recommendation is
based on either syntactical or semantic match making.
Various information retrieval techniques, such as support
vector machine (SVM) and term frequency-inverse
document frequency (TF-IDF), have been used to build
service search engines. The service descriptions of
candidate services are analyzed against expected service
queries based on syntactic match making process [20]. Our
previous work enhances the SVM technique to facilitate and
validate service categorization [15], a technique that
automatically extracts semantic metadata from static WSDL
service descriptions [21]. Other researchers focus on
applying semantic technology to support service discovery
[20]. Our earlier work yields a service semantics model
empowered by a technique that automatically extracts
semantic metadata from static WSDL service descriptions
[21]. In addition, some other researchers take into
consideration of QoS requirements to recommend services
appropriately [22].

In our previous work, we have demonstrated that hidden
usage history of services can be extracted from published
scientific applications to facilitate capability reuse [23]. A

170

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:50:28 UTC from IEEE Xplore. Restrictions apply.

holistic set of service networks are established, and network
analysis over them [24] opens a gateway to this exploration.
We developed a pilot prototyping system [23] as a plug-in
to the Taverna workflow workbench.

After our paper was published in 2011, recent years have
witnessed more work of leveraging service usage history.
Cao et al. [25] recommend Mashup services to users based
on usage history and service network. User interests are also
extracted from their Mashup service usage history. Huang et
al. [26] conducted an empirical network analysis to
quantitatively characterize the static structure and dynamic
evolution of a Service-Mashup ecosystem at
ProgrammableWeb. Zhou et al. [27] model services,
associated with their attributes and entities, in a
heterogeneous service network. A neighborhood random
walk distance measure algorithm is proposed to provide
service ranking. In contrast to related work, our CASE-
enabled, fine-grained workflow/subworkflow
recommendation mechanism will retrieve and rank related
artifacts based on the scientist’s interest and context—what
we call “recommend-as-you-go.”

Social relationships between service providers and
service users have also been widely considered as important
factors to help service discovery and recommendation. Xu et
al. [28] establish a coupled matrix model to analyze multi-
dimensional social relationships among potential users,
topics, mashups, and services. A factorization algorithm is
designed to predict unobserved relationships. Vollino and
Becker [29] study service usage profiles to identify distinct
groups of service users and their usage characterization in
terms of service functionality. In contrast to their work, our
research focusing on studying “social” relationships among
services based on how they are interact with each other in
the past workflows.

Some researchers also study change impact propagation
during service evolution. For example, Oliva et al. [30]
study the static dependency among workflows stored in a
centralized repository, and derive change impact analysis
for the workflows; Chinthaka et al. [31] analyze workflow
revision history to track the evolution of targeted research.
Their research results may help our future work on SSN
network evolution and notification at runtime.

VIII. CONCLUSIONS

In this paper we have reported our efforts of building a
historical usage-based workflow recommendation engine.
The primary impetus behind the project is the movement to
facilitate collaboration among scientists. To this end, the
front-end of the workflow recommendation system takes the
form of a VisTrails plugin, which allows it to be easily
dropped into any VisTrails environment. As a result, our
tool is seamlessly and transparently integrated into NEX
users’ familiar design environment while providing real-
time artifact reuse guidance and recommendation. We have

reported a prototyping system as a proof of concept.
We plan to continue our research in the following

directions. We plan to enhance our recommendation
techniques with semantics-based discovery approaches. We
also plan to accumulate practice data to create benchmarks
for the presented approach in this paper.

IX. ACKNOWLEDGEMENT

This work is partially supported by National Aeronautics
and Space Administration, under grant NASA
NNX13AB38G. We thank Song Luan for his earlier
involvement.

X. REFERENCES

[1]. N.A.R. Center, "NASA Earth Exchange (NEX)", accessed,
Available from: https://c3.nasa.gov/nex/.

[2]. C. Goble and D.D. Roure, The Impact of Workflow Tools on
Data-centric Research, in T. Hey, S. Tansley, and K. Tolle, eds.,
The Fourth Paradigm: Data-Intensive Scientific Discovery,
Microsoft Research, Oct. 2009. p. 137-145.

[3]. J. Freire, C.T. Silva, S.P. Callahan, E. Santos, and C.E.
Scheidegger, "Managing Rapidly-Evolving Scientific Workflows
", Lecture Notes in Computer Science, May, 2006, 4145/2006: pp.
10–18.

[4]. L.-J. Zhang, J. Zhang, and H. Cai, Services Computing. 2007:
Springer.

[5]. "Kepler", accessed, Available from: https://kepler-project.org/.

[6]. caGrid, accessed, Available from:
http://www.myexperiment.org/search?query=cabig&type=workflo
ws.

[7]. "Science Gateway", accessed, Available from:
http://www.sciencegateway.org/.

[8]. W. Tan, J. Zhang, and I. Foster, "Network Analysis of
Scientific Workflows: a Gateway to Reuse", IEEE Computer, Sep.,
2010, 43: pp. 54-61.

[9]. A. Bandura, Social Foundations of Thought and Action: A
Social Cognitive Theory. Prentice-Hall Series in Social Learning
Theory. 1985, Englewood Cliffs, NJ, USA: Prentice-Hall, Inc.

[10]. K. Carley, "A Theory of Group Stability", American
Sociological Review, 1991, 56(3): pp. 331-354.

[11]. K. Carley, "On the Evolution of Social and Organizational
Networks", Research in the Sociology of Organizations, 1999, 16:
pp. 3-30.

[12]. P.J. Carrington, J. Scott, and S. Wasserman, Models and
Methods in Social Network Analysis. 2005, Cambridge University
Press: Cambridge.

[13]. S. Wasserman and K. Faust, Social Network Analysis:
Methods and Applications. 1994: Cambridge University Press,
Cambridge.

[14]. E. Santos, L. Lins, J. Ahrens, J. Freire, and C. Silva,
"VisMashup: Streamlining the Creation of Custom Visualization

171

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:50:28 UTC from IEEE Xplore. Restrictions apply.

Applications", IEEE Transactions on Visualization and Computer
Graphics, 2009, 15(6): pp. 1539-1546.

[15]. J. Zhang, J. Wang, P.C.K. Hung, Z. Li, N. Zhang, and K. He,
"Leveraging Incrementally Enriched Domain Knowledge to
Enhance Service Categorization", International Journal of Web
Services Research (JWSR), 2012, 9(3).

[16]. J. Zhang, J. Wang, P.C.K. Hung, Z. Li, J. Liu, and K. He,
"Leveraging Incrementally Enriched Domain Knowledge to
Enhance Service Categorization", International Journal of Web
Services Research (JWSR), 2012, 9(3): pp. 43-66.

[17]. W. Webber, A. Moffat, and J. Zobel, "A Similarity Measure
for Indefinite Rankings", ACM Transactions on Information
Systems, Nov., 2010, 28(4): pp. Article No: 20.

[18]. D. Koop, C.E. Scheidegger, S.P. Callahan, J. Freire, and C.T.
Silva, "VisComplete: Automating Suggestions for Visualization
Pipelines", IEEE Transactions on Visualization and Computer
Graphics, 2008, 14: pp. 1691-1698.

[19]. E. Chinthaka, J. Ekanayake, D. Leake, and B. Plale, CBR
Based Workflow Composition Assistant, in 2009 Congress on
Services -- I. 2009, IEEE Computer Society. p. 352-355.

[20]. A. Bouguettaya, S. Nepal, W. Sherchan, X. Zhou, J. Wu, S.
Chen, D. Liu, L. Li, H. Wang, and X. Liu, "End-to-End Service
Support for Mashups", IEEE Transactions on Services Computing
(TSC), Jul.-Sept., 2010, 3(3): pp. 250-263.

[21]. J. Zhang, R. Madduri, W. Tan, K. Deichl, J. Alexander, and I.
Foster, "Toward Semantics Empowered Biomedical Web
Services", in Proceedings of IEEE International Conference on
Web Services (ICWS), Jul. 4-9, 2011, Washington DC, USA, pp.
371-378.

[22]. M. Picozzi, "Quality-Based Recommendations for Mashup
Composition", in Proceedings of International Conference on Web
Engineering (ICWE), Jul. 5-9, 2010, Vienna, Austria, pp. 360-371.

[23]. J. Zhang, W. Tan, J. Alexander, I. Foster, and R. Madduri,
"Recommend-As-You-Go: A Novel Approach Supporting
Services-Oriented Scientific Workflow Reuse", in Proceedings of
IEEE International Conference on Services Computing (SCC), Jul.
4-9, 2011, Washington DC, USA, pp. 48-55.

[24]. W. Tan, J. Zhang, and I. Foster, "Network Analysis of
Scientific Workflows: A Gateway to Reuse", IEEE Computer,
Sep., 2010: pp. 54-61.

[25]. B. Cao, J. Liu, M. Tang, Z. Zheng, and G. Wang, Mashup
Service Recommendation based on Usage History and Service
Network, in International Journal of Web Services Research
(JWSR). 2013: Santa Clara, CA, USA.

[26]. K.M. Huang, Y.S. Fan, and W. Tan, "An Empirical Study of
ProgrammableWeb: A Network Analysis on a Service-Mashup
System", in Proceedings of IEEE International Conference on Web
Services (ICWS), Jun. 24-29, 2012, Hawaii, USA, pp. 552-559.

[27]. L.L. Yang Zhou, Chang-Shing Perng, Anca Sailer, Ignacio
Silva-Lepe, and Zhiyuan Su, "Ranking Services by Service
Network Structure and Service Attributes", in Proceedings of IEEE
20th International Conference on Web Services (ICWS), Jun. 27-
Jul. 2, 2013, Santa Clara, CA, USA, pp. 26-33.

[28]. W. Xu, J. Cao, L. Hu, J. Wang, and M. Li, "A Social-Aware
Service Recommendation Approach for Mashup Creation", in
Proceedings of IEEE 20th International Conference on Web
Services (ICWS), Jun. 27-Jul. 2, 2013, Santa Clara, CA, USA, pp.
107-114.

[29]. B. Vollino and K. Becker, "A Framework for Web Service
Usage Profiles Discovery", in Proceedings of IEEE 20th
International Conference on Web Services (ICWS), Jun. 27-Jul. 2,
2013, Santa Clara, CA, USA, pp. 115-122.

[30]. G.A. Oliva, M.A. Gerosa, D. Milojicic, and V. Smith, "A
Change Impact Analysis Approach for Workflow Repository
Management", in Proceedings of IEEE 20th International
Conference on Web Services (ICWS), Jun. 27-Jul. 2, 2013, Santa
Clara, CA, USA, pp. 308-315.

[31]. E. Chinthaka, R. Barga, B. Plale, and N. Araujo, Workflow
Evolution: Tracing Workflows Through Time. 2009.

172

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:50:28 UTC from IEEE Xplore. Restrictions apply.

