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Abstract—Machine learning has been woven into statistics to
modernize topic modeling over textual documents written in nat-
ural language, and scientific paper search and recommendation
can consequently offer higher accuracy instead of counting on
traditional keyword-based search. However, topic distribution of
a paper resulted from existing topic modeling techniques only
relies on the statistics of words contained in the paper itself.
We argue that community users’ views of a paper may also
provide insights at the time of recommendation. For example,
if a paper on fake image detection has been cited heavily by
machine learning papers, such a feature should be absorbed in
the embedding of this paper, so that it can be recommended
for future query on machine learning. In this paper, we present
a Graph Convolutional Network-strengthened Topic Modeling
(GCN-TM) method, which employs GCN technique to refine
topic modeling of scientific papers. A citation-oriented knowledge
graph is constructed, and topic modeling is mapped to feature
embedding of the comprising papers. On top of its own topics
carried in its content, each paper learns topics from its neighbors
and revise its embedding accordingly. Our empirical studies
over real-life scientific literature has proved the necessity and
effectiveness of our proposed approach.

Index Terms—Science knowledge graph, topic modeling, graph
convolutional network

I. INTRODUCTION

Paper recommendation remains an extremely important

service that researchers highly demand in modern society.

One critical criterion for high-quality papers is to rigorously

compare with related work in the literature. In the knowledge

explosion era nowadays with numerous publications in a

variety of channels, it has become increasingly necessary

to inform researchers related work that they shall be aware

of and compare with. Toward this goal, recent years have

witnessed a collection of online portals dedicated for pa-

per search and recommendation purposes, such as DBLP1,

Google Scholar2, Microsoft Academic Knowledge Services3,

AMiner4, ResearchGate5, as well as portals hosted by paper

1https://dblp.uni-trier.de/
2https://scholar.google.com/
3https://www.microsoft.com/en-us/research/academic-program/academic-

services/
4https://www.aminer.org/
5https://www.researchgate.net/

publishers like IEEE Xplore6, ACM Digital Library7, and

Elsevier8.

Fig. 1. Motivating Example.

These portals all provide rich keyword-based search func-

tion, ranging from simple keyword search to autofill sup-

port. The advancements in natural language processing (NLP)

and machine learning have enabled more advanced paper

search based on topic modeling. Topic modeling in NLP is a

widely used technique capable of clustering textual documents.

Topic modeling algorithms, represented by Latent Dirichlet

Allocation (LDA) [1], exploit statistics and machine learning

to assign a distribution of topics to each document, and a

distribution of words to each topic to provide probabilistic

descriptions of textual documents. However, existing topic

modeling algorithms merely rely on the statistics of words

in each paper alone, and readers’ opinions are not taken into

consideration. In reality, such methods bear some limitations.

For example, the selling points of a paper by its authors may

not always be the reason why community members cite the

paper.

Fig. 1 shows one example scenario that directly motivates

this research. Assume a paper p1 claims that its focus is on

6https://ieeexplore.ieee.org/
7https://dl.acm.org/
8https://www.elsevier.com/
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fake image detection algorithm and its applications on social

media, and their algorithm is based on an extension of a

convolutional neural network (CNN) algorithm. Following the

traditional topic modeling techniques, such as LDA, the topic

distribution of the paper may be 60% of image detection (T2),

5% of social media, and 35% on machine learning. As a

result, the paper may not be recommended to a search query

on ”recommend ML papers on applications.” However, if a

number of machine learning papers (e.g., p2, p3, etc) cite

paper p1 on its novel CNN-based method, then this paper p1
might need to be recommended to machine learning readers.

This example shows that such readers’ opinions or views

should be properly recorded and taken into account, so as

to enhance paper recommendation. Such scenarios have also

been observed in general object recommendation. As social

science reveals, people usually watch and consider their peers’

behaviors [2]. As an analogous example, Amazon considers

recorded other users’ decisions when recommending items.

In recent years, researchers have started to leverage repre-

sentation learning to gather feature representations of nodes in

complex networks, and map them to low-dimension embed-

ding space for various types of tasks such as classification and

link prediction. Based on graph neural networks, a collection

of deep encoders have emerged to encode a node into node

embeddings through multiple layers of graph convolutions,

non-linear transformations of network structures, and regu-

larization (e.g., dropout). Throughout this paper, we will use

the following terms interchangeably: node embedding, feature

vector of node, node representation, node signals, and topic

distribution.

In this work, we propose a Graph Convolutional Network-

strengthened Topic Modeling (GCN-TM) method. We first

construct a directed knowledge graph based on citation re-

lationships in the literature. All nodes represent all the papers

in the corpus. Each edge represents a citation relationship

between two papers. If an edge points to paper p1 from paper

p2 (p1 ← p2), it means paper p2 cites paper p1. As an analogy,

we can view paper p2 is a user of paper p1, also as its neighbor

in the knowledge graph.

Each paper is mapped to the embedding space, and each

search query is also mapped to the same embedding space.

We first run a regular topic modeling algorithm, e.g., vanilla

LDA, to learn a topic distribution for each paper contained in

the knowledge graph. Such a topic distribution is treated as

the individual features of each paper, and create its initial em-

bedding. In other words, the LDA-resulted topic distribution

is used as the initial feature vector for each paper. Afterwards,

each paper will aggregate features (i.e., topic distribution)

from all of its incoming neighbors (i.e., papers that cite the

paper), and in turn their incoming neighbors, and so on. The

final embedding of each paper will be the revised feature

vector for the paper, which will better represent its citation

relationships with other papers. To our best knowledge, our

work is the first effort that applies graph convolutional network

techniques to incorporate readers’ opinions to improve paper

recommendation.

The major contributions of this paper are two-fold.

1) We present a GCN-TM method, which employs Graph

Convolutional Networks to learn from peer researchers’

views to adjust the feature embeddings of scientific

papers, in order to enhance paper recommendation.

2) Our experiments over real-world dataset have proved the

necessity and effectiveness of our approach.

The remainder of this paper is organized as follows. In

Section 2, we discuss related work. In Sections III and IV,

we introduce preliminaries, followed by details of our GCN-

TM technique. In Section V, we discuss experimental studies.

Finally in Section VI, we draw conclusions.

II. RELATED WORK

Our work is closely related to two categories of research in

the literature: topic modeling and graph neural network.

A. Topic Modeling

A scientific paper typically touches more than one topic,

thus traditional classification methods do not apply well. That

is why topic modeling has been widely adopted to learn

fine-grained topic distributions of scientific papers. Based on

statistics and machine learning, Latent Dirichlet Allocation

(LDA) [1] and its variants have been considered as represen-

tative techniques for topic modeling. This paper applies graph

neural network technique on top of LDA to leverage their

citation relationships to better support paper recommendation.

This paper is also inspired by our earlier finding [9] that user

opinions should be taken into consideration to enrich software

service profiles. In our earlier work [9], we developed a

machine learning model called Service Representation-Latent

Dirichlet Allocation (SR-LDA), which extends LDA to enrich

service profiles from their involved mashup profiles. The core

hypothesis is that each mashup profile is co-authored by all of

its invoked services. That technique, however, cannot be ap-

plied to paper topic enrichment. The reason is that a scientific

paper typically cites a collection of papers for comparison

purpose, and such reference papers do not contribute to the

core claims of the paper.

B. Graph Neural Network

Graph neural networks (GNNs) have gained significant

momentum since its inception in 2017, as many real-world

data and relationships can be represented by graphs. Perozzi

et al. [6] present the DeepWalk algorithm that learns struc-

tural representations of nodes, through random walks. Grover

and Leskovec [3] propose node2vec to further consider the

possibility of favoring Depth-First Search (DFS) and Breadth-

First Search (BFS) when doing random walking. However,

they both are transductive.

Graph convolution networks (GCNs) [5] allow graph nodes

to borrow features from their neighbors, and neighbors of the

neighbors, and combines with the features of the nodes to

learn more enriched embeddings. GraphSAGE [4] changes the

node representation propagation rules in two ways: one is to
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introduce a more general node aggregation operator, and the

other is to separate the features of a node and those from

its neighbors. In our neural network design, we combine the

computing rules of GCN and GraphSAGE. Due to the fact

that reference papers usually share the same roles, we adopted

a mean average aggregator [5] to accumulate features from

related papers, instead of commonly used operator such as max

pooling, min pooling, or neural graph collaborative filtering

operator [8].

III. PRELIMINARIES

In this section, we will introduce some preliminaries of this

work and define our target problem.

A. Topic Modeling

Topic modeling in NLP is a widely used technique capable

of clustering textual documents. Topic modeling algorithms,

represented by Latent Dirichlet Allocation (LDA) [1], exploit

statistics and machine learning to assign a distribution of topics

to each document, and a distribution of words to each topic

to provide probabilistic descriptions of textual documents.

B. Notations and Problem Definitions

Definition 1 (Citation Knowledge Graph). A citation knowl-

edge graph is a directed 4-tuple graph CKG = G(P,E,A, T ):

1) P denotes a collection of nodes where each node rep-

resents a paper.

2) E denotes a collection of edges between nodes. Each

directed edge represents a citation relationship between

two paper nodes: ∀e(pi, pj) ∈ E, pi, pj ∈ P, pi ← pj , it

means paper pj cites paper pi.
3) A denotes an adjacency matrix of the graph. If

∃e(pi, pj) ∈ E ⇒ ai,j = 1; otherwise ai,j = 0.

4) T denotes a matrix of node features, represented by

topic distributions: T ∈ R
N×|P |, where N represents

a predefined number of topics over the paper corpus

underneath the graph.

Definition 2 (Embedding Space). The embedding space of

a citation knowledge graph (CKG) is an N -dimension space

R
N, where N is a predefined number of topics for the specific

domain to which all papers in the CKG belong.

Each paper is represented as an N -dimension vector embed-

ding. For example, if 20 topics are set to categorize all papers

in a CKG, the embedding space will be 20 dimensions.

Table I summarizes all notations that we will use throughout

the paper.

Problem Formulation. The paper recommendation prob-

lem can be defined as: given observed interaction records in a

citation knowledge graph CKG, for a search query q, we aim

to find a collection of ranked papers based on their similarity

to the search query in the embedding space.

TABLE I
NOTATIONS AND EXPLANATIONS

Notation Explanation
CKG Citation Knowledge Graph
CKG′ Adjusted Citation Knowledge Graph
CG Computation Graph
P Paper set
E Paper citation relationship set
T Paper feature matrix

NN
L Neural network at layer L of CG

tkp Embedding of paper p at level k
C(p) All papers cite paper p
Ω Transformation matrix
Φ Transformation matrix

Fig. 2. Blueprint of GCN-TM framework.

IV. GCN-TM

In this section, we will introduce our Graph Convolutional

Network-strengthened Topic Modeling (GCN-TM) technique.

Fig. 2 illustrates a high-level overview of our proposed

GCN-TM framework. As shown in Fig. 2, the input of the

framework is a corpus of papers on the left-hand side. The

papers will be parsed, and their citation relationships will

be extracted to construct a CKG network. For each of its

comprising nodes, a computation graph is constructed, which

is rooted by the node and contains its hierarchical neighbors

in the CKG network. Each layer of each computation graph

consists of a neural network, e.g., NN1 and NN2. The neural

network at each layer is shared by all the nodes at the same

layer in all computation graphs. As shown in Fig. 2, the papers

are sent to train an LDA model, resulted in a topic distribution

for each paper, which serves as the initial embedding (i.e.,

feature vector) of each paper in the computation graphs.

For each computation graph, the root paper will run the

neural networks to aggregate the topic features from its direct

neighbor nodes (papers that cite the paper) into its own feature

vector, which in turn from their own neighbor nodes. This

simultaneous process will result in a CKG
′ network, while

each of its comprised paper nodes carries an adjusted feature

embedding. Such a yielded CKG
′ will accept a user query

and return a recommended paper list sorted.
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Fig. 3. Computation Graph.

A. Computation Graph Construction

For each paper, we build a dedicated neural network archi-

tecture based on its direct and indirect citation relationships.

For each node (paper) in the CKG, we first define a com-

putation graph for it, based on its neighborhood structure in

the network, as shown in Fig. 3. Each node in a computation

graph encapsulates two components: a topic distribution (TD)

and a neural network (NN). Analogous to an object in Object-

Oriented (O-O) design, the TD component represents its data

status, and the NN component can be viewed as a function car-

ried to update its data. As shown in Fig. 3, the NN component

in each node will absorb and aggregate the TD signals from

its children nodes, and in turn from their children nodes, into

its own TD features to compute an adjusted representation to

update its TD status, i.e., its feature vector. Note that such

a feature aggregation process will simultaneously learn to

capture the structural information around the paper, as well

as how to absorb signals from the papers that cite it to adjust

its representation.

Definition 3 (Computation Graph). The computation graph for

a node p ∈ P in a CKG network is a tree-like graph rooted by

node p, CG(p) = G(P ′, E′, A′, T ′, p,NNL), L = 0, 1, 2, ....

1) P ′ denotes a subset of the paper nodes in CKG : P ′ ⊆
P .

2) E′ denotes a subset of the paper citation edges in CKG :
E′ ⊆ E.

3) A′ denotes an adjacency matrix of the graph. If

∃e(pi, pj) ∈ E′ ⇒ a′i,j = 1; otherwise a′i,j = 0.

4) T ′ denotes a matrix of node features, represented by

topic distributions: T ′ ∈ R
N×|P ′|, for all nodes in P ′.

5) NN
L indicates a set of neural networks, each at one

layer of CG(p).
6) The length of each edge is 1. The layer of a node p′ is

counted as its distance to the root: L(p′) = path(p, p′).

Each layer of CG(p) has one neural network: NN0 for layer

0 at the root level, NN1 for layer 1, and so on. All nodes at

the same layer L of CG(p) share the same neural network at

the layer NN
L. A neural network helps a node to aggregate

features from its children nodes, and incorporates them into

its own features to result in an adjusted representation for the

node.

Note that a computation graph is a connected acyclic

directed graph. If a node is a leaf node, then its associated

neural network has no children nodes to aggregate features

from. In other words, each leaf node carries its own features

only.

For every node in CKG, it has its own computation graph

as an neural network architecture. Note that all computation

graphs share the same set of layer-oriented neural networks.

B. Neural Network Design

The core element of the neural network component NN is

its graph convolutional operator across layers, which is defined

as follows:

tkp = ReLU(Ωk
∑

v∈C(p)

tk+1
v

|C(p)| ,Φ
ktk+1

p ) (1)

where tkp denotes the representation of paper p at level k, C(p)
denotes all children nodes of node p, ReLU is a common

nonlinear activation function, Ω and Φ are transformation

matrices.

For each inner layer k of CG with a total of layers K
(0 � k < K), the graph convolutional operator aggregates

the incoming messages from all children nodes of the node

(first portion), concatenates with its own topic distribution

information (second portion), and then applies a non-linear

transformation operation (ReLU ). If a node p is at a leaf layer

(k = K), its representation is its topic distribution TD: T ′p:

tKp = T ′p. The representation of the root layer 0 will be the

final adjusted embedding of the node: tp = t0p.

The design of our graph convolutional operator combines

the computing rules from GCN [5] and GraphSAGE [4]. On

the one hand, we adopt the mean average aggregator from the

former when aggregating messages from neighbors, because

we favor the quantitative topic impact from the audience of

the paper (i.e., papers that cite the paper). On the other hand,

we adopt the concatenation operator from the latter between

aggregated messages and message from the paper itself, for

finer-grained training. Note that the aggregation operator has

to be order-invariant, and we choose the average operator

due to the unique feature of papers. We hope to absorb

topic information from neighbor papers to adjust its own

embedding for recommendation purpose. In the last two years,

researchers have proposed various aggregation operators. For

example, Wang et al. [8] propose a neural graph collaborative

filtering operator for neighborhood aggregation. It considers

the degrees of both message sender and recipient, which is

useful in the field of social network analysis while message

impact may be decayed by a high popularity of either sender

or receiver. Regarding paper citation though, if a paper is

cited by many papers with the same view, this view should be

confirmed thus strengthened instead of weakened. For similar

reasons, we did not select other commonly used aggregation

operators in GCNs such as max pooling or min pooling.
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To carry out the propagation process for all papers in the

CG, we transform the equation above into a matrix form as

below. Note that the neural network (i.e., Ω and Φ) are shared

by all nodes at the same layer of all computation graphs.

T k = ReLU(LΩkΔT (k+1) +ΦkT k+1) (2)

where T k is the new embedding matrix after the last propa-

gation, and L is the Laplacian matrix of CG. Recall that A′

and D′ are adjacency matrix and diagonal degree matrix of

CG, respectively. The Laplacian matrix L can be calculated

as follows:

L = D̃−
1
2 ÃD̃−

1
2 . (3)

where Ã = A + I denotes the adjacency matrix of CG with

added self-connections, I is its identity matrix, and D̃ii =
ΣjÃij .

The matrix form of the learning process helps not only up-

date all paper representations in the same CG simultaneously,

but also facilitate the batch calculation.

C. Parameter Learning

In this section, we will analyze the parameter training

aspects regarding the optimization and training efficiency of

our GCN-TM model.

1) Loss Function: We adopt the hinge loss to construct

our loss function, so that we can feed the neural network

embeddings and run stochastic gradient descent to train the

parameter matrices (Ω and Φ) at each layer. Hinge loss,

also called max-margin objective function, is considered more

robust and powerful than the regular cross entropy error and

softmax function. The hinge function is defined as follows:

Ł =
∑

v∈CG(p),u/∈CG(p)

max(0,−tTp tv + tTp tu + δ) (4)

where δ denotes the margin, meaning the extent of larger pos-

itive paper pair similarity should be compared with negative

paper pairs.

Note that here we calculate the cosine similarity of a pair

of paper embeddings. The embeddings of papers similar to

each other should be close to each other; and the embeddings

of papers different from each other should be far apart. The

physical meaning is that, as shown in Equation (4), pairs in

a computation graph (i.e., neighbors) should be closer than

those otherwise.

2) Unsupervised Learning: We employ unsupervised train-

ing. Intuitively, a papers is similar to its reference paper in

the embedding space, and different from a paper not in the

computation graph of the paper. In addition, papers cited by the

same paper could be reviewed as fall in similar topics. In other

words, the embeddings of two papers in the same computation

graph may be closer than otherwise. In yet another words, a

paper and another paper in the same computation graph can

be treated as positive pairs; the paper and one paper randomly

selected not from the same computation graph can be viewed

as a negative pair. In this way, we can obtain thousands of

training data.

Upon the training data, we train a graph neural network to

generate embeddings for papers, so that the embeddings of

positive pairs of papers are closer to each other comparing

to those of negative pairs. After the GNN model is trained,

we will create embeddings for all papers dynamically based

on their computation graphs. Given a search query, we can

do a nearest neighbor search in the embedding space and

recommend similar papers.

D. Considerations

1) Neural Network Depth: As described in the previous

sections, each paper is associated with a neural network.

According to the small-world theory, the diameter of a network

is six. Therefore, empirical studies typically suggest that the

unfolding process goes to merely three or four steps, otherwise

a large number of weakly-connected papers will be involved

which are unnecessary. For scientific paper citation, be more

specific, two papers apart more than two hops may not be very

similar. One reason is that, authors who cite a paper typically

also are aware of its reference papers. Thus, if necessary, they

should have cited those reference papers as well. For example,

if paper p2 cites paper p1 and paper p3 cites paper p2, it is

reasonable to assume that the authors of p3 have read or at least

browsed through all reference papers of p2, thus are aware of

the existence of paper p1. Thus in general, if paper p3 does

not cite paper p1, it is reasonable to assume that the authors of

paper p3 do not think paper p1 very similar to theirs. Therefore,

when we build a neural network for a paper, we decide to only

unroll two levels.

2) Acyclicity: A citation knowledge graph bears an acyclic-

ity feature. The reason is simple, as paper publications have an

inherent chronologicity. For example, if paper p2 cites paper

p1 and paper p3 cites paper p2 (p3 → p2 → p1), then paper p2
is published later than paper p1 and paper p3 later than paper

p2. Thus, it is impossible for the earlier published paper p1 to

cite a later paper p3.

3) Inductivity: Note that the trained neural networks are

shared by the same layers of all computation graphs, i.e., they

are inductive. For each layer l, two transformation matrices

will be trained, Ωl and Φl. Thus, when the citation knowledge

graph CKG evolves, we do not have to retrain all the models.

Instead, we could construct or revise the corresponding com-

putation graphs, and conduct forward propagation to compute

the new embeddings of the papers. In short, GCN-TM model

will be able to be transferred to unknown or new papers.

4) Mini-Batch: As shown in Fig. 3, we build a dedicated

neural network architecture for each paper, thus all compu-

tation graphs can be calculated simultaneously. Particular, a

common practice is to batch multiple computation graphs to

form a mini-batch. Thus, how to batch multiple computation

graphs to train them together is core to accelerate the computa-

tion. Leveraging the idea from the Deep Graph Library [7], we

package a batch of computation graphs with disjointed nodes
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in a larger graph, and align their adjacency matrices along the

diagonal of a new adjacency matrix.

V. EXPERIMENTS

In this section, we will describe and discuss in detail the

evaluation of our GCN-TM model over real-world dataset,

compared with state-of-the-art methods regarding paper rec-

ommendation effectiveness.

A. Experimental Settings

1) Dataset Preparation: Our testbed includes all published

referred papers at top journal and conferences in the field of

services computing: IEEE Transactions on Services Comput-

ing (TSC), IEEE International Conference on Web Services

(ICWS), and IEEE International Conference on Services Com-

puting (SCC). One reason why we selected this controlled

testbed is that, we hope to carefully study the potential impact

of our work on a research community.

We crawled the published refereed papers from IEEE

eXplore digital library from the inception of the venues

up to February 2021: TSC from 2008, IEEE ICWS and

SCC both from 2004. Non-referred articles, such as editorial

prefaces, panel or tutorial introductions, and chair messages

were not included. We implemented a Web Spider based on

Scrapy9 in Python. By adding Selenium10 in the middleware

of Scrapy, our spider is able to fetch data loaded by Javascript

on web pages. For each referred paper, we collected their

metadata (including paper title, authors, venue, publication

date, references, keywords, and abstract) as well as its textual

content. The original content of each paper was crawled in

HTML format, and we used html2text11 package in python

to convert them to pure text files as our LDA corpus. There

are 23 referred papers with PDF version only, so we manually

transformed them into HTML format.

2) Dataset Description: Our dataset preparation process

resulted in a corpus including 4,090 papers. All papers become

the original nodes of the Citation Knowledge Graph CKG.

For each paper p ∈ CKG, we analyzed its references. If one

reference paper q exists in the CKG, a citation edge p← q was

added into CKG. Because we aim to study network structure

to refine paper embeddings, we removed the paper nodes that

do not connect to any other nodes in the network, either in or

out. Thus, the number of nodes resulted in the CKG is 2,602.

Table II summarizes the numerical properties of the resulted

dataset for our experiments.

3) Evaluation Metrics: All papers were sorted chronically,

from the past to current years. We innovatively treated each

paper as a test case. Its topic distribution was used as a search

query to request for recommendation on reference papers.

For each paper in the test set, we used our trained model

to predict top 10 and 20 papers as candidate reference papers.

9https://scrapy.org/
10https://www.selenium.dev/
11https://github.com/Alir3z4/html2text/

TABLE II
STATISTICS OF PAPERS CKG IN SERVICES COMPUTING

Notation Explanation
Papers 2,602

Citation edges 5,445
Highest degree 92
Lowest degree 1

Highest indegree 85
Lowest indegree 0

Highest outdegree 39
Lowest outdegree 0

Highest # nodes in CG 582
Lowest # nodes in CG 2

Diameter of CKG 11
Number of cliques 107

If a candidate paper was actually cited by the paper, it was

considered a hit; otherwise it was a miss.

Recall that the mission of our GCN-TM is to build ac-

curate representations for papers from the literature for the

sake of effective recommendation. Although the accuracy of

paper representations from audience’s view is hard to measure

directly, high-quality representations should be able to: (1)

reflect the similarities of papers cite each other; and (2)

reflect the differences among papers not cited often. Based

on such a perspective, we followed SR-LDA [9] and designed

a two-phase method as below to evaluate the quality of paper

representations generated by GCN-TM.

First, we performed a K-means clustering method over the

generated paper representations, to divide them into clusters.

Second, we calculated the Davies-Bouldin index (DBI) [10]

between each pair of paper clusters resulted. DBI is defined

as follows:

DBI =
1

K

K∑
i=1

max
j �=i

(avg(Ci) + avg(Cj)
dcen(ci, cj)

)
, (5)

where

avg(C) = 2

|C|(|C| − 1)

∑
1≤i<j≤|C|

dist(pi, pj)

is the average distance within cluster C, K is the number of

clusters, and dcen(ci, cj) represents the distance between the

centers of two clusters ci and cj .

A lower value of DBI indicates more effective paper rep-

resentations, meaning that paper within a cluster are more

similar to each each, and the clusters are separated better,

which corresponds to the aforementioned intuition.

4) Baselines: To evaluate the performance of the Top-

K recommendation, we compared our GCN-TM with the

following four baseline methods.

• Vanilla LDA. For this baseline, we applied the vanilla

LDA to extract topic distributions of each paper. This

baseline can provide an evidence for how well the vanilla

LDA works in paper recommendation.

• GraphSAGE. For this baseline, we applied GraphSAGE

alone to learn network structure of each paper in the

CKG network. This baseline can provide an evidence
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for how well the citation relationships work in paper

recommendation.

• Keyword-based Search. For this baseline, we conducted

keyword-based search for user queries.

• Similarity-based Search. For this baseline, we treated

user search query as a vector, and find recommended

papers by calculating the similarity (i.e., dot product)

between the search vector and the papers.

5) Experiment Implementation: We implemented our

GCN-TM on the basis of StellarGraph Machine Learning

Library12, a widely used Python library for machine learning

on graphs and networks. We applied the implementation of the

GraphSAGE carried by StellarGraph for graph convolution.

During the tuning process, we found that 0.001 can be a

good initial learning rate with an embedding size equal to

the number of selected topics, respectively. Borrowing the

idea of autoencoder, the transformation size sequence should

be non-increasing. By shrinking the transformation size, each

propagation process can learn more abstract features. Empir-

ically, we halved the transformation size for each successive

propagation layer.

B. Dataset Analysis

We scrutinized the resulted dataset CKG network. For each

of the three venues (TSC, ICWS, SCC), we examined its

published papers in each year. For each paper, we calculated

its outdegrees, and summarized such information in line charts

in Fig. 4(a), (b), (c), respectively. Take Fig. X(c) as an example

for IEEE SCC papers, the horizontal axis indicates the number

of outdegrees, and the vertical axis indicates the number of

papers with a specific outdegree. As explained in the last

section on experiment preparation, if a paper receives no

citation and it does not cite any paper published in these three

venues, the paper is not shown in the CKG network. In the

line charts however, it should be counted back as a paper with

zero (0) outdegree for the year. In its inception year, all SCC

papers bear zero outdegree because ICWS papers are included

from 2004 and TSC papers from 2008, thus their referenced

papers are not included in the CKG network. As time goes by,

an SCC paper naturally shall compare their work with related

papers published in top venues in the field: TSC, ICWS, and

SCC. As shown in Fig. 4(c), each year has one dedicated

multi-point line chart.

As shown in Fig. 4(c), a notable amount of SCC papers

do not cite any papers in TSC, ICWS, and SCC. This phe-

nomenon in general should be brought to attention of the

SCC program committee, since one core requirement for a

top conference paper is to rigorously compare its research with

related work. One may argue that the page limit (eight pages)

of a conference paper constraints its citation and comparison

with related work. This argument is partially supported by

the fact revealed by Fig. 4(a) where TSC papers typically

bear higher outdegrees, as TSC page limit is 14 pages. For

example, the highest outdegree of TSC papers is 39. The

12https://stellargraph.readthedocs.io/en/stable/README.html

Fig. 4. TSC/ICWS/SCC Paper Citation Analysis.
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organizing committee of the IEEE World Congress on Services

(SERVICES), which endorses ICWS and SCC, has realized

this constraint. Starting from 2021, the page limit has been

revised to allow 10 pages for main text alone, plus reference

pages. Our dataset study provides some historical data support

for this committee decision.

C. Recommendation Performance

We evaluated our hypothesis of absorbing paper readers’

views will help improve paper representation for recommen-

dation. As shown in Fig. 5, we designed two scenarios, one is

under LDA initiative and the other is under keyword initiative.

Under the former LDA initiative, each paper takes its LDA

topic distribution as its initial embedding. For each edge in

the CKG network, i.e., pair of paper citation relation, we

calculated the similarity (i.e., distance) of the nodes at the

two ends. The distances of all edges are represented as the first

boxplot in Fig. 5. After our GCN-TM training, for each edge

we recalculated the similarity of its two ending nodes using

their updated embeddings in the new space. The similarities

of all edges are depicted by the second boxplot in Fig. 5.

As shown in Fig. 5, 88.97% of such similarity goes higher

significantly. The average increase is 62.65%. This experiment

demonstrates that after aggregating topic information from

neighbors (i.e., papers that cite it), the distance between a

paper node and its neighbors becomes closer.

Fig. 5. Graph Strengthened Paper Recommendation.

We further demonstrated our hypothesis based on the key-

word initiative. In contrast, each paper takes its IEEE keywords

as its initial embedding, and its final embedding aggregates its

neighbor embeddings from the CKG network. The similarities

of the two papers with a citation relation using the initial and

embeddings are represented by the two right boxplots in Fig. 5.

97.24% of such similarity goes higher significantly, and the

average increase is 62.63%.

These two experiments demonstrated our hypothesis, that

taking into account paper readers’ views will help enhance

paper representation for recommendation.

D. Loss Function

We examined the loss function used in our GCN-TM model

for embedding learning impact. The hinge loss provides a

semi-supervised learning approach thus shall be more stable.

In our scenario, the citation relations are limited. In theory,

the hinge loss shall be more appropriate. As a comparison,

we experimented the binary cross entropy as the loss function

as well. However, with the cross entropy method, the edge

probability increases 88.97% after GCN-TM training; while

the hinge loss only brings up 81.25%. We guess the reasons

are two-fold. The first is that our testbed is relatively small.

The second is that a paper may not cite another one with the

highest similarity only based on word statistics.

E. DBI Analysis

The DBI results of our GCN-TM and the vanilla LDA

are shown in Fig. 6. With different topic numbers (25 and

50), shown in Fig. 6(a) and Fig. 6(b), our GCN-TM always

performs better under different number of clusters K, ranging

from 10 to 200, with a step size 10. This experiment shows

that considering the user views can increase the quality of

paper representations toward paper recommendation.

Fig. 6. DBI Comparison between GCN-TM and Vanilla LDA.

F. Case Study

To validate whether our resulted paper representations

shall facilitate paper recommendation, we plotted the paper

embeddings on 2-dimension using the Python t-Distributed

Stochastic Neighbouring Entities (t-SNE)13.

Fig. 7(a) and (b) show t-SNE plots of the testbed papers

after applying Vanilla LDA, when the topic numbers are

pre-set to 25 and 50, respectively. Particularly, the paper

node highlighted blue is our identified paper with the highest

outdegree in our testbed (cite most papers in the testbed);

and the red nodes represent all papers that cited by it. Note

that we enlarge the sizes of the highlighted nodes for better

visualization. It can be seen that the cited nodes (i.e., papers

highlighted in red) of the blue node are scattered in different

clusters, most of them not located close to the sample node.

Fig. 7(c) and (d) show the resulted t-SNE plots of the testbed

papers after applying our GCN-TM, when the topic numbers

are pre-set to 25 and 50, respectively. The studied sample paper

13http://lvdmaaten.github.io/tsne/
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node is again highlighted in blue, and its cited papers are

highlighted in red as well. It can be easily visualized that

most of the cited papers of the sample paper now move much

closer to the sample paper in the embedding space.

This case study has demonstrated that the adjusted node

embeddings have learned signals from their citation relation-

ship; therefore, papers with citation relationships will become

closer in the embedding space, and will assist in paper

recommendation.

Fig. 7. Case Study Using t-SNE.

VI. CONCLUSIONS

Machine learning-based topic modeling techniques, rep-

resented by LDA, have been widely used to learn topic

distributions as paper presentations to facilitate paper recom-

mendation. Relying on word statistics however, such resulted

paper presentations merely represent authors’ views. How

community users view the papers is valuable information, and

may be of help to others to find interested papers to read and

cite. Our hypothesis is that if paper A cites paper B, paper

A thinks paper B as its related work. In other words, papers

similar to paper A may also want to read and cite paper B.

Thus in this paper, we have presented a novel technique that

seamlessly integrate graph neural network into topic modeling,

to refine paper representation from an audience perspective

by learning from past paper citation relationships. Starting

from paper content-based topic distributions, our GCN-TM

model learns signals from papers that cite the paper and

refines the paper representation. Our experimental results over

the prestigious publication venues in the field of Services

Computing (TSC, ICWS, SCC) have proved the effectiveness

of our proposed GCN-TM model.

In our future work, we plan to further our research in

the following three directions. First, we plan to consider

different impacts (i.e., weights) over a paper from different

papers. We may consider to apply the attention mechanism

over the graph neural networks. Second, we plan to apply

our technique to much broader domains, such as computer

science and Earth science domains to evaluate the effectiveness

and general applicability of our approach. Third, we plan to

develop a portal to apply our technique to recommend papers

to community users.
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