
SR-LDA: Mining Effective Representations for Generating
Service Ecosystem Knowledge Maps

Bing Bai

Tsinghua National
Laboratory for Information

Science and Technology
Department of Automation

Tsinghua University
Beijing 100084, China

bb13@mails.tsinghua.edu.cn

Yushun Fan∗

Tsinghua National
Laboratory for Information

Science and Technology
Department of Automation

Tsinghua University
Beijing 100084, China

fanyus@tsinghua.edu.cn

Wei Tan

IBM Thomas J. Watson
Research Center
Yorktown Heights
NY 10598, USA

wtan@us.ibm.com

Jia Zhang

Carnegie Mellon University
Silicon Valley
Moffett Field

CA 94035, USA
jia.zhang@sv.cmu.edu

Abstract—As the quantity of Web services grow continuously,
it becomes more challenging for developers to navigate through
and make use of them. Thus, a knowledge map consisting of a
summary of individual services and their relations has become
increasingly useful. There are two challenges in building such
a knowledge graph for Web service ecosystems. First, services
keep evolving in terms of function and usage pattern, while
their descriptions typically remain static and obsolete. Second,
service profiles usually comprise some common background
terms which do not differentiate services. To address the two
challenges, we developed a novel tailored topic model, named
Service Representation-LDA (SR-LDA), to mine effective rep-
resentations beyond service profiles to build a knowledge
map. The key idea is to incorporate mashup descriptions
as an indication of service evolution, and introduce a global
filter to identify and filter out background terms. Extensive
experiments show that the tailored model is more effective
than baselines. The methodology of building knowledge maps
for the real-world ProgrammableWeb service ecosystem based
on the learned representations is also presented, together with
the analyses of representative functionality patterns.

Keywords-service ecosystem; topic model; knowledge map

I. INTRODUCTION

With the advancement of Service Oriented Software En-

gineering (SOSE), developers can compose multiple func-

tionalities offered by different providers to build service

compositions, or so-called mashups [1], [2]. As such

software reusability and interoperability can make it faster to

market and bring cost-reduction for software development,

it becomes a matter of course that we witness a boom in the

number of services.

However, the rapidly increasing number of Web services

also brings challenges for mashup developers, as well as

service ecosystem managers. Despite many service rec-

ommendation/discovery approaches, which can help when

developers are ready to build mashups [3], [4], [5], peo-

ple still get stuck when wondering fuzzy problems like:

∗ Corresponding Author

“What are the functional relationships between the various

services?” “Are there any interesting services that can bring

appealing functionalities to build mashups?” In these sce-

narios, knowledge maps of service ecosystems can provide

a practical overview of all the services on the web. Mining

these knowledge maps may also identify services that are

interesting to investigate [6].

In order to generate knowledge maps, building service

representations is the first and foundational step. A di-

rect method is to apply vanilla Latent Dirichlet Alloca-

tion (LDA) [7] to build latent topic models for service pro-

files. However, considering the following characteristics of

service ecosystems, vanilla LDA cannot build very effective

service representations.

• The profiles are static while the services are evolving.
Once published, the profiles generally remain static, but

later the services might evolve in terms of function and

usage pattern [8]. In addition, software developers may

find ways to use the services that are different from the

service publishers’ initial thoughts.

• Service profiles usually comprise some service
ecosystem-specific background terms. For example,

the description of Google Maps is “The Google Maps
API allows for the embedding of Google Maps onto web
pages of outside developers, using a simple JavaScript
interface or a Flash interface. It is designed to work
on both mobile devices as well as traditional desk-
top browser applications. . . ” Background terms such

as “developers,” “interface” and “applications” cannot

differentiate services and will bring adverse impact on

the representations.

To the best of our knowledge, no existing algorithm

is designed to solve the aforementioned issues. In this

paper, we propose a novel model that is tailored to mine

effective representations of services aiming for generating

knowledge maps. The basic idea of the proposed SR-LDA

2017 IEEE 14th International Conference on Services Computing

2474-2473/17 $31.00 © 2017 IEEE

DOI 10.1109/SCC.2017.23

124

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:04:40 UTC from IEEE Xplore. Restrictions apply.

������

������ ��	
��� �����������	 ��	�

���	
�����������
������� ���������

���	
��������������
��

������

Figure 1: The basic idea of the proposed SR-LDA. We build

service representations from both mashup descriptions and

service profiles. Additionally, we introduce a global filter to

identify and down-weight background terms.

is illustrated in Fig. 1. A service ecosystem consists of all

kinds of services, and some of them may be composed as

mashups. For example, mashup A involves two services, i.e.,

service a and service b, each of them is described by a few

words (terms), i.e., word 1 to word 7.

Once a service is published, its profile remains static,

but the service may evolve. Such information is hidden in

the descriptions of mashups that involve the service. That

is to say, instead of modeling services solely based on

their profiles, we incorporate mashups’ descriptions to build

more comprehensive and up-to-date service representations.

However, a mashup might use multiple services, and the

words used to describe the mashup can correspond to

anyone of them. Thus we resort to the idea of author topic

model [9], [10] and develop a probabilistic method that can

automatically assign words to corresponding services based

on maximizing the posterior probability. By incorporating

mashup descriptions and service profiles, the first issue can

be settled.

To tackle the second issue, we introduce a concept of

“global filter.” If a word is not quite related to some

specific services and appears roughly uniformly in many

profiles, it is more likely to be a background term and thus

assigned to the global filter. Through this method, we can

automatically identify and down-weight the adverse impact

of the background terms.

By incorporating the aforementioned ideas, we can ob-

tain significantly more effective service representations for

knowledge map generation. The main contributions of this

paper are summarized as follows:

• We designed a tailored model that adapts to the evolv-

ing service ecosystem and can automatically identify

background terms, thus the model can learn more

effective service representations.

• We tested our model in the real-world

ProgrammableWeb dataset, and both quantitative

and qualitative analyses show that our model is more

effective than baselines.

• We introduced the methodology of building knowledge

maps for service ecosystems based on the learned repre-

sentations, and found three representative functionality

patterns.

The rest of this paper is organized as follows. Section II

describes the framework of our model. Section III shows

how the optimal parameters are obtained. Section IV reports

the experimental results. Section V reports how knowledge

map is generated and our analyses. Section VI lists the

related work and Section VII draws conclusions.

II. MODEL FRAMEWORK

In this section, we introduce several definitions about the

notations used for Web service ecosystems, then describe

the framework of our model.

A. Background notations

The definitions of the notations used for mashups and

services are defined as follows.

For services, in this paper, we use subscript “j” to denote

that this notation is related to service j, and j = 1 : J .

SDj = {wj1, wj2, . . . , wjnj
} is the set of nj words (terms)

used in the profile of service j.

For mashups, we use subscript “i” to denote that this

notation is related to mashup i, and i = 1 : I . CSi =
{csi1, csi2, . . . , csihi} is the set of hi component services

involved in mashup i, and MDi = {wi1, wi2, . . . , wini} is

the set of ni words used to describe mashup i.
As illustrated above, in this model we mainly use the

involvement relationship between mashups and services, the

service profiles and the mashup descriptions. Note that the

service profiles include, but are not limited to content de-

scriptions, category information, tags and WSDL documents.

B. Generative model for SR-LDA

The original service profiles are static, and contain too

many service ecosystem-specific background terms, thus the

representations built directly from the profiles cannot be very

effective. In this paper, we incorporate the descriptions of

mashups as a source of information for service evolution,

and introduce a global filter to automatically filter the

background words. In order to achieve the above objectives,

we define a tailored generative process. For conciseness, we

use the subscript “J + 1” to represent the global filter. For

example, notation θJ+1 represents the topic proportions of

the global filter.

The generative process is defined as follows. Assuming

that there are T topics,

1) For each topic z = 1 : T , draw word proportions

φz ∼ Dirichlet(β).
2) For the global filter, draw topic proportions θJ+1 ∼

Dirichlet(α).
3) For each service j = 1 : J ,

125

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:04:40 UTC from IEEE Xplore. Restrictions apply.

Figure 2: The graphical model for the proposed SR-LDA.

Words in the service profiles and mashup descriptions are

assigned to services, and a global filter is introduced for

better performance.

a) Draw topic proportions θj ∼ Dirichlet(α)
b) For each word wjn ∈ SDj ,

i) Draw a service assignment sjn ∼
Uniform({j, J + 1})

ii) Conditioned on sjn, draw a topic assignment

zjn ∼ Mult(θsjn).
iii) Conditioned on zjn, draw the word wjn ∼

Mult(φzjn).

4) For each mashup i = 1 : I ,

a) For each word win ∈MDi,

i) Draw a service assignment sin ∼
Uniform(CSi

⋃{J + 1})
ii) Conditioned on sin, draw a topic assignment

zin ∼ Mult(θsin).
iii) Conditioned on zin, draw the word win ∼

Mult(φzin).

As illustrated at 3)b) and 4)a), we assume that the words

in a service’s profile can only be assigned to the service

itself or the global filter, while the words in the descriptions

of mashups can be assigned to any one of the component

services, or the global filter. Based on such a framework,

words that are used to describe mashups can also fertilize

the representations of services (i.e., the topic proportions

θ1:J). What’s more, as the global filter corresponds to all

the profiles and descriptions, background terms that appear

in many profiles will be assigned to the global filter, thus

the model can automatically identify background terms

and then down-weight the impact on the representations.

Through these targeted designs, SR-LDA can build effective

representations for Web services.

The graphical model for this process is shown in Fig. 2.

III. PARAMETER LEARNING FROM DATA

Effective service representations can be built by solving

the generative model of SR-LDA. If we assume that there

are T topics, the variables that we are interested in include:

(1) service-topic proportions Θ = θ1:J+1, (2) topic-word

proportions Φ = φ1:T . Our aim is to maximize the posterior

distribution on Θ and Φ.

For conciseness, we merge the data from the service part

and the mashup part together when explaining the model

training procedure. We define

D = {SD1, . . . , SDJ ,MD1, . . . ,MDI},
in other words, D contains all the description content in the

service ecosystem, and |D| = I + J . Similarly, we define

S =
{{

1, J + 1
}
, . . . ,

{
J, J + 1

}
,

{
CS1

⋃
{J + 1}}, . . . ,{CSI

⋃
{J + 1}}

}
,

which means that S contains the corresponding service

associated to D. We use the subscript “k” to denote that

the notation is related to the merged variables. By merging

the service part and mashup part together, we can get more

concise expressions for model training.

Similar with [9], our inference scheme is based upon

maximizing the observation that

p(Θ,Φ|D,S, α, β)

=
∑
z,s

p(Θ,Φ|z, s, D, S, α, β)P (z, s|D,S, α, β),

where z = {zkn} is the topic assignments for the words

in D, and s = {skn} is the service assignments. An

approximate posterior on Θ and Φ can be obtained by using

Gibbs sampling algorithm. First an empirical sample-based

estimate of P (z, s|D,S, α, β) can be obtained. Afterwards

for any specific sampling instance, we can get the expecta-

tion of Θ and Φ directly by exploiting the conjugation of

Dirichlet distribution and multinomial distribution.

The Gibbs sampler corresponding for P (z, s|D,S, α, β)
is expressed in the following basic equation

P (skn = j, zkn = t|wkn = w, z¬kn, s¬kn, D¬kn, S, α, β)

∝ g¬kn
jt + α∑

t′ g
¬kn
jt′ + Tα

× c¬kn
tw + β∑

w′ c¬kn
tw′ +Wβ

,

(1)

where gjt is the number of word tokens assigned to topic

t and service j at the same time, and ctw is the frequency

at which word w is assigned to topic t. The superscript ¬
denotes a quantity excluding the current instance.

After sampling a sufficient number of burn-in iterations,

the sampler will converge and we can accumulate the

results for several iterations, average them and compute the

expectation of the true posterior with equations. For any

specific sampling instance z and s,

E[φtw|z, D, β] =
ctw + β∑

w′ ctw′ +Wβ
(2)

126

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:04:40 UTC from IEEE Xplore. Restrictions apply.

Table I: Notations Used in SR-LDA

Symbol Description
i Subscript for mashups

j Subscript for services

k Subscript for merged variables

MDi Description content for mashup i

SDj Profile content for service j

D = {Dk} Dk is the kth merged description content

w = {wkn} wkn is the word for nth word token in Dk

W Vocabulary size

CSi Component services of mashup i

S = {Sk} Sk is the corresponding service set for Dk

T Number of topics

Φ = φ1:T Topic-word proportions. φtw indicates the probabil-
ity of word w given topic t

Θ = θ1:J+1 Service-topic proportions, and θJ+1 is the topic
proportions for the global filter. θjt indicates the
probability of topic t given service j

α Dirichlet prior for service-topic proportions

β Dirichlet prior for topic-word proportions

z = {zkn} zkn is the topic assignment for wkn

s = {skn} skn is the service assignment for wkn

gjt Number of word tokens assigned to topic t and
service j at the same time

ctw Frequency at which word w is assigned to topic t

Nburn Number of burn-in iterations

Nacc Number of accumulation iterations

Algorithm 1: Parameter learning for SR-LDA

Input: α, β, D, S, T , Nburn and Nacc

Output: Optimal Θ and Φ

Procedure:

01 Initialize z and s randomly

02 For iter = 1 : Nburn +Nacc

03 For each word token wkn

04 Update gjt and ctw for all j, t and w

05 Sample zkn and skn according to Eq. (1)

06 End
07 If iter ≥ Nburn + 1

08 Record the sampling results of zkn and skn
09 End
10 End
11 Calculate the average of recorded z and s
12 Calculate expectational Φ according to Eq. (2)

13 Calculate expectational Θ according to Eq. (3)

E[θjt|z, s, D, α] =
gjt + α∑

t′ gjt′ + Tα
. (3)

The notations used here are summarized in Table I.

Assuming that the number of burn-in iterations is Nburn and

the number of accumulation iterations is Nacc, the procedure

of parameter learning can be described in Algorithm 1.

IV. EXPERIMENTS

In this section, we first introduce the data set we used for

evaluation, the evaluation metric and the baseline methods.

Table II: Information about ProgrammableWeb Data Set

Total # of services 13,931

Total # of services that have been used by mashups 1,241

Total # of mashups 6,295

Vocabulary Size 9,555

Average # of services in mashups 2.06

Average # of word tokens in mashup descriptions and
service profiles

34.82

We then discuss the quantitative and qualitative results

compared with baselines1.

A. Data set

ProgrammableWeb.com is the largest online repository of

public Web services and their mashups [4], and it has been

used in a number of experiments of Web service research [3],

[4]. We crawled the data of ProgrammableWeb.com from

June 2005 to August 2016. The profile of services include

their textual description, tags and category information.

After processing the profiles by stemming and stop words

removing, we got a vocabulary size of 9,555. Detailed

information about the data set we used is listed in Table II.

B. Evaluation scheme

The target of our method is to learn effective representa-

tions from service ecosystem to fertilize the generation of

knowledge maps. However, the quality of representations is

hard to measure directly. Intuitively, better representations

can (1) detect the similarities of services in the same

domain; and (2) detect the differences of services in different

domains. Based on the intuition, we adopted an indirect

method to evaluate the quality of service representations.

The evaluation works in the following way: similar

with [11], first we perform K-means clustering upon the

representations, then we calculate the Davies-Bouldin index

(DBI) [12] to measure the results. DBI is defined as follows

DBI =
1

K

K∑
i=1

max
j �=i

(avg(Ci) + avg(Cj)

dcen(μi,μj)

)
,

where

avg(C) =
2

|C|(|C| − 1)

∑
1≤i<j≤|C|

dist(xi,xj)

is the average distance within cluster C, K is the number

of clusters and dcen(μi,μj) indicates the distance between

centers of two clusters, i.e., the distance between μi and μj .

Obviously, a lower value of DBI indicates more effective

representations, i.e., items are more similar within a cluster,

and the clusters are separated better, which corresponds to

the aforementioned intuition.

1The data set and results are published at
http://www.simflow.net/team/baibing/sr-lda.zip

127

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:04:40 UTC from IEEE Xplore. Restrictions apply.

(a) T = 40 (b) T = 80 (c) T = 120 (d) T = 160

Figure 3: DBI results for the proposed SR-LDA and baselines. At all tested topic number T and cluster number K, SR-LDA

shows superior performance.

C. Baselines and hyperparameter settings

The baselines used for comparison include:

• LDA. For this baseline, we used the profiles of services

and applied LDA [7] to extract topics of each service.

This baseline can provide evidence for how well the

vanilla method works in service ecosystems.

• DSR-LDA (Degenerated SR-LDA). For this method,

we abandoned the global filter in the proposed SR-

LDA. This baseline can provide evidence for how

background terms bring adverse impact on building

effective representations.

For all runs of our model and baselines, we used α =
50/T and β = 0.01. We computed the results of T values

of 40, 80, 120 and 160 topics. For all values of T , we ran

five different Gibbs sampling chains on the whole dataset,

discarding the first 8,000 iterations for burn-in, and then

took the average of the next 2,000 iterations as final results.

The DBI results reported are the average of these five Gibbs

sampling chains. For qualitative evaluation and knowledge

map generation, we set T to 120 based on the inflection

point of perplexity curve [7].

D. Quantitative comparisons

The DBI results of SR-LDA and baselines with different

topic numbers T are shown in Fig. 3. We can find that at

all tested topic numbers T and cluster numbers K, vanilla

LDA gets the largest DBI and SR-LDA performs the best.

Comparing the results of baseline LDA and DSR-LDA, we

can find that taking the description of mashups into consid-

eration can promote the quality of service representations.

While comparing the results of the proposed SR-LDA and

the baselines, we can draw more interesting conclusions.

Firstly, the gaps between SR-LDA and DSR-LDA are

generally larger than those between DSR-LDA and LDA,

indicating that background terms are bringing more adverse

impact on building high-quality representations.

Secondly, we can find that the DBI results of SR-LDA

show a different trend compared with the results of the two

baselines, especially when T is large. For example, when T

is set to 120, optimal DBI for SR-LDA is obtained when

K = 100, while optimal DBI values for LDA and DSR-

LDA are obtained when K = 80. If we enlarge T to 160,

the difference is more significant. This shows that without

filtering out background terms, LDA and DSR-LDA cannot

guarantee that all topics learned from data are effective for

identifying the functionalities of services.

As a conclusion, SR-LDA can give better DBI results at a

variety of topic number T and cluster number K, indicating

that representations given by SR-LDA are more effective.

E. Qualitative analyses

We also conducted qualitative analyses on the topics

given by different methods. Table III reports top words and

services in three example topics. The left part is the results

given by SR-LDA, and the right part is the information of

the corresponding topics given by DSR-LDA. Due to space

constraints, we only report the results of SR-LDA and DSR-

LDA. This can provide information about the role of the

global filter.

As illustrated in the Table, for SR-LDA, words in

Topic #43 are general background terms used in service

ecosystems, and words in Topic #96 are technical back-

ground terms. SR-LDA can assign them to the global filter,

thus down-weighting the impact of these words. As for DSR-

LDA, Topic #23 and #29 are the most similar topics to

the corresponding topics. As DSR-LDA cannot filter these

words, the quality of service representations suffers from the

adverse impact of these background terms.

For the last topic pair reported in the table, we can

conclude that the topics are weather-related. As weather

information is seldom used without location, in practice,

Web services like Google Maps are actually also related

to this topic. Both methods can discover this phenomenon

from the descriptions of mashups. As “Mapping” category

are centralized and “Weather” category is relatively evenly,

given this topic, the probability of Google Maps would be

even larger than any specific weather-related Web service.

However, DSR-LDA cannot automatically filter background

terms, thus there are words like “data” and “provide” listed

128

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:04:40 UTC from IEEE Xplore. Restrictions apply.

Table III: Top Words and Services in Example Topics

SR-LDA DSR-LDA
t w P (w|t) s P (s|t) t w P (w|t) s P (s|t)

web 13.89% #global filter# 75.35% web 9.99% Google Maps 0.55%

website 10.38% NationBuilder 0.10% base 6.13% Flickr 0.52%

tool 7.74% Amazon S3 0.08% interact 5.89% OpenLayers 0.30%

#43 enable 6.06% Fitbit 0.06% #23 javascript 4.95% Twitter 0.25%

help 5.54% Google Analytics Managment 0.06% design 4.40% Google Maps Flash 0.20%

interface 4.20% Bing 0.05% feature 3.06% AnyChart 0.18%

software 3.31% PayPal 0.03% build 3.01% Yahoo Maps 0.17%

data 10.29% #global filter# 90.04% format 18.80% Google Maps 0.14%

RESTful 6.13% PriceGrabber 0.01% response 14.81% Yandex Bar 0.10%

JSON 4.31% UniGraph 0.00% RESTful 14.47% Yandex Webmaster 0.08%

#96 format 4.12% iCasework UsefulFeedback 0.00% #29 call 14.13% Bank of Russia Daily Info 0.07%

online 3.42% eRail.in Indian Railways 0.00% JSON 13.94% Mail.Ru 0.07%

return 3.19% BigCommerce 0.00% xml 11.15% Yandex Money 0.07%

response 2.67% FlightAware 0.00% let 4.12% Yandex Metrica 0.07%

weather 21.67% Google Maps 2.71% weather 14.13% Google Maps 3.99%

forecast 4.90% Weather Underground 0.79% energy 4.90% Weather Underground 0.69%

science 4.30% NOAA National Weather Service 0.70% data 4.47% WeatherBug 0.61%

#110 condition 3.09% WeatherBug 0.68% #61 environment 4.37% NOAA National Weather Service 0.58%

astronomy 3.08% Microsoft Bing Maps 0.37% forecast 3.20% Clean Power SolarAnywhere 0.37%

nasa 2.26% OpenWeatherMap 0.37% provide 2.77% AMEE 0.37%

earth 2.06% Weather Channel 0.35% condition 2.44% OpenWeatherMap 0.35%

in this topic, and some environmentally-friendly energy-

related services like Clean Power SolarAnywhere and AMEE
also show up in this topic. This shows that without filtering

background terms, the quality of function-related topics will

also suffer.

Based on the results, we can conclude that the topics

learned by SR-LDA are more effective. This can be helpful

for the generation of service ecosystem knowledge maps.

V. GENERATION OF SERVICE ECOSYSTEM KNOWLEDGE

MAPS

In this section, we show how to use the representations

to generate knowledge maps for service ecosystem. Firstly,

we show the settings of knowledge map generation, then we

demonstrate the resulting map and take four example Web

services for further analysis.

A. Settings of knowledge map generation

Based on the representations learned by SR-LDA, we can

finally build knowledge maps for Web service ecosystems.

We take nodes in the map for services, and undirected edges

between nodes for the relationships between services.

The diameter of a node is proportional to the logarithm

of how many times the service is involved by mashups, i.e.,

diameterj ∝ log(popj).

The weight of an edge is set to the cosine similarity

between two services, i.e.,

weightj,j′ =
θT
j θj′

‖θj‖‖θj′‖ .

Figure 4: Overview of the knowledge map generated based

on representations learned by SR-LDA.

The color of a node is related to the primary category

given by the service’s provider.

With these settings, we use the ForceAtlas2 [13] algorithm

and Gephi [14] to generate service ecosystem knowledge

map. The basic idea of ForceAtlas2 is to simulate the gravity

and repulsion and find a stationary state of the graph.

B. Analyses of the overview

Based on the aforementioned settings, we generate a

knowledge map for ProgrammableWeb service ecosystem2.

2In this paper, we only report the knowledge map of ever-used services
for demonstration. The full version is published on the web.

129

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:04:40 UTC from IEEE Xplore. Restrictions apply.

(a) Inclining: LinkedIn (b) Balancing: GetGlue (c) Realigning: Readmill

Figure 5: Three example Web services and their neighbors. All these services belong to the “Social” primary category,

however, we can find that they are of different functionality patterns.

The overview of the resulting map is shown in Fig. 4.

From the overview, we can find that there are many

service clusters, and each cluster is dominated by a few giant

services. Such as Google Maps and Microsoft Bing Maps
of “Mapping” category, YouTube and Netflix of “Video”

category and so on. Besides, there are also clusters that

are relatively independent of others, like the cluster in the

lower right corner, which is mainly Bitcoin-related services.

Generally, the services within the same category are gathered

together.

C. Analyses of representative functionality patterns

To dive into the details of the map, we take three services

as examples and analyze their neighbors in Fig. 5. According

to the profiles given by the providers, all these services

belong to the “Social” primary category, but we can find

that they are of quite different functionality patterns.

(1) Inclining. Fig. 5a demonstrates the neighbors of

LinkedIn. As we can see, LinkedIn is very close to Facebook
as a representative of Social services, but it also has rela-

tionships with SimplyHired Jobs, CareerBuilder and indeed,

conforming that LinkedIn is “a business social networking
hub.” This shows the phenomenon that a service is majoring

in one domain, but also providing auxiliary functionalities.

(2) Balancing. GetGlue is “a social networking service
where users ‘check-in’ to share what movies, videos, or TV
shows,” thus we can witness that GetGlue is serving as the

connection of “Social” category and “Video” category in

Fig. 5b. If developers want to make compositions relating

to both functionalities, GetGlue would be a potential choice.

(3) Realigning. Readmill is an interesting example for

investigation. The profile of Readmill says that “Readmill
is an online and mobile platform for readers to share
information about what eBooks they are reading, allowing
them to highlight and discuss sections of eBooks with other
users. . . ” However, mashups that involve Readmill generally

do not focus on “Social” properties. For example, mashup

ReadTracker is “an app for keeping track of the books you
read” and Readmap “lets users plot a map of all the places
they have been reading.” As a result, the social feature

of Readmill degenerates and it becomes more related to

“Books” category than “Social” as shown in Fig. 5c.

As we can see, such a knowledge map constructed for Pro-

grammableWeb service ecosystem is able to provide insights

for mashup developers and service ecosystem managers,

benefiting from the effective representations learned by SR-

LDA.

VI. RELATED WORK

In this section, we describe several representative related

works and differentiate them with our approach.

A. Topic modeling

In order to generate service ecosystem knowledge maps,

we first build representations for services. Topic model-

ing becomes popular for mining topic proportions from

text since Latent Dirichlet Allocation (LDA) was pro-

posed in [7]. Based on LDA, a variety of topic models

have been proposed. Correlated Topic Model [15] extends

LDA and models the relationship between topics. Author-

Topic model [9], [10] models authors and documents at

the same time. Dynamic Topic Model [16] captures the

topic changing over time. Beyond the framework of LDA,

there are also non-linear methods like Stacked Denoising

Autoencoders (SDAE) [17]. However, non-linear methods

lack interpretability and often require much more training

data, thus cannot give as many intuitions as generative topic

models [9].

For Web service ecosystems, the relationship of mashup-

service-word becomes the primary issue that we need to

consider. Thus we have designed a tailored generative pro-

cess for mashups and services, and introduced a global filter

for background terms.

B. Visualization for Web service ecosystem

Among the existing work for visualization in Web service

field, [18] propose a QoS-aware service recommendation

algorithm and use a recommendation visualization technique

to show the similarity of RTT variance of Web services. Be-

yond the Web service field, knowledge visualization remains

130

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:04:40 UTC from IEEE Xplore. Restrictions apply.

an active topic for research. [19] proposes a knowledge map-

based method for domain knowledge browsing. [20] presents

an automated approach for constructing topic knowledge

maps with knowledge structures. [21] proposes t-Distributed

Stochastic Neighbor Embedding (t-SNE) for visualization of

high-dimension data.

In this paper, we build a knowledge map of Pro-

grammableWeb service ecosystem based on the represen-

tations by SR-LDA. Experiments show that building service

ecosystem knowledge maps is able to provide insights for

mashup developers and service ecosystem managers.

VII. CONCLUSIONS

As the number of reusable Web services keeps grow-

ing, making a value-added software has become amazingly

convenient. However, the overloaded information of Web

services poses a great challenge for mashup developers and

service ecosystem managers to gain an overview cognition of

all the services in the repository. Building knowledge maps

becomes a solution to this problem.

However, considering the unique characteristics of Web

service ecosystem, vanilla topic models cannot build effec-

tive service representations. In this paper, for the evolution

property of Web services, we incorporated mashup descrip-

tions to enrich the static profiles of services. Besides, we

introduced a global filter to down-weight the adverse impact

of background terms and the quality of representations is fur-

ther improved. Both quantitative and qualitative experiments

show that our proposed SR-LDA is more effective than

baselines. Upon the representations learned by SR-LDA,

we built a knowledge map of ProgrammableWeb service

ecosystem, which yielding some interesting results.

In the future, we plan to incorporate more information,

such as the comments on the Web services and temporal

information explicitly, for building more effective represen-

tations. We also plan to develop better visualization tools for

service ecosystems.

ACKNOWLEDGMENT

This research has been partially supported by the National

Nature Science Foundation of China (No.61673230).

REFERENCES

[1] V. Andrikopoulos, S. Benbernou and M. P. Papazoglou, ”On
the Evolution of Services,” IEEE Transactions on Software
Engineering, 2012, 38, pp. 609-628.

[2] J. Zhang, R. Shi, W. Wang, S. Lu, Y. Bai and Q. Bao, “A
bloom filter-powered technique supporting scalable semantic
service discovery in service networks,” in proceedings of
IEEE International Conference on Web Services, 2016, pp.
81-90.

[3] Z. Gao, Y. Fan, C. Wu, W. Tan, J. Zhang, Y. Ni, B. Bai and
S. Chen, “SeCo-LDA: mining service co-occurrence topics
for recommendation,” in proceedings of IEEE International
Conference on Web Services, 2016, pp. 25-32.

[4] X. Liu and I. Fulia, “Incorporating user, topic, and service
related latent factors into web service recommendation,”
in proceedings of IEEE International Conference on Web
Services, 2015, pp. 185-192.

[5] C. Li, R. Zhang, J. Huai, X. Guo and H. Sun, “A Probabilistic
Approach for Web Service Discovery,” in proceedings of
IEEE International Conference on Services Computing, 2013,
pp. 49-56.

[6] C. Zins, “Knowledge map of information science,” Journal
of the Association for Information Science and Technology,
2007, 58(4), pp. 526-535.

[7] D. M. Blei, A. Y. Ng and M. I. Jordan, “Latent dirichlet
allocation,” Journal of Machine Learning Research, 2003,
3(Jan), 993-1022.

[8] K. Huang, Y. Fan, W. Tan and X. Li, ”Service recommenda-
tion in an evolving ecosystem: a link prediction approach,”
in proceedings of IEEE International Conference on Web
Services, 2013, pp. 507-514.

[9] M. Rosen-Zvi, C. Chemudugunta, T. Griffiths, P. Smyth
and M. Steyvers, “Learning author-topic models from text
corpora,” ACM Transactions on Information Systems, 2010,
28(1), pp. 312-324.

[10] M. Steyvers, P. Smyth, M. Rosen-Zvi and T. Griffiths, “Prob-
abilistic author-topic models for information discovery,” in
proceedings of ACM International Conference on Knowledge
Discovery and Data Mining, 2004, pp. 306-315.

[11] W. Li, Y. Feng, D. Li and Z. Yu, “Micro-blog topic detection
method based on btm topic model and k-means clustering
algorithm,” Automatic Control & Computer Sciences, 2016,
50(4), pp.271-277.

[12] D. L. Davies and D. W. Bouldin, “A cluster separation mea-
sure” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 1979, (2), pp.224-227.

[13] M. Jacomy, T. Venturini, S. Heymann and M. Bastian,
“ForceAtlas2, a continuous graph layout algorithm for handy
network visualization designed for the gephi software,” Plos
One, 2014, 9(6), e98679.

[14] M. Bastian, S. Heymann and M. Jacomy, “Gephi: An Open
Source Software for Exploring and Manipulating Networks,”
in proceedings of International Conference on Weblogs and
Social Media, 2009, pp.361-362.

[15] D. M. Blei and J. D. Lafferty, “A correlated topic model of
science,” The Annals of Applied Statistics, 2007, pp. 17-35.

[16] D. M. Blei and J. D. Lafferty, “Dynamic topic models,” in
proceedings of ACM International Conference on Machine
Learning, 2006, pp. 113-120.

[17] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio and P. A. Man-
zagol, “Stacked denoising autoencoders: Learning useful rep-
resentations in a deep network with a local denoising crite-
rion,” Journal of Machine Learning Research, 2010, 11(Dec),
pp. 3371-3408.

[18] X. Chen, Z. Zheng, X. Liu, Z. Huang and H. Sun, “Person-
alized qos-aware web service recommendation and visualiza-
tion,” IEEE Transactions on Services Computing, 2013, 6(1),
pp. 35-47.

[19] J. Hao, Y. Yan, L. Gong, G. Wang and J. Lin, “Knowledge
map-based method for domain knowledge browsing,” Deci-
sion Support Systems, 2014, 61(1), pp. 106-114.

[20] D. Y. Chiu and Y. C. Pan, “Topic knowledge map and
knowledge structure constructions with genetic algorithm,
information retrieval and multi-dimension scaling method,”
Knowledge-Based Systems, 2014, 67(3), pp. 412-428.

[21] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,”
Journal of Machine Learning Research, 2008, 9, 2579-2605.

131

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:04:40 UTC from IEEE Xplore. Restrictions apply.

