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Abstract—Nowadays many companies and organizations
choose to deploy their applications in data centers to leverage
resource sharing. The increase in tasks of multiple applications,
however, makes it challenging for a data center provider to
maximize its revenue by intelligently scheduling tasks in software-
defined networking (SDN)-enabled data centers. Existing SDN
controllers only reduce network latency while ignoring virtual
machine (VM) latency, thus may lead to revenue loss. In the
context of SDN-enabled data centers, this paper presents a
workload-aware revenue maximization (WARM) approach to
maximize the revenue from a data center provider’s perspective.
The core idea is to jointly consider the optimal combination of
VMs and routing paths for tasks of each application. Comparing
with state-of-the-art methods, the experimental results show that
WARM yields the best schedules that not only increase the
revenue but also reduce the round-trip time of tasks of all
applications.

Keywords-Cloud data center, revenue maximization, software-
defined networking, task scheduling, metaheuristic

I. INTRODUCTION

Currently it is common for heterogeneous applications to

run in data centers and deliver services to users around the

world, through resource sharing. As a core technique, virtu-

alization is widely implemented to efficiently utilize server

and network resources in data centers. Each physical server

is pooled and divided into multiple virtual machines (VMs)

in a virtualized infrastructure. To ensure system scalability

and stability, each application may concurrently run in either

heterogeneous or homogeneous VMs in data centers. Admitted

tasks of each application in data centers typically have to go

through data center network before arriving at VMs. Therefore,

the round trip time (RTT) of each task comprises of the

network latency needed in network and the VM latency needed

in VMs. The latency of each task has a great impact on users’

experience and may bring the loss of revenue to a data center

provider if it becomes too large. It is reported that a half-

second latency leads to 20% loss of users’ traffic in Google

[1].

Software-defined networking (SDN) is able to provide the

centralized network control with OpenFlow-enabled forward-

ing devices (routers or switches) [2]. It supports the separation

of switches in a data plane and controllers in a control

plane. The network control and management is moved to a

remote controller that determines globally optimized routing

for the whole network in data centers. OpenFlow is a standard

protocol to exchange information between the data and control

planes. An SDN controller manages network devices with

OpenFlow APIs, and provides multiple functions such as load

balancing, forwarding, network virtualization, and quality of

service (QoS) evaluation.

An SDN controller periodically fetches network information

(such as utilization and available bandwidth of each link).

Therefore, SDN enables data centers to meet tasks’ require-

ments in a real-time and scalable manner. Thus, fine-grained

task scheduling and high-performance network management

for multiple applications can be achieved. Recently, Google

has successfully applied SDN to manage its multiple data

centers and realized flexible and efficient traffic engineering

[3]. It is shown that network utilization is improved greatly

and task loss is significantly reduced with SDN.

However, existing SDN controllers can only obtain network

information in data centers, and therefore can only optimize

the network latency of tasks by controlling switches. It should

be noted that VM latency is also very important for users’

experience. Here, VM latency means the response time of

each task of an application on a VM. For example, if tasks are

scheduled to run on a VM that is already overloaded, signif-

icant VM latency may occur. In addition, routing methods in

the current SDN controllers cannot well jointly consider the

minimization of the network and VM latency. For example,

the Floodlight controller [4] chooses the shortest path to select

VMs. It may lead to large RTT because of network conges-

tion and large VM latency. Typically, RTT of each task is

transformed into its corresponding revenue based on the items

defined in service-level agreements (SLAs). Users contribute

corresponding revenue to a data center provider based on the

execution of their tasks. Clearly, revenue maximization is the

most important for a data center provider [5].

To tackle the aforementioned issues, this work investigates

the revenue maximization problem for SDN-enabled data

center providers. A workload-aware revenue maximization

(WARM) approach is presented. By considering workload

in an SDN-enabled network, VMs, and SLAs, WARM can
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effectively increase the revenue of the data center provider

by specifying the optimal combination of VMs and routing

paths for tasks of each given application. To evaluate the

effectiveness of the WARM, publicly available task data in

Google data centers [6] is used. Comprehensive comparisons

show that WARM outperforms several existing task routing

methods in terms of revenue and RTT.

The main contributions of this work are summarized in

three-fold. First, an architecture of a workload-aware SDN

controller is presented that consists of an SDN controller

and a cloud controller. The architecture enables the controller

to periodically update information in network links and the

workload in VMs. Second, based on the architecture, WARM

is developed to maximize the revenue of a data center provider

by jointly considering network workload, VM status, and

SLAs. WARM can well specify the optimal combination of

VMs and routing paths for tasks of each application, and

realize intelligent scheduling of tasks of all applications. Third,

this work makes comprehensive comparison between WARM

and its two peers, i.e., Open Shortest Path First [7], and Round

Robin [8].

The remaining of this paper is organized as follows. Related

work is reviewed in Section II. Section III shows the archi-

tecture of an SDN-enabled data center. The workload-aware

revenue maximization problem for a data center provider is

formulated in Section IV. Section V describes the WARM

method in detail. Section V evaluates and compares WARM

with peers based on a widely used network emulator Mininet

[9] . Section VII concludes the paper.

II. RELATED WORK

This section gives a summary of existing studies related

to the research topic in this paper, and further shows the

similarities and differences between the proposed WARM

method and existing studies.

A. Traffic engineering

Several SDN studies focus on the traffic engineering prob-

lem [10]–[12]. For example, an ISP-internal service and traffic

management mechanism are presented in [10]. Several SDN-

based designs in the network layer are introduced to achieve

load balancing of traffic. In this way, a fine-grained traffic

engineering that supports high-efficient multicast load balance

inside ISP networks is enabled. In [11], several challenging

research problems about traffic engineering in SDN-enabled

networks are discussed. These research issues include traf-

fic analysis, fault tolerance, flow scheduling, and topology

change. It is demonstrated that a global network view (e.g.,

flow characteristics and network status) can be exploited to

realize better traffic management and control. In [12], a power

management method based on dynamic voltage and frequency

scaling (DVFS) is presented to realize energy-efficient routing

of tasks in control and data planes.

The aforementioned approaches only consider traffic en-

gineering in a network, thus can only optimize the network

latency of tasks. However, for the tasks of each application,

the VM latency may also have a great impact on tasks’

RTT experienced by consumers. The reason is that large VM

latency may lead to large RTT of tasks, thus decrease the

revenue of the data center providers.

B. Revenue optimization

Several existing studies have presented different approaches

to achieve revenue maximization for data center providers

[13]–[15]. In [13], a controller is proposed to support a

dynamic fine-grained resource provisioning method in a non-

equilibrium states VCDC. Based on this model and SLAs, a

hybrid meta-heuristic algorithm is developed to determine the

allocation of CPU and I/O resources, where the revenue of

application services is maximized and machine-level energy

expenditure is minimized. In [14], a multiserver system is

treated as an M/M/m queuing system such that the expected

revenue brought by the execution of each task is calculated.

The optimal configuration of a multiserver system is studied

and determined based on applications’ characteristics. In [15],

a revenue-based resource allocation mechanism is implement-

ed to dynamically distribute VM resources in a server, such

that the total revenue generated based on SLAs is maximized.

These studies typically model and analyze tasks’ response

time needed in servers or VMs in data centers, and further

achieve revenue maximization for the data center providers

by converting the response time into corresponding revenue

according to SLAs. However, these studies ignore the network

latency that may also have great impact on the revenue of

the data center providers. Different from these studies, our

work explicitly provides the mathematical modeling of RTT

including both network and VM latency. Based on the RTT

modeling and pre-defined SLAs, the revenue optimization

problem for a data center provider is formulated and further

solved by a hybrid meta-heuristic algorithm, i.e., WARM.

C. Load balance

Load balance in data centers has been a challenging top-

ic [16]. In [16], performance and power-constrained load

distribution approaches in large-scale cloud data centers are

presented. In these methods, optimal load distribution and

power allocation in heterogeneous multicore processors are

addressed to realize high-efficient utilization of resources in

clouds. The work in [17] presents an approach to guarantee

the scalability of data centers by adopting multiple SDN

controllers. This approach alleviates the overload of a single

controller and enhances the system’s performance by consid-

ering load balance among multiple controllers in mega data

centers. In [18], a sampling-based load balancing protocol is

designed to provide high-performance load balancing for data

planes. This protocol periodically collects sampling data in

several paths to every switch, and schedules flows to the path

with the maximum bandwidth resource.

Nevertheless, these studies focus on load balance with the

aim of reducing tasks’ response time or enhancing the system’s

performance. In contrast, this paper can realize load balance

and achieve revenue maximization for the data center provider
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by jointly considering workload in SDN-enabled network,

VMs, and SLAs.

III. ARCHITECTURE OVERVIEW

This section shows the architecture of a data center that

enables a workload-aware SDN controller. As illustrated in

Fig. 1, this controller can achieve revenue maximization for a

data center provider by intelligently scheduling the tasks of all

applications. The architecture contains workload-aware SDN

controllers where the proposed WARM method is executed.

WARM jointly considers the workload in both network links

and VMs, and determines a VM and routing path for the

tasks of an application. In this way, WARM can maximize

the revenue of the data center provider by smartly scheduling

all the tasks of multiple applications.

Fig. 1. Architecture of the SDN-enabled data center.

In a traditional SDN architecture, the SDN controller man-

ages traffic information in network links, and it can only

control OpenFlow-enabled switches in a network. Thus, the

traditional SDN controller can only optimize the task routing

in the network and decrease the time needed in the network for

tasks of each application. However, the time needed in a VM,

i.e., the VM latency, may also have large impact on users’

experience. For example, arriving tasks might experience

relatively large VM latency if they are unsuitably scheduled

to an already overloaded VM. In this case, RTT of tasks is

relatively large, and the revenue brought by their execution

may be reduced or even become negative based on SLA.

As shown in Fig. 1, the architecture of an SDN-enabled

data center contains a cloud controller and a collection of

SDN controllers. The SDN controllers periodically collect the

network information including topology and link utilization,

and determine the scheduling strategy for the tasks of given

applications. The cloud controller periodically collects the

VM information (e.g., VM utilization and remaining tasks in

each VM) and sends it to the SDN controllers. In this way,

such two types of components build a workload-aware SDN

controller. Currently, to guarantee stability and scalability of a

data center, each application is typically deployed in multiple

heterogeneous or homogeneous VMs. Thus, there are multiple

available VMs that can execute the tasks of an application.

Based on this architecture, given tasks of a specific type of

applications, WARM first determines a VM to execute the

tasks, and then specifies a routing path to that VM by installing

the corresponding flow entries in each switch in the path.

The finally determined combination of a VM and routing

path can maximize the revenue of a data center provider. This

can tackle the shortcomings of routing strategies in currently

existing SDN controllers that ignore VM information. For

example, the Floodlight controller only selects routing paths

based on the shortest path first strategy. However, this strategy

may lead to large congestion in network links or large latency

in VMs. Therefore, this leads to large RTT, and thus decreases

the revenue of a data center provider according to SLAs

specified between consumers and the provider.

IV. PROBLEM FORMULATION

According to the proposed architecture, this section formu-

lates the workload-aware revenue maximization problem for

a data center provider. For clarity, the main notations in this

paper are summarized in Table I.

TABLE I
SYMBOLS USED IN PROBLEM FORMULATION

Notations Definition
J Number of application types
αt Routing path for type t tasks
ψt VM for type t tasks
λt Arriving rate of type t tasks
ζt Priority of type t tasks

Ωtsψt

Set of reachable paths for type t tasks from
VM ψt to gateway switch s

Stsψt

Set of admissible paths for type t tasks from
VM ψt to gateway switch s

Cl Bandwidth capacity of link l
Υl Set of application types admitted to traverse link l

μψt
t Service rate of type t tasks in VM ψt
nαt
t Number of switches in path αt for type t tasks
st Average size of type t task

καti
t

Allocated bandwidth for type t tasks in switch i
in path αt

γψt
t Number of queueing type t tasks in VM ψt

Tαt
N

Time required in network links in routing path αt
for a type t task

Tψt
V Time required in VM ψt for a type t task

It is assumed that each VM only processes the tasks of

one application. For a type t task, its RTT is calculated by

summing up the time in network Tαt

N and the time in a VM

Tψt

V . It is assumed that the time required in network links from

and to a VM is the same. Then,

RTTαt,ψt = Tαt

N + Tψt

V (1)

Let λt denote the arriving rate of type t tasks. The time

required in network from (to) a VM can be calculated by

summing up the time required in each switch in αt, i.e.,∑n
αt
t
i=1

1

κ
αti
t −λt

. Therefore, Tαt

N can be calculated as follow:

Tαt

N = 2

⎛
⎝n

αt
t∑
i=1

1

καti
t − λt

⎞
⎠ (2)

Tψt

V can be obtained by calculating the time required to

execute the remaining tasks and new arriving tasks in the VM.
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Let γψt

t denote queueing tasks of type t at VM ψt. Let st
denote the average size of each type t task. Let μψt

t denote

the service rate of type t tasks in VM ψt. Then,

Tψt

V =
γψt

t + st

μψt

t

(3)

For type t tasks, there are multiple available VMs to execute

the tasks. For each VM ψt, there are multiple available routing

paths connecting gateway switch s and ψt. Let αt denote

the routing path for type t tasks. A typical SLA specified

between data center providers and customers defines a utility

function that transforms RTT of tasks of each application into

the corresponding revenue brought to a data center provider.

This paper adopts the SLA that is used in [5] and shown in Fig.

4. Let u (RTTαt,ψt) denote the corresponding revenue if RTT

of type t tasks is RTTαt,ψt . the optimal combination of αt and

ψt can be determined by maximizing � that denotes the total

revenue brought by the execution of tasks of all applications.

The optimization problem can be formulated as follows.

RTTαt,ψt
= 2

⎛
⎝n

αt
t∑
i=1

1

καti
t − λt

⎞
⎠+

γψt

t + st

μψt

t

(4)

Max
αt,ψt

{
� =

J∑
t=1

u (RTTαt,ψt
)

}

s.t. ∑
t∈Υl

καti
t ≤Cl (5)

λt≤καti
t (6)

Let Ωtsψt
denote the set of reachable paths for type t tasks

from VM ψt to gateway switch s. Let Stsψt
denote the set

of admissible paths for type t tasks from VM ψt to gateway

switch s. Let Υl denote the set of application types admitted

to traverse link l. Let nαt
t denote the number of switches

in path αt for type t tasks. Constraint (5) ensures that for

each link l∈αt, the total bandwidth allocated to the tasks of

applications that are admitted to traverse this link l does not

exceed its bandwidth capacity, Cl. Stsψt denotes the set of

admissible paths for type t tasks from VM ψt to gateway

switch s. Constraint (6) guarantees the stability of the task

queue of application t in switch i in path αt.

V. WORKLOAD-AWARE REVENUE MAXIMIZATION METHOD

Based on the proposed architecture of a workload-aware

SDN controller, this section proposes WARM to intelligently

schedule tasks of each application. The proposed WARM

can achieve revenue maximization for a data center provider,

by jointly considering workload in network links and VMs.

WARM is executed periodically in the proposed architecture.

There are several deterministic algorithms (e.g., sequen-

tial quadratic programming) that can solve the formulated

problem. However, most of them rely on special structures

of constrained optimization problems. Besides, the quality of

final solutions is relatively low and the search process tends

to be slow. Current meta-heuristic algorithms are able to avoid

drawbacks of deterministic algorithms, and therefore they

are commonly used to solve optimization problems because

of their easy implementation and robustness. However, they

also have their disadvantages and advantages. For example,

simulated annealing (SA) can find a high-quality solution by

escaping from locally optimal solutions with moves worsening

the value of an objective function. Yet, the convergence

speed of SA is relatively unsatisfying [19]. Besides, another

typical particle swarm optimization (PSO) is also widely used

because of quick convergence. However, PSO often traps

into locally optimal solutions within its searching process.

Therefore, PSO’s final solutions to difficult problems are often

unacceptable [20].

Chaotic search can increase the possibility of finding glob-

ally optimal solutions in a quicker way than the stochastic

search in a standard PSO. In the chaotic search, the ergodic and

dynamic characteristics in chaotic sequences are able to enable

moves that can escape from locally optimal solutions. In a

typical chaotic PSO (CPSO), the chaotic search that is derived

from the logistic equation is commonly used to realize local

search around final solutions determined by PSO. Therefore,

to solve the formulated problem, WARM is designed based

on a hybrid meta-heuristic algorithm named Hybrid Chaotic

Simulated-annealing PSO (HCSP). WARM aims to determine

the optimal combination of VM ψt and path αt (1≤t≤J) to

maximize the profit of a data center provider.

Algorithm 1 WARM

1: Randomly initialize position and velocity of each particle

2: Calculate fitness value of each particle

3: Change Θ and Γ
4: Initialize parameters related to SA, and chaotic PSO

5: �←t0, w←wU , i← 0
6: while S≤95% and i≤gmax do
7: Change velocity and position of each particle according

to acceptance criterion of Metropolis

8: Update fitness value of each particle in new swarm

9: Change Θ and Γ
10: t←t∗d
11: w←wU− i

gmax (wU−wL)
12: Update χi+1 based on (7)

13: Update qi+1
j and V i+1

j , S
14: i← i+ 1
15: end while
16: Output Θ

Algorithm 1 shows the pseudo code of WARM. Notations

used in Algorithm 1 are first introduced here. Θ and Γ
denote globally optimal particle’s position and locally optimal

particles’ positions. The upper velocity bound of all particles is

denoted by vU . Particles’ velocities are restricted to [−vU , vU ].

Maximum percentage of particles with the same fitness values

in each swarm is denoted by S. Let gmax denote the maximum
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number of iterations. Let w denote inertia weight whose lower

and upper bounds are denoted by wL and wU , respectively.

Line 1 randomly initializes the position and velocity of each

particle. Lines 2–3 calculate the fitness value of each particle,

and change Θ and Γ. Line 4 initializes parameters related to

SA, and chaotic PSO. Let � and d denote the temperature and

its cooling rate in SA, respectively. Line 5 initializes � and w
with t0 and wU , respectively.

The while loop stops if S≤95% and i≤gmax. Line 1

randomly initializes the position and velocity of each particle

according to Metropolis acceptance rule. Lines 8–9 update

the fitness value of each particle in a new swarm, and

change Θ and Γ. Line 10 decreases temperature t. Line

11 linearly decreases inertia weight w. Lines 7–13 update

χi+1 based on the logistic equation (7) typically adopted

in chaotic PSO, and qi+1
j , V i+1

j , and S. In (7), χi denotes

a chaotic parameter whose range is [0, 1] in iteration i.
Besides, ε is a control parameter whose range is [0, 4]. To

guarantee the stochastic characteristic of a chaotic system,

χ0∈[0, 1]−{0, 0.25, 0.5, 0.75, 1} and ε=4. At last, Θ is chosen

as the final output that is converted into ψt, and αt (1≤t≤J).

χi=εχi−1(1−χi−1) (7)

Algorithm 2 Transform Ωtsψt
to Stsψt

Input: Ωtsψt

Output: Stsψt

1: for all t ∈ J do
2: for all pt∈Ωtsψt do
3: for all l∈pt do
4: Υl = Knapsack(l)
5: if t/∈Υl then
6: Ωtsψt

=Ωtsψt
−{pt}

7: Stsψt=Ωtsψt

8: end if
9: end for

10: end for
11: end for

Algorithm 2 shows the approach of transforming Ωtsψt

to Stsψt
. The Knapsack function in Line 4 determines the

assignment of tasks of different applications to each link l.
The task assignment is modeled as a knapsack problem (KP).

In each link l, the tasks of multiple applications with different

bandwidth requirements share limited bandwidth of this link.

Tasks of different applications have different priorities. Let ζt
denote the priority of type t tasks. The bandwidth requirement

of high-priority tasks needs to be met first. Let Pl denote the

sum of priorities of applications that are admitted to go through

link l. Knapsack function aims to maximize Pl by determining

the set of application tasks that are admitted to go through link

l. Thus, KP is a typical 0-1 KP that belongs to combinatorial

optimization and solved by Knapsack function. Specifically,

link l’s bandwidth capacity denotes the knapsack’s volume.

Each application denotes an item to be put in the knapsack.

Each application’s priority and bandwidth requirement denote

the benefit and the volume of an item, respectively. The 0-1

KP in link l can be formulated as follows:

max Pl =
J∑
t=1

xtζt

s.t.

J∑
t=1

xtκ
αti
t ≤Cl (8)

xt =

{
1, t∈Υl
0, t/∈Υl.

(9)

Constraints (8) and (9) show that the allocated bandwidth

of application tasks admitted to go through link l is less than

or equal to Cl. The 0-1 KP belongs to NP-hard problems,

and several existing methods (e.g., branch and bound, and

dynamic programming) can not solve it well. Nevertheless, as

an efficient meta-heuristic algorithm, genetic algorithm (GA)

is widely used to solve complex 0-1 KP by obtaining close-

to-optimal solutions from many potential candidates. Typi-

cally, GA starts with a population of potential chromosomes

that correspond to solutions. Afterwards, to obtain a higher-

quality population, a new population is generated based on

the chromosomes in the old one according to their fitnesses.

The chance of reproducing for solutions with higher quality is

larger. GA repeats this process until termination conditions

are met. GA’s basic operations include selection based on

fitnesses of chromosomes, crossover to obtain new population,

and mutation of chromosomes in new population.

In GA’s implementation, the roulette-wheel selection and the

elitism are combined to increase the possibility of obtaining

global optima. Here, Roulette-wheel is a widely used method

where the selection of chromosomes is proportionate to their

fitnesses. The elitism preserves some of the best chromosomes

in new population. Besides, binary encoding is adopted in

GA’s implementation, and a string of 0’s and 1’s denotes a

chromosome. The crossover of a single point is performed

with a specific probability. In addition, mutation is done with

a low probability in each bit of each chromosome to avoid

falling into local optima.

It is worth noting that in the Knapsack function, the initia-

tion of chromosomes in the first population has the complexity

of O(J). The fitness calculation, crossover, and mutation

operations have complexities of O(J). Thus, the complexity

of GA in this work is O(J). In addition, 0-1 KP in each link

can be independently solved in parallel. The work shows that

the adoption of parallelism can greatly increase performance

of an SDN controller, and its maximum processing ability can

reach 2×107tasks/sec. In other words, the proposed WARM

method will not cause too much performance overhead.

VI. PERFORMANCE EVALUATION

This section evaluates the proposed WARM with a widely

used network emulator called Mininet [9]. This simulation
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adopts the realistic task sampled in real-world Google data

centers [1]. Fig. 2 illustrates arriving rates of tasks correspond-

ing to three types of applications for 24 hours in May 2011.

The length of each epoch is 5 minutes in the simulation. It

is assumed that task arriving rates are already known in ad-

vance because there are existing studies that can realize high-

precision workload prediction. Similarly, information about

network and VMs is updated every 5 minutes.
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Fig. 2. Task arriving rates of three applications in Google’s data center.

A. Experimental setting

This work adopts a typical network topology in data centers

called Fat-tree [21]. It is worth noting that the proposed

WARM method can be applied to any other network topology.

This section evaluates WARM with the widely adopted pod-

4 Fat-tree illustrated in Fig. 3. Fat-tree topology typically

includes three tiers that are core tier, aggregation tier, and edge

tier, respectively. The three tiers connect a gateway switch with

VMs in a data center. In Fig. 3, multiple VMs are available to

execute tasks of each application. It is assumed that each VM

only executes tasks corresponding to a specific application.

The bandwidth between each VM and each switch in the

edge tier is 1Gbps. Besides, the bandwidth among switches

in adjacent tiers is 1Gbps. In addition, to avoid the overload

of the data center, the initial number of VMs is determined

based on the expected maximum task arriving rate of each

application. Then, VMs continuously run in the data center

and execute the incoming tasks of each application. As shown

in Fig. 3, this topology includes 16 VMs and 20 switches that

support the OpenFlow protocol.

There are different types of applications in current data

centers. Therefore, this simulation adopts a realistic mix-

ture of large and small tasks. Based on the studies [5],

[22], parameters are set as follows: s1=2KB, s2=10KB,

s3=50KB, μ1=2.5×103 KB/minute, μ2=1×104 KB/minute,

and μ3=8×104 KB/minute.

B. Simulation experiment

It is assumed that a data center provides three types of

applications. Fig. 4 illustrates the proposed SLA model where

three types of SLAs corresponding to three applications are

defined. Three types of applications bring revenue according

to a nonlinear pricing model that is widely used in several

Fig. 3. Fat-tree topology.
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Fig. 4. Service-level agreements (SLAs).

existing studies [5]. This model specifies the money that

customers need to pay based on the RTT of each applica-

tion’s tasks. If RTT is less than corresponding threshold, a

revenue is delivered to the data center provider. Otherwise, a

corresponding penalty is charged. The thresholds in type 1-3

SLAs are set to 1200 μs, 2400 μs, and 1300 μs.
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Fig. 5. Revenue comparison.

To demonstrate the effectiveness of the proposed WARM,

this paper compares it with other two typical routing methods,

including Open Shortest Path First (OSPF) [7] and Dynamic

Weight Round Robin (DWRR) [8]. These two algorithms have

been proven effective to realize task scheduling, and therefore

they are widely used by existing studies in SDN-enabled data

centers [7], [8]. Therefore this paper chooses them to show the

advantages brought by WARM. Here the distance is simply the
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number of network links from the gateway switch to a VM. In

the simulation, it is assumed that OSPF schedules tasks of each

application to the VM in the bottom left. DWRR schedules

tasks of each application to VMs in a round robin fashion.

The revenue comparison among OSPF, DWRR and WARM

is shown in Fig. 5. It is shown that WARM achieves larger

revenue than OSPF and DWRR do in each epoch. Compared

to OSPF and DWRR, the revenue with WARM is increased

significantly. RTT of tasks of each application with OSPF

is much larger than that with DWRR and WARM. Thus,

the revenue corresponding to OSPF is the least according to

SLAs of applications. Similarly, the revenue corresponding to

DWRR is less than that corresponding to WARM. Therefore,

WARM performs better than OSPF and DWRR in terms of the

revenue. This result demonstrates that the proposed WARM

can intelligently schedule tasks, such that the revenue brought

by the execution of these tasks of all applications is maxi-

mized. The reason why WARM can increase the revenue of a

data center provider is that WARM jointly considers workload

in network links and VMs, and SLAs of all applications.

Figs. 6-8 show the RTT of tasks of types 1-3 with OSPF,

DWRR, and WARM, respectively. It is shown that WARM

outperforms OSPF and DWRR in terms of RTT. Specifically,

RTT of tasks of three applications with OSPF is much larger

than that corresponding to OSPF and DWRR. The reason is

that OSPF always schedules tasks of three applications to the

VM in the bottom left, and this causes the largest RTT in

each epoch. Besides, RTT of tasks of three applications with

DWRR is also larger than that corresponding to WARM. The

reason is that WARM jointly considers workload in network

and VMs, and can decrease RTT of tasks of each application.
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Fig. 6. RTT of type 1 tasks.

TABLE II
COMPARISON OF FOUR ALGORITHMS

Algorithms Average revenue($) Average execution time(seconds)

WARM 50.52 2.03×10−5

CPLEX 50.55 3.04×10−5

SA 47.54 1.43×10−4

PSO 42.62 1.01×10−5

This paper compares WARM with CPLEX that is a typical

mathematical optimization solver and can determine the op-
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Fig. 7. RTT of type 2 tasks.
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Fig. 8. RTT of type 3 tasks.

timal solution in theory. Therefore, the comparison between

WARM and CPLEX can show the precision of WARM’s

final solution. Here, we adopt IBM ILOG CPLEX 12.0.

Besides, this paper compares WARM with two typical meta-

heuristic algorithms including SA and PSO. Table II shows the

comparison of four algorithms including WARM, CPLEX, SA,

and PSO in the 30th epoch (150–155 minutes). In Table II,

each of four algorithms is executed for 10 times.

It is shown that WARM’s revenue, 50.52$, is much close

to that of CPLEX, 50.55$. However, the average execution

time of CPLEX, 3.04×10−5, is 1.5 times larger than that of

WARM, 2.03×10−5. The revenue of WARM’s final solution

is 50.52$, which is 1.06 times larger than that of SA, 47.54$,

and 1.18 times larger than that of PSO, 42.62$, respectively.

However, the average execution time of SA is 1.43×10−4

seconds, which is about 7 times larger than that of WARM,

2.03×10−5 seconds. Though the average execution time of

PSO is only 1.01×10−5, its revenue is the least among WAR-

M, SA, and PSO due to its quick trap into local optima. This

result demonstrates that WARM can find a solution with higher

quality compared with SA and PSO. In addition, it is shown

that WARM’s average execution time is 2.03×10−5 seconds

that is less than 5% of RTT of tasks of each application, and

therefore the execution time overhead of WARM is negligible.

Fig. 9 illustrates the variance of average VM utilization

corresponding to each application with OSPF, DWRR and

WARM. The utilization of multiple VMs corresponding to

the same application varies with time. Thus, this simulation

calculates the variance of average VM utilization for each
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application’s tasks with OSPF, DWRR and WARM. It can

be seen that compared with OSPF and DWRR, the variance

with WARM is the least for each application. The reason is

that WARM optimally specifies network path and the VM by

jointly considering workload in network and VMs, and SLAs

of all applications. DWRR schedules tasks in a round robin

fashion, and therefore the revenue with DWRR is larger than

that with OSPF in each epoch. OSPF always schedules tasks

of each application to the VM in the bottom left, and therefore

its revenue is the least.
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Fig. 9. Variance of average VM utilization.

VII. CONCLUSION AND FUTURE WORK

Revenue maximization is important to a data center provider

because it tries to deliver services to users’ tasks in the

most economic and fastest way. The emergence of software-

defined networking (SDN) enables the provider to intelligently

schedule the tasks of all applications. Existing controllers in an

SDN architecture can only decrease the network latency but

fail to consider the virtual machine (VM) latency, therefore

leading to large round trip time (RTT). In this paper, a

workload-aware revenue maximization (WARM) is proposed

to smartly schedule all the tasks by determining the optimal

combination of a VM and routing path for each application.

Simulation results show that compared with its two peers,

i.e., Open Shortest Path First and Round Robin, WARM can

effectively increase the revenue of the data center provider and

reduce the RTT of tasks drastically.
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