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Abstract—NASA Earth Exchange (NEX) aims to provide 
a platform to enable and facilitate scientific collaboration 
and knowledge sharing in the Earth sciences, as current 
satellite measurements rapidly magnify the accumulation of 
more than 40 years of NASA datasets. One of the main 
objectives of NEX is to help Earth scientists leverage and 
reuse various data processing software modules developed 
by their peers, in order to quickly run value-added 
executable experiments (workflows). Toward this goal, this 
paper reports our efforts of leveraging social network 
analysis to intelligently extract hidden information from 
data processing workflows. By modeling Earth science 
workflow modules as social entities and their dependencies 
as social relationships, this research opens up new vistas for 
applying social science to facilitate software reuse and 
distributed workflow development. As a proof of concept, a 
prototyping system has been developed as a plug-in to the 
NEX workflow design and management system (VisTrails) 
to aid Earth scientists in discovering and reusing workflow 
modules and extending them to solve more complex science 
problems. 

I. INTRODUCTION

NASA’s Earth observing satellite measurements rapidly 
magnify the accumulation of more than 40 years of 
scientific datasets. To analyze such vast amounts of data, 
Earth scientists in many laboratories have developed highly 
specialized software components (tools) and processes. The 
software components are often composited as workflows in 
order to define more comprehensive data analysis processes 
and explore various approaches. Aiming to provide a novel 
platform to facilitate knowledge sharing, scientific 
collaboration, and direct access to NASA compute resources, 
NASA Earth Exchange (NEX) [1] seeks to connect the 
Earth science community to accelerate the rate of discovery 
in Earth sciences. It is a collaborative compute platform that 
improves the availability of Earth science data, models, 
analysis tools and scientific results. 

In recent years, workflow has become a popular 
technique for scientists to define executable multi-step 
procedures [2]. To help NEX users develop workflows, 
NEX has adopted VisTrails [3] as its workflow management 
system and has been working with the VisTrails team to 

provide baseline implementation of a number of tools as 
reusable VisTrails modules. Such VisTrails modules will 
allow NEX users to make data and computational resources 
on NEX accessible through both VisTrails’ graphical 
development interface [4] as well as command-line 
interface. 

The ability to discover and reuse knowledge (sharable 
workflows or workflow components - throughout this paper, 
the term artifact will be used to refer to either one) is critical 
to the future advancement of science especially in this 
information age. Many data projects in other domains (such 
as Kepler [5] in phylogeny, caGrid [6] in life science, and 
Science Gateway [7] in chemistry) have adopted similar 
approaches to help domain scientists find related artifacts. 
However, as reported in our earlier study in the biomedical 
domain [8], the reusability of scientific artifacts at current 
time is very low. 

Scientists often do not feel confident in using other 
researchers’ tools and utilities. For example, many Earth 
science processes and models have known input formats; 
input data thus usually have to undergo preprocessing steps. 
This is where everyone reinvents the wheel with each 
researcher or a research group creating their own version of 
tools for data reprojection, subsetting, mosaicking and so 
on. One major reason is that researchers are often unaware 
of the existence of others’ data preprocessing processes. 
Meanwhile, researchers often do not have time to fully 
document the processes and expose them to others in a 
standard way. These issues cannot be overcome by the 
existing workflow search technologies used in NEX and 
other data projects. 

Therefore, this project aims to develop a proactive 
recommendation technology based on collective NEX user 
behaviors. In this way, we aim to promote and encourage 
process and workflow reuse within NEX. Particularly, we 
focus on leveraging peer scientists’ best practices to support 
the recommendation of artifacts developed by others.  

Our underlying theoretical foundation is rooted in the 
social cognitive theory [9], which declares people learn by 
watching what others do. Our fundamental hypothesis is 
that sharable artifacts have network properties, much like 
humans in social networks [10]. For instance, workflows 
reveal “who knows what” (by one module calling another). 
More generally, reusable artifacts form various types of 
social relationships (ties) based on their invocation 
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Fig. 1 Service-oriented workflow reuse. 

dependencies, and may be viewed as forming what 
organizational sociologists who use network analysis to 
study human interactions [11] call a “knowledge network.” 

In particular, we will tackle two research questions: 
R1: What hidden knowledge may be extracted from 

usage history to help Earth scientists better understand 
existing artifacts and how to use them in a proper manner? 

R2: Informed by insights derived from the computing 
contexts, how could such hidden knowledge be used to 
facilitate artifact reuse by Earth scientists? 

As shown in Fig. 1, our study of the two research 
questions will provide answers to three technical questions 
aiming to assist NEX users during workflow development: 1) 
How to determine what topics interest the researcher? 2) 
How to find appropriate artifacts? and 3) How to advise the 
researcher in artifact reuse? 

In this paper, we report our efforts of leveraging social 
networking theory and analysis techniques [12, 13] to 
provide dynamic advice on artifact reuse to NEX users 
based on their surrounding contexts. As a proof of concept, 
we have designed and developed a plug-in to the VisTrails 
workflow design tool. When users develop workflows using 
VisTrails, our plug-in will proactively recommend most 
relevant sub-workflows to the users. 

The remainder of the paper is organized as follows. In 
Section 2, we use a motivating example to explain the 
technical challenges. In Sections 3 and 4, we present our 
service social network and candidate service selection 
techniques, respectively. In Section 5 and 6, we present 
system implementation and preliminary experimental results, 
respectively. In Section 7, we discuss related work. In 
Section 8, we draw conclusions. 

II. STRATEGY

In this section, we briefly introduce our strategy of 
building and testing a recommendation engine on top of 
existing techniques: VisTrails and ProgrammableWeb. 

A. Plug-in to VisTrails 

VisTrails is a popular open-source scientific workflow 
management system that provides support for data-oriented 
simulations, exploration and visualization [14]. It provides a 
visual programming language, so that domain scientists can 
drag and drop reconfigurable, predefined building blocks to 
visually define executable data processing workflows. 
Workflow components can be linked together through their 
input/output ports, to define execution order between them. 
VisTrails also supports web service technology, where 
workflow components can be specified as external software 
applications wrapped as web services with standard 
interfaces. 

Known for its facility supporting data provenance, 
VisTrails has been adopted at NEX for scientists to design 
and execute data analysis workflows through VisTrails’ 
graphical development interface [4]. Therefore, our strategy 
is to build our technique on top of the VisTrails, to design 
and develop a plug-in to VisTrails as a seamless workflow 
recommendation engine. With the formed partnership, this 
project will make sure that it aligns with the VisTrails to 
ensure the sustainability of the plug-in. 

B. ProgrammableWeb as Testbed 

As explained earlier, this project aims to design the next-
generation of tools for scientific collaboration. One 
significant challenge is an inherent lack of user data. Our 
strategy is two-fold. First, we select a reusable software 
repository as our testbed to evaluate our technique and plug-
in. Second, studying an existing repository will help us 
decide features useful for workflow recommendation to 
build next-generation workflow repository. 

Based on our earlier study [15], we have decided to use 
ProgrammableWeb as our testbed, which is a repository of 
APIs (reusable software services) and mashups (service 
composition). We draw a natural analogy between the 
concepts in ProgrammableWeb and our study domain. An 
API, or Web 2.0 API, refers to a web application that can be 
remotely invoked (programmable) through its standard 
interface (e.g., REST or WSDL). Such web services are 
analogous to reusable scientific components that can be 
shared and recommended to peers. A mashup refers to a 
web application comprising published APIs in 
ProgrammableWeb. In other words, a mashup is a 
synergistic composition of APIs for a value-added service. 
Thus, a mashup is analogous to a scientific workflow that is 
typically and intentionally comprised of multiple existing 
software modules. Throughout the paper, we will use two 

163

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:50:28 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2 Module-Workflow network. 

sets of terms interchangeably: (1) workflow and mashup; (2) 
module, service, and API. 

By modeling the APIs and mashups as a social network, 
we can analyze their usage history and use it to formulate 
recommendations. Due to the natural mappings between 
workflow/module and mashup/API, we believe that similar 
analysis will hold true for scientific workflows. 

Another reason why we chose ProgrammableWeb as our 
testbed is its rapid growth. Since its inception in late 2005, 
the number of APIs and mashups published at 
ProgrammableWeb has been increasing rapidly. Up to 
September 17, 2013, 9985 APIs and 7185 mashups have 
been published. Such rapid growth will help us evaluate the 
effectiveness and efficiency of our approach. 

III. SERVICE SOCIAL NETWORK

A. Network Construction 

All services and workflows are modeled as social nodes 
in a multi-modal, multi-relational, and multi-featured 
network called Service Social Network (SSN): a graph SSN 
= (V, E) where V is a finite set of nodes, and E is a finite set 
of edges. An SSN shows as a multiplex network. Multiple 
types of nodes co-exist: e.g., services and workflows. Edges 
may be classified according to the nature of the relationships 
that they represent, for example, usage or authorship. Each 
edge type may further carry an influential coefficient with 
respect to a given criterion, e.g., user ranking. 

We start by modeling the “use” relationship between a 
workflow and a service. If a workflow invokes a service, a 
social edge is identified between them. A workflow-service 
network is thus established based on their inclusive 
relationships. Fig. 2 illustrates a segment of a constructed 
SSN, where an edge exists between a workflow (blue nodes) 
and a service (red node) if the service is used in the 
workflow. A workflow may uses multiple services; and a 
service may be used by multiple workflows. Therefore, 
there is a many-to-many relationship between them. Fig. 2 
illustrates that a service is socially connected to many 
workflows based on the “use” relationship. From a 
workflow repository, the constructed SSN may be 
disconnected, comprising connected subgraphs and isolated 

nodes. 
The SSN can be formalized as a matrix Q that describes 

the involvement relationships between m workflows and n
services: 

[ ], 0 ,0ijQ q i m j n� � � � � , where: 

1�ijq  if workflow i calls service j.

Based on the relation Q, another relation S can be 
retrieved from matrix calculation: 

njisQQS ij
T ����� ,0],[ , where: 

sij = the number of workflows where both services i and j
are used; sii = number of workflows where service i is used.

Relation S represents a “social network” among services 
based on their collaboration relationship. The semantic 
meanings of its comprising edges are: if two services are 
used in the same workflow, a social tie is established 
between them. Note that rich context information may be 
carried by the edges in the network as labels. For example, 
an edge between two services may be labeled with the 
corresponding workflow that uses them. If two services are 
used together in multiple workflows, multiple edges can be 
created with proprietary labels. By analyzing the profile of a 
specific workflow, we may understand under which 
conditions the two services can be used together. Such a 
collaboration relationship maps to the association rules in 
social network analysis. 

Collaboration ties can be further classified into various 
levels. The more workflows in which two services are used 
together, the tighter collaboration tie between them. In the 
SSN, a tight tie implies that multiple edges exist between a 
pair of service nodes. In contrast to direct collaboration 
relationship between two services where there exists edges 
between them, an indirect collaboration relationship is 
defined when a path exists between two service nodes. The 
collaboration tie can be thus calculated as follows. Assume 
that a path exists in SSN between services si1 and sik with 
(ik-2) intermediate service hops: 

���������	 ��
� � � � ���	 ���	 ���	 � 	 ��
 �
������������������������������ � ��������	������
����� ,

Where � � ��	��  is a coefficient to weigh the 
collaboration relationship of an edge. 

B. Network Analysis 

After establishing the workflow-service networks, we 
calculate various metrics over them to comprehend the 
interaction patterns between services and workflows, as well 
as patterns among service usages. We adopt the tradition of 
calculation of centrality and prestige in social network 
analysis, including degree centrality (popularity), 
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(a) Generate word TF-ICF for each category

�
(b) Multi-categorize service/query 

�

(c) Use RBO similarity to generate candidates 
Fig. 3 Generate candidate list 

betweenness centrality, and clique. Through degree 
centrality analysis, highly reused services can be identified 
based on the popularity of corresponding nodes. Through 
betweenness centrality analysis, hinge services can be 
identified. Through clique, we can identify collaborative 
services, i.e., association rules among services. 

If a service is used multiple times in multiple workflows, 
popularity can be considered as an annotation to be used for 
future purpose. Using the k-path betweenness algorithm, we 
can identify the key services, in the sense that they 
collaborate with other services in user queries. 

Through these analyses, we can answer user queries 
regarding service query (usage) behaviors. For example, 
“how are different services used together in workflows?” 
and “in what types of workflows is a service usually used?” 
As another example on service-service relationship, we can 
answer questions such as “are there many services that 
collaborate with each other in workflows, and how?” and 
“what are the key services in these collaborations?” Such 
information will help to construct service recommendation 
engine. 

IV. CANDIDATE SERVICE GENERATION
When services are published, their service providers 

usually also publish some metadata such as its category, 
descriptions, and development team information. Such 
metadata will help shorten the candidate lists, before 
network analysis is conducted that may become expensive 
in large-scale service networks. Our earlier work extends the 
Support Vector Machine (SVM)-based text classification 
technique to enhance service-oriented categorization [15]. In 
this project, we will apply the similar method to categorize 
user interests in addition to services to generate shortened 
candidate list. 

C. Label Services and User Interests 

TF-IDF (Term Frequency-Inverse Document Frequency) 
is a traditional metric that calculates the weight of every 
term comprised in a document. Applying the idea to service 
repositories, we can use TF-ICF (Term Frequency-Inverse 
Category Frequency) to weight every term contained in a 
category [15]. Based on our previous work [16], Equations 
(1-3) show how to calculate TF-ICF for a term ( � ) in 
category (): 

�� � ! "�#$ � %& � � $�
%�'

���������������������������������(�
�������) � *+)& ), -*�������������������������������������������������.�

����/�0/�	 � 123��	 �
1�4 5 �6 5 �� 7 �

89: *;* < �
1�

� < ��

7 6�
5 123��	 �
� 123��	 �=;

����������������������������>�

where ?@A��	 %� represents the frequency of the term (�)
used in the category (%), and C represents a collection of 
categories. It is divided by the number of services (n_s) in 
the category for normalization purposes. The frequency of 
the term is further adjusted by the distribution of terms over 
the corresponding category in a service repository. B is a 
coefficient that can be adjusted in specific categories. Terms 
with high TF-ICF are keywords of the category. TF-ICF is 
pre-calculated for every term in each category, over the 
entire service repository. 

Since a service may be relevant to more than one category, 
Algorithm 1 illustrates how TF-ICF is used to label a service 
(metadata) over multiple categories. After metadata is 
tokenized, we sum up TF-ICF for all comprising terms 
regarding each category, and rank the categories based on the 
summation. The top-K category list will be associated with 
the service. Labeling (categorizing) user interests follow the 
similar procedure as that of services. 

Algorithm: Label_Service(metadata) 
Loop�� in C
    �DEF � � �/�0/�G	�  , +��- H �IJJ��KLE��GM�EK�INI�I
�OL�KNPDE� � ��OL���DE�Q
�ORSCI�KTOLGK�� � �UQ
Loop G from � to S 7 �
If sortedSum[i] == 0 Then Break; 
EndIf 

End Loop 
�I�KTOLVWG��X IRRKMN��OL�KNPDEYGZX �I�KTOLV�

End Loop 
[\�@[?��ORSCI�KTOLGK�(); 

D. Generate Candidate List 
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(a)                                                                               (b) 
Fig. 4 Workflow recommendation plug-in to VisTrails. 

Fig. 3 shows how to generate candidate list. A user's 
query is assigned with a category rank list using Algorithm 
1, which will be matched with service categories in the 
repository. TF-ICFs of all services are calculated (Fig. 3(a)). 
All services are multi-labeled using Algorithm 1 (Fig. 3(b)), 
so as to user interest when a user query comes. Fig. 3(c) 
shows how a candidate list is created using RBO similarity. 
The category list for user query is compared with all 
services’ category list. Candidate services are ranked from 
most similar to least similar. 

A score function is used to measure the relevance 
between user’s query and the services in the repository. All 
services ranked with relevant score will be provided as a 
candidate list to enter service analysis phase. 

The score function measures the similarity between two 
ranked lists. The ranking algorithm should handle non-
conjointness, favor higher ranks, and be monotonic with 
increasing depth of evaluation. Such features allow us to 
model the issue as an indefinite ranking problem [17], 
whose rank-biased overlap (RBO) is calculated in Equation 
(2). 

]^_��W	 P	 J	 �� �
���`

` a� bc
c

de�� Re <�� bf�cgf�
fc

de�h�� Rei < �jk�jf
d < jf

h �Rd (2) 
�
L and S are two ranked lists with length J  and � ,

respectively ( J l �� ). R  is the probability that the user 
intends to continue the comparison (e.g., R� � ��Xmn ). od
represents the overlap on the seen lists at depth J.

V. SYSTEM IMPLEMENTATION

Centered on the SSN, we have designed and developed a 
service search engine, as shown in Fig. 4. It comprises four 
major components as shown in Fig. 4(b): (1) data collection: 
Workflows and modules are collected incrementally from 
various data repositories. (2) annotation: Automatic 
annotation and statistical data generation creates additional 
knowledge to support module-oriented workflow 
composition. (3) search: Based on the SSN networks, this 
module supports relation-aware cross-workflow search 

function. (4) recommendation: This component provides 
guidance on workflow reuse during workflow development. 
Recommendations can be either passive (requested by users) 
or proactive (automatically delivered when a need is 
perceived). So we call it a Collection, Annotatoin, Search, 
rEcommendation (CASE) plugin. 

The prototyping system is implemented as a plug-in to 
VisTrails. A local CASE engine will dynamically 
communicate with the central CASE engine at the server 
side to retrieve related modules and workflows. The service 
side CASE engine spawns several agents, each monitoring a 
data source (such as NEX workflow or data repositories). 
Any relevant event (e.g., publication of a new workflow) 
detected on the data sources will trigger a recalculation and 
subsequent changes to the SSN networks maintained at the 
server side. While a NEX user is building a workflow in 
VisTrails, our plug-in will observe the user’s contextual 
environments, such as past workflows and the incomplete 
workflow. 

As shown in Fig. 4(a), VisTrails provides a visual 
interface that displays the module composition in a 
workflow. Since our prototype is a plug-in to VisTrails, we 
provide a graphical interface to support workflow 
recommendation to NEX users, to keep consistent with 
VisTrails. For example, we allow NEX users browse 
PDMW networks and comprised (social) relationships. 

A. System Architecture 

Fig. 5 illustrates the internal architecture of our plugin. A 
Source Manager is in charge of loading historical usage 
information from external data sources, e.g., 
ProgrammableWeb. A Context Manager is in charge of 
modeling and managing the context of a user in the process 
of a workflow design. A Search Engine is connected to a 
typical keyword-based search engine to conduct syntactical 
match making. 

External data sources are monitored by the Source 
Manager. When changes happen, the Parser module will 
filter the related information and input to the Social 
Analyzer that will alter the PDSW network. As shown in 
Fig. 5, Python-oriented graphical tools (PyQt and PyPlot) 
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Fig. 5 System architecture. 

are used to provide visualization to the service network. 
As explained earlier, our recommendation engine is 

implemented as a plug-in to VisTrails. Thus, working with 
the VisTrails team, we have identified the least amount of 
four modules where changes are applied, as summarized in 
Table I. All plug-in code stays under the “package” 
directory, while corresponding menu items and their event 
handlers are initiated by overwriting the function 
menu_items in __init__.py file under the plugin package. 

Table I. Changed VisTrails modules 

All functions in the plugin are triggered with the 
VisTrails’ in-context GUI. After initializing a menu and the 
handler, one has to display the GUI components to present 
the features in the VisTrails GUI framework, which is 
constructed in pyQt. For example, when a search form is 
needed for a user to input keywords, an object containing an 
instance of QWidget class will be created as the frame of the 
VisTrail in-context GUI. 

The graphical analysis is realized by integrating 
matplotlib with VisTrails’ in-context GUI. Service networks 
are modeled using networkx package, and then plotted by 
matplotlib and Qt4 libraries. When analyzing the mashup-
API relationships, if two APIs are shared in the same 
mashup, an edge will be created between the two API 
nodes. 

B. Usage Scenarios 

We have implemented our workflow recommendation 
engine as a plug-in to VisTrails. The following usage 
scenarios will briefly depict how our plug-in can be used in 
the process of a workflow design to facilitate productivity, 
as illustrated in Fig. 6. 

Naturally, when designing a workflow, the user has some 
general ideas about its purpose. These ideas can be written 
into a short description of the experiment. We can conduct 
some simple natural language processing procedures to 
identify keywords that mainly represent the intended aims. 
The set of resulting keywords will be used as a query into 
the search engine. For example, for a user interested in 
analyzing the efficiency of roads in a certain area, a 
keyword may be identified as “map.” The built-in API 
search module in our plug in will look up related APIs from 
the API repository, and return with a collection of 
candidates, as shown in Fig. 6. 

After the user picks up an API from the list, our plug-in 
will dynamically generate a network of all related APIs that 
are usually used together in some existing mashups. As 
shown in Fig. 6, the selected node is colored red and 
enlarged. A node is blue most of the time, and is enlarged if 
it has already been added to the project. If the user decides 
to take one recommended API, the process will iterate and 
more recommendations will be provided. 

Alternatively, if the user decides to reuse a mashup, our 
plug-in will recommend related mashups, at the current 
time, based on the historical usage that some mashups use 
mutual APIs (in other words, they have similar goals). 

VI. Experiments and Evaluations 

A. Environmental Setup 

As explained in earlier section, ProgrammableWeb is 
used as our testbed. ProgrammableWeb publishes a set of 
REST interfaces that can be leveraged to retrieve APIs and 
mashups in their repository. Note that one must first register 
for a developer key in order to access the REST interfaces. 
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Fig. 6 Usage history-supported recommendation. 

We have studied ProgrammableWeb since 2011 [15]. 
The metadata of all APIs can be retrieved through REST 

calls, divided by pages. The results are in either XML or 
JSON format. However, we found that an API may have 
multiple entries (e.g., multiple versions). Our solution is to 
first identify all duplicate entries, then use the API name to 
query ProgrammableWeb to get the latest API and discard 
other entries. A similar approach is applied to retrieve all 
mashups from ProgrammableWeb. In the metadata of a 
mashup, a field “apis” records the APIs used by the mashup. 
Such information helps us to identify all API-mashup 
connections (i.e., edges) of the service network. Derived 
networks are generated subsequently. Currently, all 
networks are stored in MongoDB, which is a nosql database 
that possesses a hybrid collection concept that can represent 
various types of nodes and edges in our network. 

B. Experimental Setup 

We have carefully designed a set of experiments to 
evaluate the effectiveness of our approach. Specifically, we 
focus on examining under which circumstances our method 
complements the existing search methods and enhances 
service discovery and recommendation. Our experiments are 
designed as follows. 

Since ProgrammableWeb contains a set of predefined 
categories, we study the APIs in corresponding categories 
separately. For each category, all APIs published in the 
category are gathered to form a corpus. At this stage, the 
tags of APIs are considered and accumulated. A vector is 

constructed to represent every category. 
We examined the relevance of each API in the 

corresponding category. Based on the built category vector, 
the relevance of each comprised API is calculated as 
follows. A vector is first built for every API. The similarity 
between the API and the category is calculated using the dot 
product. Thus, the top m (e.g., pq ) APIs are identified 
based on their usage of the popular keywords in the 
category. Our assumption is that, the APIs tagged with 
popular keywords are more likely to be searched by users, 
and consequently more likely to be used by mashups in the 
past. Such past usage history can be leveraged by our 
presented method to refine API recommendation. 

Now we simulate user requests: all contained tags of an 
API form a valid user request. Thus, we simulate a 
collection of reasonable user requests for a category from its 
comprised APIs. For each user request, we again use its 
contained tags to build a vector. It is used to conduct 
keyword search with all other APIs in the category. For each 
API under examination, its tags and descriptions are used to 
construct a vector for the API. The similarity (dot product) 
between the constructed API vector and the user request 
vector is calculated and used to decide its ranking in the 
recommendation list. 

Since each user request will correspond to the API used 
to build the request, we further examine the historical usage 
of the API: 1) whether it is used by other mashups and how 
many; and 2) whether it is used together with other APIs in 
some mashups and how many. The more connections found, 
the more likely that our method can better adjust the 
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Fig. 7 Overall reuse status. 

recommendation. 
Our assumption is that a category with more APIs will 

attract more attention and thus imply more historical usage 
data. We have thus focused on the following top 10 
categories, in a descendent order: Tools (726), Internet 
(609), Social (501), Financial (454), Enterprise (439), 
Reference (345), Mapping (341), Shopping (337), 
Government (314), and Science (313). 

C. Experimental Results and Analysis 

Our study reveals that current API reusability is very 
low. Fig. 7 shows the API reuse status at 
ProgrammableWeb on September 17, 2013. Most mashups 
call one to two APIs; only a very small number of mashups 
call more than three APIs (380 mashups as 5% of the total 
of 7188 mashups). 8694 APIs (87%) are not used in any 
mashups. Fig. 7 compares the status in 2013 and 2012: the 
enhancement is not significant. On September 2, 2012, 7142 
APIs were published, 5993 APIs (83%) were not used by 
any mashup. 

Table II summarized our experimental results on testing 
the effectiveness of our approach. We measure three 
numbers for each category: total number of APIs; reused
indicating the number of times the APIs are contained in the 
'apis' field of at least one mashup; collaborated indicating 
the number of mashups containing at least two APIs. The 
top 10 categories with the most APIs are listed. Take 
category Tools in Table II as an example. It contains 726 
APIs; 46 APIs are used by some mashups (6.34%); 37 APIs 
are paired with other APIs (5.1%). According to our 
recommendation algorithm, the rankings of these APIs will 
be raised and highlighted. Consider the category Shopping 
as another example. About 25% of the APIs are reused, and 
over 20% of them have collaboration relationship. Such 
historical data usage analysis will help to proactively 
recommend such modules. As shown in Table II, similar 
findings were supported by other categories. 

As revealed by Table II, although many more APIs are 
published to ProgrammableWeb, the reuse of existing APIs 

remains quite low. The highest record is less than 25% in 
the Mapping category. On one hand, this fact strengthens 
the necessity of our study and the usefulness of our 
technique. On the other hand, this fact has resulted 
insufficient dataset for our technique to leverage. Besides, it 
appears that although 'Tools' contains a much larger number 
of APIs (726), the reuse of its APIs (6.43%) lags behind 
many other categories. 

Table II. Experiments on testbed 
Snapshot on 9/23/2013 

Category #APIs Reused Collaborated 
Tools 726 46 (6.34%) 37 (5.1%) 
Internet 608 84 (13.8%) 77 (12.66%) 
Social 501 95 (18.96%) 89 (17.76%) 
Financial 454 18 (3.96%) 13 (2.86%) 
Enterprise 439 19 (4.32%) 18 (4.10%) 
Reference 345 58 (16.81%) 46 (13.33%) 
Mapping 341 83 (24.34%) 72 (21.11%) 
Shopping 337 71 (21.06%) 64 (18.99%) 
Government 314 32 (10.19%) 24 (7.64%) 
Science 313 8 (2.55%) 7 (2.23%) 

Snapshot on 9/2/2012 
Category #APIs Reused Collaborated 
Internet 470 80 (17.02%) 73 (15.53%) 
Tools 467 37 (7.92%) 28 (5.99%) 
Social 405 83 (20.49%) 81 (20%) 
Financial 282 13 (4.60%) 9 (3.19%) 
Enterprise 282 16 (5.67%) 15 (5.31%) 
Reference 272 51 (18.75%) 39 (14.33%) 
Mapping 264 79 (29.92%) 68 (25.75%) 
Shopping 253 64 (25.29%) 57 (22.52%) 
Telephony 233 24 (10.30%) 22 (9.44%) 
Government 227 26 (11.45%) 18 (7.92%) 

Nevertheless, our experiments have demonstrated that 
our method may complement the keyword-based search 
method to enhance service and workflow discovery. As 
more past usage history becomes available, our method 
becomes more effective. In addition, our method can help 
find services that are relevant but assigned to other 
categories, i.e., cross-category search. 

Fig. 8 further examines the correlation between 
collaboration and reuse status, for the top 10 categories at 
ProgrammableWeb based on the number of APIs contained. 
For each category, we focused on its most “popular” 25 
APIs, based upon their similarity with the test cases 
(detailed can be found in Section VI.B). Similarity is 
measured by taking the dot product of the description vector 
of a particular API with the category vector that contains the 
descriptions of all APIs in the category. The rationale is 
that, we focus on the APIs that more likely to be found by 
users. In other words, we intend to establish a benchmark 
for our study. For the selected most related APIs, we 
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                  (a) Tools                     (b) Internet                   (c) Social                      (d) Financial                  (e) Enterprise 

             (f) Reference                  (g) Mapping                  (h) Shopping              (i) Government                   (j) Science 

Fig. 8 Correlation between popularity and reuse for top 10 categories.  

examined its reusability and collaboration history. 
In Fig. 8, the horizontal axis represents the indices of the 

top 25 APIs using an arbitrary index, and the vertical axis 
represents the counts. “Reuse” (represented by diamond 
dots) means the number of mashups that use a particular 
API. “Collaboration” (represented by square dots) means 
the number of other APIs that are used in the same mashup 
as a particular API. 

As shown in Fig. 8, it is noted that reuse is not too 
common and that popularity does not necessarily equate 
with “easy to find” (“similarity”) using the description 
vector metric. Less than 15% of APIs are actually used by 
mashups, and less than 15% of APIs collaborate with other 
APIs. For example, in the category Financial, only one 
popular API is used by one mashup; and there is no 
collaboration relationship found in APIs. Only for some 
established categories such as Tools, Internet, and Mapping,
it is more likely for easy-to-search APIs to be reused. For 
example, in category Tools, five most popular APIs (20%) 
collaborate with other APIs; two popular APIs (8%) are 
used by mashups. 

This finding implies that using previous historical usage 
to help determine recommendations will likely to have 
effective results than using standard keyword search alone. 
Our finding also suggests that the two approaches can 
complement each other. It should be noted that whether or 
not the results are “good” requires a human to come in and 
evaluate them. In summary, our experiments prove that our 
techniques will be able to improve the effectiveness of 
service and workflow recommendation. 

VII. RELATED WORK

Workflow recommendation has been gaining more 
attention in the recent years. VisComplete [18] provides 
auto-complete suggestions by mining frequent patterns in 
existing pipelines. Leake et al. [19] propose a CASE-based 
approach to suggest the possible next step(s) aiding reuse of 
portions of prior workflows. In recent years, workflows 
allow reusable services as components. Thus, workflow 
recommendation largely relies on service discovery and 
recommendation. 

Most work on service discovery and recommendation is 
based on either syntactical or semantic match making. 
Various information retrieval techniques, such as support 
vector machine (SVM) and term frequency-inverse 
document frequency (TF-IDF), have been used to build 
service search engines. The service descriptions of 
candidate services are analyzed against expected service 
queries based on syntactic match making process [20]. Our 
previous work enhances the SVM technique to facilitate and 
validate service categorization [15], a technique that 
automatically extracts semantic metadata from static WSDL 
service descriptions [21]. Other researchers focus on 
applying semantic technology to support service discovery 
[20]. Our earlier work yields a service semantics model 
empowered by a technique that automatically extracts 
semantic metadata from static WSDL service descriptions 
[21]. In addition, some other researchers take into 
consideration of QoS requirements to recommend services 
appropriately [22]. 

In our previous work, we have demonstrated that hidden 
usage history of services can be extracted from published 
scientific applications to facilitate capability reuse [23]. A 
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holistic set of service networks are established, and network 
analysis over them [24] opens a gateway to this exploration. 
We developed a pilot prototyping system [23] as a plug-in 
to the Taverna workflow workbench. 

After our paper was published in 2011, recent years have 
witnessed more work of leveraging service usage history. 
Cao et al. [25] recommend Mashup services to users based 
on usage history and service network. User interests are also 
extracted from their Mashup service usage history. Huang et 
al. [26] conducted an empirical network analysis to 
quantitatively characterize the static structure and dynamic 
evolution of a Service-Mashup ecosystem at 
ProgrammableWeb. Zhou et al. [27] model services, 
associated with their attributes and entities, in a 
heterogeneous service network. A neighborhood random 
walk distance measure algorithm is proposed to provide 
service ranking. In contrast to related work, our CASE-
enabled, fine-grained workflow/subworkflow 
recommendation mechanism will retrieve and rank related 
artifacts based on the scientist’s interest and context—what 
we call “recommend-as-you-go.” 

Social relationships between service providers and 
service users have also been widely considered as important 
factors to help service discovery and recommendation. Xu et 
al. [28] establish a coupled matrix model to analyze multi-
dimensional social relationships among potential users, 
topics, mashups, and services. A factorization algorithm is 
designed to predict unobserved relationships. Vollino and 
Becker [29] study service usage profiles to identify distinct 
groups of service users and their usage characterization in 
terms of service functionality. In contrast to their work, our 
research focusing on studying “social” relationships among 
services based on how they are interact with each other in 
the past workflows. 

Some researchers also study change impact propagation 
during service evolution. For example, Oliva et al. [30] 
study the static dependency among workflows stored in a 
centralized repository, and derive change impact analysis 
for the workflows; Chinthaka et al. [31] analyze workflow 
revision history to track the evolution of targeted research. 
Their research results may help our future work on SSN 
network evolution and notification at runtime. 

VIII. CONCLUSIONS

In this paper we have reported our efforts of building a 
historical usage-based workflow recommendation engine. 
The primary impetus behind the project is the movement to 
facilitate collaboration among scientists. To this end, the 
front-end of the workflow recommendation system takes the 
form of a VisTrails plugin, which allows it to be easily 
dropped into any VisTrails environment. As a result, our 
tool is seamlessly and transparently integrated into NEX 
users’ familiar design environment while providing real-
time artifact reuse guidance and recommendation. We have 

reported a prototyping system as a proof of concept. 
We plan to continue our research in the following 

directions. We plan to enhance our recommendation 
techniques with semantics-based discovery approaches. We 
also plan to accumulate practice data to create benchmarks 
for the presented approach in this paper. 
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