
Scalable Provenance Storage and Querying Using Pig Latin for Big Data Workflows

Fahima Bhuyan, Dr. Shiyong Lu, Dong Ruan

Department of Computer Science
Wayne State University

Detroit, MI
fahima.amin@wayne.edu, shiyong@wayne.edu, du7600@wayne.edu

Dr. Jia Zhang

Electrical and Computer Engineering
Carnegie Mellon University Silicon Valley

Mountain View, CA
jia.zhang@sv.cmu.edu

Abstract—Provenance refers to the information about the
derivation history of a data product. It is important for
evaluating the quality and trustworthiness of a data product
and ensuring the reproducibility of scientific discoveries. Much
research has been done on storing and querying scientific
workflow provenance - provenance that is produced in the
execution of data-centric scientific workflows. To address the
challenges of big data in increasing volume, velocity and
variety, a new generation of scientific workflows, called big
data workflows are under active research. As both data and
workflows increase in their scale, the scale of provenance
naturally increases, calling for a new scalable storage and
querying infrastructure. This paper leverages Pig Latin, a
high-level platform for creating programs that run on Apache
Hadoop, and OPQL, a graph-level provenance query language,
to build a scalable provenance storage and querying system
for big data workflows. Our main contributions are: i) we
propose algorithms to translate OPQL constructs to equivalent
Pig Latin programs; ii) we extend OPQL, to support the W3C
PROV-DM standard provenance model; iii) we develop and
evaluate our system on provenance datasets from the UTPB
benchmark; and (iv) we create some visual OPQL constructs
in the DATAVIEW big data workflow system to facilitate the
easy creation of complex OPQL queries in a visual workflow
style. Our preliminary experimental study shows the feasibility
of our framework for big-data-scale provenance storage and
querying.

Keywords-Provenance; Pig; Big data; Hadoop Distributed
File System; Query language;

I. INTRODUCTION

Provenance refers to the information about the deriva-

tion history of a data product [1], [2]. It is important for

evaluating the quality and trustworthiness of a data product

and ensuring the reproducibility of scientific discoveries [3],

[4]. Much research has been done on storing and querying

scientific workflow provenance - provenance that is pro-

duced in the execution of data-centric scientific workflows

[2], [5]. Since scientific workflow provenance are essentially

directed acyclic graphs, a leading trend of querying models

is the graph-based querying models, represented by two

provenance graph query languages: OPQL [6] and QLP [5].

While QLP provides query constructs for querying both

structure and lineage information in provenance graphs,

OPQL, in addition, supports the Open Provenance Model

[7], a community-driven data model, which captures main

aspects of the workflow provenance and does not enforce a

particular physical representation of the provenance data.

Recently, big data workflows have emerged as the next

generation of data-centric workflow technologies to address

the five ”V” challenges of big data: volume, variety, veloc-

ity, veracity, and value [8]. While its precedent, scientific

workflows, focus on dataflow and automation management

[9], big data workflows focus on large-scale data processing

and analytics with a “scale-out” architecture and a “moving-

computation-to-data” processing paradigm [10]. As both

data and workflow increases in their scale, the scale of

provenance naturally increases, calling for a new scalable

storage and querying infrastructure.

To this end, we propose to leverage Pig Latin [11], a

high-level platform for creating programs that run on Apache

Hadoop, and OPQL [6], the most popular graph-level prove-

nance query language, to build a scalable provenance storage

and querying system. Pig is a platform for analyzing large

data sets on top of Hadoop with a rich, multi-valued, and

nested data model. Pig’s language, Pig Latin, is a compre-

hensive imperative query language that let users express data

transformation such as filtering datasets, merging them and

applying functions to groups of records or records. It is a

simple data flow language, yet a fast iterative language with

an efficient MapReduce compilation engine. Pig Latin gives

a higher level of abstraction from the MapReduce procedural

model by providing join, filter like relational style operators,

which are not feasible in MapReduce out of the box. OPQL

is a graph-level provenance query language that include six

types of graph patterns. It is based on a rigid provenance

graph algebra and clear syntax and semantics. As OPQL

queries are not tightly coupled to the underlying provenance

storage strategies, an OPQL user does not need to be

aware of the underlying schema design. Moreover, OPQL

is technology-independent, and therefore can be integrated

with any big data workflow system. To our best knowledge,

this is the first effort to ensure both scalability (leveraging

a scalable platform) and usability (leveraging a graph-level

provenance query language) of provenance querying in the

area of big data workflows.

Our main contributions are four-fold: i) we propose algo-

rithms to translate OPQL constructs to equivalent Pig Latin

2017 IEEE 14th International Conference on Services Computing

2474-2473/17 $31.00 © 2017 IEEE

DOI 10.1109/SCC.2017.65

459

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:09:43 UTC from IEEE Xplore. Restrictions apply.

programs; ii) we extend OPQL, a graph-level provenance

query language, to support the W3C PROV-DM standard

provenance model, the current de facto standard provenance

model, which extended OPM with additional features to

capture provenance of provenance and accommodate the

Web; iii) we develop and evaluate our system on provenance

datasets from the UTPB benchmark; and (iv) we have

created some visual OPQL constructs in the DATAVIEW

big data workflow system to facilitate the easy creation

of complex OPQL queries in a visual workflow style.

Our preliminary experimental study shows the feasibility

of our framework for big-data-scale provenance storage and

querying.

The rest of the paper is organized as follows: In Section

I, we introduce the preliminary framework of provenance

models, OPQL query language, big data provenance, and

the Apache Pig/Pig Latin data model. In section II, we

propose a new framework called OPQLPig to translate

OPQL constructs to equivalent Pig Latin programs. Section

III proposes our extension of OPQL to support the PROV-

DM provenance model. The algorithm for translating OPQL

to Pig Latin is presented in Section IV. Finally, in Section V,

we discuss about data preparation and experimental section

with some visual OPQL constructs in the DATAVIEW big

data workflow system to facilitate the easy creation of

complex OPQL queries in a visual workflow style.

II. MOTIVATION

A. Provenance Models

1) OPM-Model: The Open Provenance model (OPM) is

the first model of provenance that supports digital repre-

sentation of provenance. The core set of rules in OPM

identifies the valid inferences by directed acyclic graph to

express such dependencies. OPM graph has three types of

nodes, (i.e, Artifact, Process and Agent) and five types

of relations between nodes (i.e. Used, WasGeneratedBy,

WasControlledBy, WasTriggeredBy, WasDerivedFrom) for

representing causal dependencies. In recent years, another

provenance data model was introduced in 2013, named

PROV-DM. Fig. 1 represents both provenance models in

graphical format.

2) PROV-DM Model: The PROV set of specification is

designed to promote PROV provenance model for more

generic and domain-agnostic, while remaining easily ex-

tensible and exploited for modeling specific domains. This

provenance model offers interoperability across diverse

provenance management systems and accommodates the

provenance of data generated from a diverse data sources.

PROV-DM is the core of PROV set of specification which is

essentially a relational model that captures intrinsic elements

of provenance and tailored to accommodate the requirement

of specific application domains [12]. There are other ex-

pressions of PROV family like PROV-O for OWL ontology,

Figure 1: Provenance Models

PROV-N for human readable relational syntax and PROV-

XML for XML encoding. Additionally, for accessing prove-

nance document PROV-AQ and strong notion of valid prove-

nance defined by a system of constraint PROVCONSTR are

also provided. PROV provenance model has flexibility when

it deals with attributes. Most of the provenance statement has

annotated with optional attributes. This provenance model

has a mechanism for asserting provenance of provenance

specified as ’bundles’. To avoid to make the model unneces-

sary complex, PROV-DM does not model uncertainty. Even

though this new model also has three types of nodes, but

their names are different. “Artifact” become “Entity”, “Pro-

cess” become “Activity” and “Agent” remains same. Also in

PROV-DM, two additional relations are introduced, “Acte-

dOnBehalfOf()” and “WasAttributedTo()” and two relations

are renamed “WasTriggeredBy()” as “WasInformedBy()”

and “WasControlledBy()” as “WasAssociatedWith()”.

B. Provenance Query Language: OPQL

OPQL aims to query the provenance data most of the

existing query languages such as SQL, SPARQL, XQuery

etc uses the provenance storages like RDB, RDF, XML etc.

Therefore to prevail the underlying schemas and structures

of provenance storage and also the semantics of models, the

VIEW workflow system has proposed OPQL query language

to work on OPM-level provenance [13], [6], [14], [15]. In

the direction of provenance lineage queries, very few work

has been done. OPQL is one of those where queries for

tracking ancestor nodes without writing recursive statement

or needed any recursive functionality for writing recursive

queries. OPQL queries are formulated based on OPM graph.

An OPQL query is either a basic query or composition of

multiple queries via set operators like UNION, INTERSECT

or MINUS. In OPQL, the basic queries are defined in 4
different ways:

• Single node construct A, P , AG
• Single-step-edge-forward constructs USD, WGB,

WCB, WDF , and WTB

460

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:09:43 UTC from IEEE Xplore. Restrictions apply.

• Single-step-edge-backward constructs USD∧, WGB∧,

WCB∧, WDF∧, and WTB∧

• Multi-step-edge constructs USD∗, WGB∗, WDF∗,
and WTB∗

C. Apache Pig

Apache Pig is a fairly competitive framework for pro-

cessing and continuous optimization, enhanced with new

features and maintained by Yahoo! Researchers [16]. The

advantage of using Pig is that it is independent of Hadoop

framework changes and can be benefited by all the opti-

mization techniques offered by Pig developer community.

Moreover, as Pig is backward compatible, further develop-

ments or optimizations will not effect any single line of code.

During runtime, the resulting Pig Latin script automatically

maps into a sequence of MapReduce iterations. Hence,

complicated deployment, configuration or installation do

not require. We have used few Pig Latin operator in our

translation. We explained each instructions of pig performed

in our case in later section. The more detail description will

be in Pig Latin Manual in [17].

III. OPQLPig QUERYING FRAMEWORK

OPQLPig is an integrated system of Storage and Query

engines and its underlying MapReduce and Apache Hadoop

framework. Though there are several concurrent projects

like DryadLINQ, Hive, Jaql, Sawzall, Scope etc., blending

Pig with its underlying Hadoop execution engine shows an

impressive benefits of scalability and fault tolerance. The

system overview of OPQLPig is to take datasets from

OPQL client, processing the data in the storage engine,

translate OPQL query into Pig Latin program, parse and

compile into Pig and one or more MapReduce Jobs and

execute those jobs in Hadoop cluster. We will discuss each

of the parts of the system in this section.

A. Storage Engine

1) Data Modeling and Representation: The provenance

can be captured in any form of modeling and representation

like PROV-DM, PROV-O and RDF/XML, RDF/Turtle or

RDF/NTriple. For our OPQLPig system we have used

UTPB benchmark for capturing provenance data from tem-

plates presented there.

2) Data Loading: After capturing provenance data, we

have data loading phase for creating the dataset in our

feasible format and store that in Hadoop Distributed File

system for querying. For storing the dataset the feasible

format we have used is: source node, source node type,

destination node, destination node type, relation construct.

B. Query Engine

Query engine has three major functional units with three

unique responsibilities: Query Translation, Apache Pig and

Query execution.

Figure 2: OPQLPig Architecture

1) Query Translation: First all OPQL queries are passed

through OPQL parser to verify their syntactic correctness.

Each of the construct of OPQL is transformed into its cor-

responding Pig program through a dedicated shell script for

each relation in PROV-DM model. The description of each

translation from PROV-DM relations to its correspondence

pig latin program will be explained in the next section.

2) Apache Pig: After translating OPQL query into pig

latin program which consists of a sequence of instructions,

each instruction performs a single data transformation. Dur-

ing the phase of Pig parser schema inference, type checking

and all referenced variables are defined. The output of the

parser is arranged as a Directed Acyclic Graph which is a

logical plan of one-to-one correspondence between pig latin

statements and logical operators [18].

3) Query Execution: The MapReduce jobs in DAG is

topologically sorted and submitted to the Job Scheduler’s

Name node. Finally jobs are executed in that order inside

Hadoop cluster’s data node. OPQLPig Querying Frame-

work is represented in Fig. 2.

461

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:09:43 UTC from IEEE Xplore. Restrictions apply.

IV. EXTENDING OPQL TO SUPPORT PROV-DM

A. Provenance Constructs

We have modified the constructs based on the PROV-

DM standard for all Single-node constructs, Single-step

construct (edge-forward and edge-backward) and Multi-step-

edge construct.

1) Single-node Construct: We have formulated our

single-node construct in the following formulation:

E(Xe) = {en | en ∈ Xe}
A(Xa) = {an | an ∈ Xa}

AG(Xag) = {agn | agn ∈ Xag}

2) Single-step Construct: In a Single-step construct, there

are two kinds of constructs; Single-node constructs (i.e.,

Entity, Activity and Agent) and Single-step construct. For

Single-step-edge-forward and Single-step-edgebackward, we

formulate all the relations in both directions.

USD(Xa) = {en | an ∈ Xa and (an, en) ∈ Edgeu}
WGB(Xe) = {an | en ∈ Xe and (en, an) ∈ Edgeg}
WCB(Xa) = {agn | an ∈ Xa and (an, agn) ∈ Edgec}
WDF (Xe) = {en2 | en1 ∈ Xe and (en1 , en2) ∈ Edged}
WTB(Xa) = {an2 | an1 ∈ Xa and (an1 , an2) ∈ Edget}
USD∧(Xe) = {an | en ∈ Xe and (an, en) ∈ Edgeu}
WGB∧(Xa) = {en | an ∈ Xa and (en, an) ∈ Edgeg}
WCB∧(Xag) = {an | agn ∈ Xag and (an, agn) ∈ Edgec}
WDF∧(Xe) = {en1 | en2 ∈ Xe and (en1 , en2) ∈ Edged}
WTB∧(Xa) = {an1 | an2 ∈ Xa and (an1 , an2) ∈ Edget}
3) Multi-step Construct: Multi-step Constructs are a little

bit more complicated, which uses both direction of single-

step constructs in a repetitive way.

WDF ∗(Xe) = {en |
⋃

en∈WDF (Xe)

WDF ∗(en) ∪ WDF (Xe)}

WTB∗(Xp) = {an |
⋃

an∈WTB(Xa)

WTB∗(an) ∪ WTB(Xa)}

WGB∗(Xa) = {an |
⋃

an∈WGB(Xe)

WTB∗(an) ∪ WGB(Xe)}

USD∗(Xp) = {en |
⋃

en∈USD(Xa)

WDF ∗(en) ∪ USD(Xa)}

V. TRANSLATING OPQL TO PIG LATIN

In this section we have explained the translation of

OPQL to OPQLPig . We have translated each of the

construct to Pig latin script. The implementation of each

of the constructs is handled through separate shell scripts,

because Pig Latin does not support loop and if condition.

As each of the construct is designed to handle inference

queries, it needs to traverse the whole provenance graph to

provide query answer. To handle such a scenario, shell script

is used to run multi-step-edge-constructs by provisioning

join operations in one pig file, going through a loop. In

addition, the loop break condition is handles by shell script.

The join operation will generate a set of records which

provide transitive relation and the loop condition will break

when there will be no new transitive relations. The loop

break condition measures the file size, if there is no new

relations, which means file size zero, then loop break will

happen. The last step of each construct is to run another

pig file which will retrieve all the destination nodes along

the path computed by join operations. The pseudo code of

translating from OPQL to OPQLPig for single-step and

multi-step constructs is summarized in Fig 3.

In Fig 3 we have given the algorithm just for one example

construct USD. Function 1 delineates the entire process.

Function 1 essentially acts as the driver program that itera-

tively invokes the constituent functions until the completion

condition is met. It can be noted that function 1 can be

written as a driver program in Map-Reduce framework as

well and is preferred, we present it as a shell script to

intuitively represent the flow. We assume that the input file

has the following format: source label, source type, desti-

nation label, destination type, relation type. We present the

algorithm in terms of USD construct, however, the approach

is a generic one and can be applied to any other construct

type. In line 5, we invoke usd.pig, which essentially selects

rows that have the relation USD and have the source that

we are interested in making query against. This part of the

algorithm essentially persists destinations that are reachable

via one hop from the source of interest. Subsequently in line

8, we prepare for the iterative self-join phase by cloning the

input file. Line number 9 shows the termination condition

for the iteration. Line 12, consists of invoking USD star.pig

with variable inputs. In each phase of the iteration, we join

the original input with the recently computed output, as

shown by the parameters of the pig file. The output of one

phase of USD star.pig is used as one of the inputs of the next

phase of USD star.pig. Finally in UnionPathUSD.pig, we

combine outputs from usd.pig and USD star.pig and project

distinct destinations that are reachable and persist them on

HDFS for subsequent usage in the workflow.

VI. EXPERIMENTS

A collection of experiments were conducted on a machine

with Intel core i7−3612QM CPU @2.10GHz x 8 processor

and 7.7 GB memory running on Ubuntu 12.10 (quantal) 64
bit. The experiments were designed on Apache Pig with ver-

sion 0.8.1−cdh3u6 and the Hadoop framework with version

hadoop0.20.2− cdh3u6. Even though there are 27 different

provenance templates representing provenance capture from

three different workflows, we have chosen one particular

presentation capturing data from one specific workflow. We

have captured provenance using UTPB template. UTPB was

selected as the benchmark template because it automatically

generates datasets with varying sizes.

462

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:09:43 UTC from IEEE Xplore. Restrictions apply.

Figure 3: Algorithms for multi-step edge

A. Data Preparation with benchmark

The original manually created template of PROV-DM

contain around 66 triples. It always makes at least 3 copies

of the original template to reach around 200 triples, so it is

easy to get 200, 400 1, 000 , 10, 000 etc triples depending

on the needs. However, it is only the template generator. The

data generator takes the “labels” statements and can change

the values to generate different kinds of data, either fixed or

randomized. The template generator adds a line to connect

templates, dataset n was derived from results (n− 1),
but this union is very particular to the original template.

There are three main components based on data prepara-

tion with the benchmark:

• Original template: This is a provenance graph for one

database experiment. It was created manually [19].

• Template generator: It takes the original template and

creates a bigger template automatically. The bigger

template is the result of cloning the original template

multiple times and connecting clones together into a

single graph. Template generator allows one to choose

any times one would clone her original template and

how one would connect the clones, i.e.,sequentially or

grid-shape. The file output.prov is generated by cloning

the original template three times. Connections between

clones are:

utpb:dataset1 prov:wasDerivedFrom utpb:result0
. and

utpb:dataset2 prov:wasDerivedFrom utpb:result1
.

• Data generator: It takes the original or generated tem-

plate and generates as many disconnected clones or

template instances of the template as specified. This

time, each clone represents a provenance graph for one

workflow execution. Data generator ensures that there

are no ID conflicts between template instances.

During our experimental study, we focused on the per-

formance and functionality of OPQLPig . The experimental

data we have gathered were based on the size of big data

that OPQLPig can query and provide the query results.

After data preparation, we started with 10 million triples and

eventually going to 15, 20, 30, 40 and 50 million triples

for generating big data, therefore testing the feasibility

of processing queries by OPQLPig . Fig. 4 shows the

correlation between the size of triples correspond to big data

463

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:09:43 UTC from IEEE Xplore. Restrictions apply.

size.

Figure 4: Dataset size vs triple number: Showing Big Data

Scenario

B. Building Construct in DATAVIEW

We used DATAVIEW, a computational thinking online

service for experimenting our queries. For each provenance

construct in PROV-DM model, we created one primitive,

also known as built-in workflow in DATAVIEW for querying

big data. Fig. 5 shows DATAVIEW system with an exe-

cutable workflow.

Fig. 5 shows one sample built-in construct USD in

DATAVIEW. A 2 input data product is shown. One is our

big data file and other one is text data file which gives

the query input. The result will be saved in an output file.

For giving user more flexibility the current DATAVIEW has

integrated Dropbox feature, so that users can provide any

big data file and a simple query in the text file and drag-

drop the construct and finally can get the query result in

output which also can be accessible in a Dropbox folder. In

this way, end users do not have to deal with the underlying

complexity and can easily obtain query results.

VII. RELATED WORK

Provenance problems become prohibitive and hard to

solve when applied to big data repositories. There are

many alleys of research challenges and open issues in big

data provenance research. Several relevant and advanced

concepts and challenges in big data provenance research

arise, like accessing big data, analyzing big data, scalability

issues, information sharing, query optimization issues, data

modeling support for provenance, flexible provenance query

tools, etc [20].

Reduce and Map provenance(RAMP) [21], [22] propose

a wrapper-based method as an extension of Hadoop by

deploying on top of Hadoop yet resulting transparent to it.

Another extension of Hadoop for implementing provenance

detection in MapReduce jobs is called Hadoop-Prov [20],

while the system minimizes the overheads introduced by

computing provenance by providing flexible tools for query-

ing, in big data provenance graph. There is a hybrid big data

provenance system named Pig Lipstick [23], which com-

bines the management of fine-grained dependencies, with the

management of workflow-grained dependencies [20], [23].

Fine-grained dependencies are typical of database-oriented

provenance systems and workflow-grained dependencies are

typical of workflow-oriented provenance systems. Another

type of big data provenance supports the functionalities of

layer-based architecture by focusing on provenance collec-

tion, querying and visualization of provenance in the context

of specialized scientific applications [24].

In cloud environment, CloudProv is a proposed framework

for integrating, modeling and monitoring data provenance.

It continuously acquires and monitors all the collected

provenance information for real-time applications. Gravic et

al. [25] propose a big data provenance framework based

on fine-grained provenance through several operator instru-

mentation of a query. Managing fine-grained provenance

in Data Stream Management Systems (DSMS) remains a

hard problem due to the need of supporting flexible analysis

tools over the so-computed provenance, such as revision

processing or query debugging. Oruta is developed as a

privacy-preserving public auditing mechanism in untrusted

Cloud environments [26], aiming to support data sharing.

Most of the recent works deal with query processing and

Pig, focusing on SPARQL to Pig Latin translation [16], [27].

Out of all scientific workflow systems, few of them

have adopted PROV extension. Taverna is one of them

[15]. DataONE scientific workflow and provenance working

group specified D-PROV provenance model [12]. Only few

PROV applications that use and extend PROV. UrbanMatch

[28] extends the PROV model by using Human computation

ontology; and CollabMap [29] records provenance informa-

tion that logs citizens actions [12]. Kepler records prove-

nance data in a relational database during execution time,

whereas VisTrails generates and stores XML provenance

data. Taverna implements the Janus Provenance model and

generates the graph during workflow execution and stores in

a relational database(mySQL), where provenance graph can

be queried and exported in OPM [30].

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we reported the OPQLPig query language,

extending OPQL for large datasets by implementing the

translation operation of OPQL to Pig Latin data flow lan-

guage with elongated features to make the query language

scalable, robust, reliable and parallel for working on top

of Hadoop Distributed File System. This query language

relishes the MapReduce model without reinventing com-

mon functionality such as join, filter and so on. Based on

the graph pattern, provenance graph algebra and syntax-

semantics of single-step-edge-forward and Multi-step-edge

constructs, the OPQLPig translation covers every scenario.

464

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:09:43 UTC from IEEE Xplore. Restrictions apply.

Figure 5: DATAVIEW with executable workflow

In the future, we would like to explore our research in

four major directions. First, we plan to extend our query

language, so that it can read input from and write output

to sources other than HDFS, for example from NoSQL

Databases like HBase or Cassandra. Second, we plan to

focus on optimization issues in OPQLPig query language

and conduct experimental study based on current system

and NoSQL database techniques. Third, we will handle join

operation based on Pigs three special join algorithms like

replicated, skewed, merge and analyze which works the

best in querying provenance data. Finally, we will make

OPQLPig applicable for other queries such as sub-graph

isomorphism, pattern matching, and shortest path.

ACKNOWLEDGMENT

This work is supported by National Science Foundation,

under grant NSF ACI-1443069. In addition, this material is

based upon work supported in part by the National Science

Foundation under Grant No. 0910812. I would like to thank

Mahdi Ebrahimi and Aravind Mohan for their contribution

in DATAVIEW and Dr. Artem Chebotko and his team for

helping to use UTPB in PROV-DM format.

REFERENCES

[1] S. B. Davidson and J. Freire, “Provenance and scientific
workflows: challenges and opportunities,” in Proceedings of

the 2008 ACM SIGMOD international conference on Man-
agement of data. ACM, 2008, pp. 1345–1350.

[2] A. Chebotko, X. Fei, C. Lin, S. Lu, and F. Fotouhi, “Storing
and querying scientific workflow provenance metadata using
an rdbms,” in e-Science and Grid Computing, IEEE Interna-
tional Conference on. IEEE, 2007, pp. 611–618.

[3] O. Hartig and J. Zhao, “Using web data provenance for
quality assessment,” in Proceedings of the First International
Conference on Semantic Web in Provenance Management-
Volume 526. CEUR-WS. org, 2009, pp. 29–34.

[4] F. S. Chirigati, D. Shasha, and J. Freire, “Reprozip: Us-
ing provenance to support computational reproducibility.” in
TaPP, 2013.

[5] M. K. Anand, S. Bowers, and B. Ludäscher, “Techniques for
efficiently querying scientific workflow provenance graphs.”
in EDBT, vol. 10, 2010, pp. 287–298.

[6] C. Lim, S. Lu, A. Chebotko, F. Fotouhi, and A. Kashlev,
“OPQL: Querying scientific workflow provenance at the
graph level,” Data & Knowledge Engineering, vol. 88, pp.
37–59, 2013.

[7] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth,
N. Kwasnikowska, S. Miles, P. Missier, J. Myers et al., “The
open provenance model core specification (v1. 1),” Future
generation computer systems, vol. 27, no. 6, pp. 743–756,
2011.

465

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:09:43 UTC from IEEE Xplore. Restrictions apply.

[8] A. Kashlev and S. Lu, “A system architecture for running big
data workflows in the cloud,” in Services Computing (SCC),
2014 IEEE International Conference on. IEEE, 2014, pp.
51–58.

[9] C. Lin, S. Lu, X. Fei, A. Chebotko, D. Pai, Z. Lai, F. Fotouhi,
and J. Hua, “A reference architecture for scientific workflow
management systems and the view soa solution,” IEEE Trans-
actions on Services Computing, vol. 2, no. 1, pp. 79–92, 2009.

[10] M. Ebrahimi, A. Mohan, A. Kashlev, and S. Lu, “Bdap: a
big data placement strategy for cloud-based scientific work-
flows,” in Big Data Computing Service and Applications
(BigDataService), 2015 IEEE First International Conference
on. IEEE, 2015, pp. 105–114.

[11] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins,
“Pig latin: A not-so-foreign language for data processing,”
in Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’08, pp.
1099–1110.

[12] P. Missier, K. Belhajjame, and J. Cheney, “The W3C PROV
family of specifications for modelling provenance metadata,”
in Joint 2013 EDBT/ICDT Conferences, Genoa, Italy, March
18-22, 2013, pp. 773–776.

[13] C. Lim, S. Lu, A. Chebotko, and F. Fotouhi, “Storing,
reasoning, and querying opm-compliant scientific workflow
provenance using relational databases,” Future Generation
Computer Systems, vol. 27, no. 6, pp. 781 – 789, 2011.

[14] C. Lim, S. Lu, A. Chebotko, F. Fotouhi, and A. Kashlev,
“OPQL: A first opm-level query language for scientific work-
flow provenance,” 2013 IEEE International Conference on
Services Computing, vol. 0, pp. 136–143, 2013.

[15] A. F. Gates, O. Natkovich, S. Chopra, P. Kamath, S. M.
Narayanamurthy, C. Olston, B. Reed, S. Srinivasan, and
U. Srivastava, “Building a high-level dataflow system on top
of map-reduce: The pig experience,” Proc. VLDB Endow.,
vol. 2, no. 2, pp. 1414–1425, Aug. 2009.

[16] A. Schätzle, M. Przyjaciel-Zablocki, T. Hornung, and
G. Lausen, “PigSPARQL: A SPARQL Query Processing
Baseline for Big Data,” in International Semantic Web Con-
ference (Posters and Demos), 2013, pp. 241–244.

[17] I. Ltkebohle, “Apache. Pig Latin Reference Manual 1 and 2,”
http://pig-apache.org/docs/, 2010.

[18] A. Gates, O. Natkovich, S. Chopra, P. Kamath, S. Narayanam,
C. Olston, B. Reed, S. Srinivasan, and U. Srivastava, “Build-
ing a highlevel dataflow system on top of mapreduce: The
pig experience,” PVLDB, vol. 2, no. 2, pp. 1414–1425, 2009.

[19] A. Chebotko, E. D. Hoyos, C. Gomez, A. Kashlev, X. Lian,
and C. Reilly, “Utpb: A benchmark for scientific workflow
provenance storage and querying systems,” in 2012 IEEE
Eighth World Congress on Services, 2012, pp. 17–24.

[20] A. Cuzzocrea, “Big data provenance: State-of-the-art anal-
ysis and emerging research challenges,” in Proceedings of
the Workshops of the EDBT/ICDT 2016 Joint Conference,
EDBT/ICDT Workshops 2016, Bordeaux, France, March 15,
2016., 2016.

[21] R. Ikeda, H. Park, and J. Widom, “Provenance for generalized
map and reduce workflows,” in CIDR 2011, Fifth Biennial
Conference on Innovative Data Systems Research, Asilomar,
CA, USA, January 9-12, 2011, pp. 273–283.

[22] H. Park, R. Ikeda, and J. Widom, “RAMP: A system for
capturing and tracing provenance in mapreduce workflows,”
PVLDB, vol. 4, no. 12, pp. 1351–1354, 2011.

[23] Y. Amsterdamer, S. B. Davidson, D. Deutch, T. Milo, J. Stoy-
anovich, and V. Tannen, “Putting lipstick on pig: Enabling
database-style workflow provenance,” Proc. VLDB Endow.,
vol. 5, no. 4, pp. 346–357, Dec. 2011.

[24] R. Agrawal, A. Imran, C. Seay, and J. J. Walker, “A layer
based architecture for provenance in big data,” pp. 1–7, 2014.

[25] B. Glavic, K. S. Esmaili, P. M. Fischer, and N. Tatbul,
“Efficient stream provenance via operator instrumentation,”
ACM Trans. Internet Techn., vol. 14, no. 1, pp. 7:1–7:26,
2014.

[26] B. Wang, B. Li, and H. Li, “Oruta: Privacy-preserving public
auditingfor shared data in the cloud,” IEEE Trans. Cloud
Computing, vol. 2, no. 1, pp. 43–56, 2014.

[27] A. Schätzle, M. Przyjaciel-Zablocki, and G. Lausen,
“Pigsparql: Mapping sparql to pig latin,” in Proceedings of
the International Workshop on Semantic Web Information
Management, ser. SWIM ’11, pp. 4:1–4:8.

[28] I. Celino, S. Contessa, M. Corubolo, D. Dell’Aglio, E. D.
Valle, S. Fumeo, and T. Krüger, “Linking smart cities datasets
with human computation - the case of urbanmatch,” in The
Semantic Web - ISWC 2012 - 11th International Semantic
Web Conference, Boston, MA, USA, November 11-15, 2012,
Proceedings, Part II, 2012, pp. 34–49.

[29] M. Ebden, T. D. Huynh, L. Moreau, S. D. Ramchurn, and
S. J. Roberts, “Network analysis on provenance graphs from
a crowdsourcing application,” in Provenance and Annotation
of Data and Processes - 4th International Provenance and
Annotation Workshop, IPAW 2012, Santa Barbara, CA, USA,
June 19-21, pp. 168–182.

[30] B. Amann, C. Constantin, C. Caron, and P. Giroux, “Weblab
PROV: computing fine-grained provenance links for XML
artifacts,” in Joint 2013 EDBT/ICDT Conferences, Genoa,
Italy, March 22, Workshop Proceedings, pp. 298–306.

466

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:09:43 UTC from IEEE Xplore. Restrictions apply.

