
A Novel Lifecycle Framework for Semantic Web Service Annotation Assessment
and Optimization

Juan Chen, Zhiyong Feng, Shizhan Chen,
Keman Huang*

Tianjin Key Laboratory of Cognitive Computing and
Application

School of Computer Science and Technology,
Tianjin University,

Tianjin, China
 {juanchen, zyfeng, shizhan, keman.huang}@tju.edu.cn

Wei Tan
IBM Thomas J. Watson

Research Center
Yorktown Heights, NY

10598, USA
wtan@us.ibm.com

Jia Zhang
Carnegie Mellon University

Silicon Valley
jia.zhang@sv.cmu.edu

Abstract—Semantic annotation plays an important role for
semantic-aware web service discovery, recommendation and
composition. In recent years, many approaches and tools have
emerged to assist in semantic annotation creation and analysis.
However, the Quality of Semantic Annotation (QoSA) is largely
overlooked despite of its significant impact on the effectiveness
of semantic-aware solutions. Moreover, improving the QoSA is
time-consuming and requires significant domain knowledge.
Therefore, how to verify and improve the QoSA has become a
critical issue for semantic web services. In order to facilitate
this process, this paper presents a novel lifecycle framework
aiming at QoSA assessment and optimization. The QoSA is
formally defined as the success rate of web service invocations,
associated with a verification framework. Based on a local
instance repository constructed from the execution information
of the invocations, a two-layer optimization method including a
local-feedback strategy and a global-feedback one is proposed
to improve the QoSA. Experiments on real-world web services
show that our framework can gain 65.95%~148.16%
improvement in QoSA, compared with the original annotation
without optimization.

Keywords- Quality of Semantic Annotation; Semantic
Annotation Lifecycle; Web Service Invocation; Local Instance
Repository; Quality Assessment; Annotation Optimization

I. INTRODUCTION
Semantic web technology [1] has been proven effective

to service integration and interaction [2, 3]. Many semantic-
aware approaches have been proposed to facilitate service
discovery, recommendation and composition [4-7].
Generally speaking, the solutions exploit semantic web
knowledge base such as LOD (Linked Open Data) [8],
SAWSDL (Semantic Annotations for WSDL) [9] or domain
ontology bootstrapping from the web service description [10]
to annotate service elements with concepts. Afterwards, the
semantic information is utilized to optimize the solution's
performance. Apparently, the semantic annotation plays a
foundational role in these solutions. Therefore, how to assist
users in the annotation process is one of the most important
issues for semantic web services.

Recently, several tools, such as Iridescent [11], Meteor-S
[12], and Kino [13], have been developed by the semantic
web service community to assist curators annotating the

services. These tools can effectively facilitate the annotation
task. However, the following two issues have been
overlooked:

1) Annotation Quality Evaluation. The more accurate the
semantic annotation can reflect the web services' semantic
meaning, the more valuable it is for the semantic-aware
solution. Most of the solutions assume that all annotations
are accurate, while it is usually not the case [14, 15]. This is
because web services are often annotated by third parties and
it is difficult to guarantee the quality of annotations. Hence,
how to help the annotator evaluate the annotation quality
should be a fundamental functionality for the annotation tool.

2) Annotation Quality Optimization. The annotation of
services, especially improving the services' annotation, is an
extremely time-consuming and non-trivial task. It typically
requires application domain knowledge and expertise. It is
also difficult to identify inaccurate annotation for the web
services. Thus, how to facilitate the annotation improvement
is also a critical issue for semantic annotation.

There exists only few preliminary approaches for
annotation verification [14, 16], and no tools are available
for annotation optimization. In this paper, a four-phase
semantic annotation lifecycle framework is presented to
bridge the gap, including the semantic annotation,
invocation-oriented quality evaluation, feedback-aware
optimization and annotation usage. Our research is based on
a basic hypothesis, "the better the semantic annotation can
support the web service invocation, the higher quality it
owns." We formally define the Quality of Semantic
Annotation (QoSA) as the success rate of invocations. The
evaluation framework aims to verify the QoSA. Furthermore,
the execution information of the invocations during the
assessment is used to semi-automatically construct the local
instance repository. Finally, we have developed a two-layer
optimization mechanism to facilitate the QoSA optimization,
including the Local-Feedback Strategy (LFS) and the
Global-Feedback Strategy (GFS). Specifically, the LFS is
used to improve the annotated instances during the
assessment while the GFS is employed to facilitate the
annotated concepts improvement in the annotation phase.

The major contributions of this paper are summarized as
follows:

2015 IEEE International Conference on Web Services

978-1-4673-7272-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICWS.2015.55

361

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:28:33 UTC from IEEE Xplore. Restrictions apply.

• A four-phase service annotation lifecycle framework is
presented to assess and optimize the QoSA.

• A two-layer feedback-aware mechanism is proposed to
facilitate the QoSA optimization.

• Experiments show that our approach can gain a
65.95%~148.17% improvement in QoSA, compared with the
original annotation without optimization.

The rest of this paper is organized as follows. Section II
reviews the related work. Section III introduces the four-
phase service annotation lifecycle framework. Section IV
details the QoSA evaluation and Section V presents the two-
layer feedback-aware optimization mechanism. Section VI
reports the empirical results based on the implemented
prototype. Section VII concludes the paper.

II. RELATED WORK
Semantic annotation plays an important role for semantic

web services. In this section, we review the relevant
literatures for the annotation task.

A. Semantic Annotations Tools
Several tools have emerged to assist human curators in

annotating web services. For example, Meteor-S [12] semi-
automatically suggests to users the concepts from domain
ontologies to facilitate their annotation task. SAWS [17] is a
tool aiming to enhance the WSDL descriptions with
semantic concepts provided by domain ontologies. Kino [13]
automatically annotates web services based on the similarity
between the service's descriptions and the vectors of
available ontological terms. It also allows users to utilize the
ontology of their own choice for annotation. Based on
SAWSDL, the Iridescent tool [11] enables both expert and
non-expert users to create semantic service annotations by
matching elements and concepts and suggesting annotations.
With the large volume and rapid growth of available
semantic web knowledge base [18], some tools exploit
ontologies to automate service annotation creation [8, 19, 20].
Hong et al. proposed the linked context model which applies
the linked data to model and obtain context data from both
users and services [8]. Zhang et al. employed DBpedia
knowledge base to automate the semantic annotation process
[20].

The service annotation is valuable only when it can
accurately reflect the web services' semantic meaning.
Existing tools all suppose that all the annotations are correct
for further usage, while it may not always the case [14].
Therefore, how to evaluate and guarantee the quality of the
semantic annotation has become an important issue for
semantic web services.

B. Quality of Semantic Annotation
The verification of QoSA begins to attract attentions

from the academic and industry. Mokarizadeh et al. [16]
introduced two golden ontologies: one is constructed
manually and the other is constructed by automatically
learning from web service message element/part names. The
difference between the annotation and the golden ontology is
considered as the indicator for the QoSA. Meanwhile, the
network properties such as small-world and scale-free of the

web service network resulted from the semantic annotation
are studied and discussed. Belhajjame et al. [14] adapted
techniques from conventional software testing to verify the
semantic annotations for web services' input and output
parameters. An annotated instance pool is generated by
trawling the workflow provenance logs [15]. Based on the
instance pool, if an operation accepts a particular instance of
a concept that is disjoint with the annotation, the annotation
will be considered as incorrect. Therefore, the QoSA can be
evaluated before the annotation is publicly available.

These proposals described a first step towards providing
tools for QoSA verification. However, they strongly depend
on the accuracy of the golden ontologies and the golden
ontologies need to be previously constructed before the
evaluation. Additionally, none of them considered how to
improve the QoSA based on the verification. From a
different perspective, this paper introduces a novel four-
phase annotation lifecycle framework to evaluate and
improve the QoSA.

III. SERVICE ANNOTATION LIFECYCLE FRAMEWORK
As shown in Figure 1, this paper extends the annotation

lifecycle model presented in [14] and proposes a four-phase
service annotation lifecycle, consisting of the semantic
annotation, the annotation quality evaluation, the annotation
optimization and the semantic-aware usage.

Figure 1. Four-phase Semantic Annotation Lifecycle Framework.

A. Semanic Annotation
In the semantic annotation phase, a user can annotate the

web services manually or semi-automatically using tools
such as KINO [13], Iridescent [11], Meteor-S [12] etc.
Typically, such tools can provide suggestions for the
annotation based on the semantic web knowledge base such
as DBpedia [21], OpenCYC [22], workflow provenance [15],
or Biocatalogue [23] etc. Based on a semantic annotation,

362

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:28:33 UTC from IEEE Xplore. Restrictions apply.

service elements such as operation names, input/output
parameters, functional description etc. will be allocated with
a semantic concept.

B. Annotation Quality Evaluation
In order to evaluate the quality of semantic annotation,

instances for the input parameters are generated from the
instance pool based on the semantic web knowledge base, or
from the local instance repository (LIR) constructed during
the QoSA assessment. Then the instances are considered as
the test cases for input parameters and the web service
operations will be invoked through tools such as SoapUI [24]
or HttpClient 1. Therefore, we can get the execution status
for each invocation. Finally, each semantic concept for web
service operations will be associated with an instance which
can be used to support the semantic-aware solution.

C. Annotation Quality Optimization
Based on the execution status from the evaluation phase,

the LIR will be constructed. Note that the LIR is empty at the
beginning but it will become more comprehensive as time
goes by. Then the LIR will be used to generate instances for
the invocation which can improve the QoSA. As it only
affects the instance generation but not the concept annotation,
it will not influence the annotation phase. Therefore, we
name it Local-Feedback Strategy (LFS). Furthermore, the
LIR can be used to guide the annotation during the semantic
annotation phase. Therefore, we name it Global-Feedback
Strategy (GFS). After the optimization phase, the QoSA for
the web services will be improved, making it more valuable
for the further solution.

D. Semantic-aware Usage
Based on the evaluation and optimization phase, each

semantic annotation for a web service will not only contain
the concept but also the suggested instance, which can enrich
the semantic information for the further semantic-aware
usage such as service discovery, composition and
recommendation [5-7, 25, 26]. Details about these
technologies are out of scope of this paper.

In our proposed four-phase semantic annotation lifecycle
framework, the evaluation and optimization phase are critical
and we will discuss their details in the following sections.

IV. QUALITYOF SEMANTIC ANNOTATION EVALUATION

A. Quality of Semanic Annotation (QoSA)
During the semantic annotation phase, the service

elements will be allocated with a semantic concept from the
semantic web knowledge base. As we intend to evaluate the
QoSA from the invocation perspective, we only consider the
semantic annotation for the input parameters. The rationale is
that the annotation for the output parameters will not affect
the invocation, the evaluation of the output parameter
annotation is similar to the input annotation, and their
verification should only be processed with the correct input

1 http://hc.apache.org/httpcomponents-client-ga/httpclient/

parameter annotation [14]. We will leave the evaluate of the
output parameter annotation quality for the future work. In
this paper, each semantic annotation is modeled as the
following tuple:

, , ,, ,{ , , | 0 }i i pi i j i j i j isa p c ip c cin j n=< < > ≤ ≤ > (1)
where ip refers to an operation for the web service, pic is

the concept annotated with the operation, in is the number
of input parameters for ip , ,i jc is the semantic concept and

,i jcin is the semantic instance annotated with the input
parameter ,i jip . , , 0i j icin j n≤ ≤ will be null before entering
the evaluation phase.

In order to verify the semantic annotation for an input
parameter ,i jip , a collection of instances , 1,i j xin in in=< >�
will be generated based on the semantic concept ,i jc . Here
x is the number of instances generated for evaluation.
Details about how to generate the instance will be discussed
in the next subsection IV.B. If there exist at least one
instance which is acceptable for the operation, the
annotation ,i jc for ,i jip is considered as acceptable.

Definition 1 (Annotation Correct for Parameters, ACP):
Given the operation ip and one of its input parameter ,i jip ,
the annotation ,i jc for ,i jip is correct iff there exists an
instance , 1 ,i j xin in in in∈ =< >� that is accepted:

, , , 1 ,, , , ,
iff acceptedcorrect

i j i i j i j x i i jc p ip in in in in in p ip→ < > ⇐ ∋ ∈ =< > → < >�
(2)

When and only when the annotations for all the input
parameters are correct, the operation will be successfully
invoked. Therefore, we can derive the definition of the
correct annotation for a given operation as follow:

Definition 2 (Annotation Correct for Operations, ACO):
Given the operation ip and its semantic annotation isa , the
annotation is correct iff all the annotations for its input
parameters are correct:

, , , , , , , { , }, ,
iffcorrect correct

i i i y i y i j i j i y i i ysa p ip c ip c c p ip→ ⇐∀ < >∈ < > → < > (3)

Based on the discussions above, it is straightforward to
formally define the QoSA for web services as follows:

Definition 3 (Quality of Semantic Annotation for web
Service, QoSA): Given a collection of operations
{ ,0 }ip i N< ≤ for web services and the semantic
annotations isa for each operation ip . The QoSA is defined
as follows:

| { } || |
| { } |

correct

i i

i

sa pACOQoSA
N sa

→
= = (4)

Obviously, [0,1]QoSA∈ . The larger the QoSA, the better
quality the semantic annotation owns. If QoSA is 1, all the

363

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:28:33 UTC from IEEE Xplore. Restrictions apply.

annotations are correct. If QoSA is 0, no annotations are
right.

B. Instance Generation for Input Parameter
From Figure 1, it can be seen that there exists two

sources for instance generation: the instance pools (IP) from
the semantic web knowledge base and LIR. As LIR is
constructed based on the execution information, the instances
in LIR are supposed to be more dedicated for the invocation.
Therefore, just as shown in Algorithm 1 we generate the
instances from the LIR with a higher priority.

Algorithm 1: Instance Generation for Input Parameter
Input: , ,,i j i jip c< > : annotated concept for each parameter
 x : instances number
 LIR : the local instance repository
 IP : the instance pools from the knowledge base
Output: , 1,i j xin in in=< >� : generated instances

Procedure:
01. ,i jin φ←
02. ,(,)i jquery genSPARQL c x← ; // Generate SPARQL

query with annotation ,i jc
03. IF LIR φ≠ THEN
04. , (, ,)i jlin excuteSPARQL LIR query x= ; //execute

the query to generate x instances from LIR
05. , , ,i j i j i jin in lin← � ;
06. IF ,| |i jlin x< THEN
07. ,| |i jx x lin← − ;
08. ELSE
09. 0x ← ;
10. ENDIF
11. ENDIF
12. IF 0x > THEN
13. , (, ,)i jpin excuteSPARQL IP query x= ; // execute

the query to generate x instances from IP
14. , , ,i j i j i jin in pin← �
15. ENDIF

Line 02 generates the SPARQL query with the given
annotation and the number of the required instances. Table I
shows an example with ,i jc = <http://dbpedia.org/ontology
/Currency> and 6x = . Lines 03~11 execute the generated
query in LIR to get the relevant instances. Lines 12~15
execute the query in the IP if the number of instances
generated from LIR is not enough for the evaluation.

Note that at the beginning, the LIR will be null and all the
instances are generated from the knowledge base. This
scenario is discussed in [14]. As the evaluation going on, the
LIR will be fleshed out and more instances will be generated
from the LIR. Hence, the solution in [14] can be considered
as a special case for our approach.

TABLE I. SPARQL QUERY GENERATED FOR GIVEN ANNOTATION
AND INSTANCE NUMBER

C. QoSA Evaluation

For each operation of a web service, given the
combination of instances generated from Algorithm 1 for the
input parameters, the invocation will generate the execution
information including the invocation status as well as the
result. We formally define each execution information record
as the following tuple:

,, , ,,{ , }, ,
i ji i j i j keir sa ip in st er=< < > > (5)

where
,, , ,{ , }

i ji j i j kip in< > is the instance combination for
each input parameter. { , }st true false∈ is the invocation
status, er is the response from the invocation.

Algorithm 2 details the process to evaluate the Quality of
the semantic annotation.

Algorithm 2: QoSA Evaluation
Input: { }iSA sa= : Annotations for Service Operations
 x : instances number
 LIR : the local instance repository
 IP : the instance pools from the knowledge base
Output: QoSA : Quality of Semantic Annotation
 { }zEIR eir= : Execution information records

Procedure:
01. EIR φ← ; ACO φ← ;
02. FOR isa SA∈
03. FOR , ,,i j i j iip c sa< >∈
04. , (, , ,)i j iin ICIP sa x LIR IP← ; //use Algorithm 1

to generate instances for invocation
05. ENDFOR
06. FOR

,, , ,{ , | 0 ,0 }
i ji j i j kip in j n k x< > ≤ ≤ ≤ <

07.
,, , ,(,{ , })

i jz i i j i j keir invoke p ip in← < >
08. zEIR EIR eir← �
09. IF .zeir st true=
10. iACO ACO sa← � ;
11.

,, , ,.
i ji i j i j ksa cin in← ; //update the instances

12. BREAK;
13. ENDIF
14. ENDFOR
15. ENDFOR

16. | |
| |
ACOQoSA
SA

←

Lines 03~05 generate the instances for each parameters;
Lines 06~15 invoke the operation and get the execution
information record. Line 16 calculates the QoSA. Obviously,

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-
syntax-ns#>
SELECT DISTINCT *
WHERE {
?subject
rdf:type ?<http://dbpedia.org/ontology/Currency>
} LIMIT 6

364

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:28:33 UTC from IEEE Xplore. Restrictions apply.

if the LIR is set as null, then the local instance repository
will not be used for instance generation. This means that no
optimization strategies will be employed and the result
reflects the QoSA of the original semantic annotation.

V. TWO-LAYER ANNOTATION OPTIMIZATION
Supported by the local instance repository generated

based on the execution results from the operation invocation,
we propose a local-feedback strategy and a global-feedback
strategy to assist annotators in optimizing the semantic
annotation.

A. Local-feedback Strategy for QoSA optimization

For each invocation, the web service operation will
reveal information about the execution. Some is meaningless
while some contain critical content which can be used to
improve the QoSA. Figure 2 illustrates the invocation result
from the operation "GetCurrencyList" in web service
"Rates." It can be seen that "AED" in
"<Code>AED</Code>" is an ISO currency code, and "UAE
Dirham" in "<Name>UAE Dirham</Name>" is a currency
name. Obviously, such kind of information can be used to
generate the instances which are accurate for the invocation.

Figure 2. Execution Result from the Invocation of the operation

"GetCurrencyList" in web service "Rates".

Similar to [10, 27], we extract the tokens from the
execution result. As the execution result is in the XML
format, each value of the XML schema leaf element will be
considered as a local instance (lin); each element name list
from the finest granularity to the general levels with
operation name will be considered as the possible concept
(pc). Given the concept annotated with the operation and its

parameters, their sub-concepts and relations in the
knowledge base such as Dbpedia will be used to construct
the concept candidate pool. Finally, for each possible
concept, we map it to the concept with the largest semantic
similarity in the concept candidate pool. Therefore, the local
instance record can be modeled as the following tuple:

{ , , ,{ | 0 } }i o lir qlir p pc c lin q M= < < ≤ > (6)
where ip is the operation, opc is the possible concept,

lirc is the concept with the largest similarity to opc in the
concept candidate pool, { | 0 }qlin q M< ≤ is the local
instance list generated from the execution result and M is
the local instance number.

Algorithm 3 details the process and Table 2 shows a
snapshot of the local instance records we constructed based
on the invocation result. Note that in order to guarantee the
accuracy of the local instance repository, the process will be
semi-automatic and the annotator will participate during the
generation process.

Algorithm 3: Local Instance Record Generation
Input: , , ,, ,{ , , | 0 }i i pi i j i j i j isa p c ip c cin j n=< < > ≤ ≤ > :
annotation for the operation;
 er : response from the invocation
Procedure:
01. li φ= ;
02. ccp φ= ; //the concept candidate pool
03. { , ,{ | 0 } } ();i o qp pc lin q M tokenExtraction er< < ≤ > ← //

extract the possible concepts and local instance list from
the execution response

04. ,(,{ });pi i jccp candidateConceptGeneration c c← // get the
sub-concepts to form concept candidate pool

05. FOR { , ,{ | 0 } }o i o qpc p pc lin q M∈ < < ≤ >
06. (,)lir oc getMostSimilarConcept pc ccp← ;// get the

most similar concept from the concept candidate pool
07. { , , ,{ | 0 } }i o lir qLIR LIR p pc c lin q M← < < ≤ >� //

add the local instance records into the LIR.
08. END FOR

TABLE II. GENERATED LOCAL INSTANCE RECORDS (PART)

lirc { | 0 }klin k M< ≤
DBpedia:Currency

Code
EUR, AUD, BRL, CAD, CNY, CUP, EUR,

EGP, etc.
DBpedia:Currency

Name
Dollar, Taka, Franc, Pound, Yen, Krona,

Baht, Lira, etc

Based on the local instance records, the local-feedback
strategy for the annotation optimization is straightforward:

Definition 4 (Local-feedback Strategy for QoSA
optimization) For each successful invocation during the
evaluation, get the execution response, and extract the local
instance records to update the local instance repository.

The local instance repository starts from no instance. The
instances generated for the evaluation come from the
knowledge base. However, as time goes by, the successful

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<soap:Body>

<GetCurrencyListResponse
xmlns="http://mondor.org/">

<GetCurrencyListResult>
<Currency><Code>AED</Code><Name>UAE

Dirham</Name></Currency>
<Currency><Code>ALL</Code><Name>Albania

n Lek</Name></Currency>
……
<Currency><Code>ZAR</Code><Name>South

African Rand</Name></Currency>
<Currency><Code>ZMW</Code><Name>Zambi

an Kwacha</Name></Currency>
</GetCurrencyListResult>

</GetCurrencyListResponse>
</soap:Body>
</soap:Envelope>

365

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:28:33 UTC from IEEE Xplore. Restrictions apply.

invocations will enrich the local instances in LIR. Due to the
fact that the local instance records in LIR are more accurate,
some fault invocation because of the illegal input instances
will become successful during the local-feedback
optimization. Therefore, the QoSA will be improved until
there exists no more error invocation because of incorrect
input instances.

Algorithm 4: Local-feedback Strategy (LFS)
Input: { }iSA sa= : Annotations for Service Operations
 x : instances number
 LIR : the local instance repository
 IP : the instance pools from the knowledge base
Output: QoSA : Quality of Semantic Annotation
 { }zEIR eir= : Execution information records

Procedure:
01. Repeat
02. , (, , ,);QoSA EIR Evaluation SA x LIR IP< >← //use

Algorithm 2 to evaluate the QoSA
03. FOR zeir EIR∈
04. (. , .);z i zLIRG eir sa eir er // use Algorithm 3 to

update the local instance records in LIR
05. ENDFOR
06. Until Convergence

B. Global-feedback Strategy for QoSA optimization
In the local-feedback strategy, the instances generated for

invocations will be updated for each round until the LFS
reaches convergence. Some illegal invocations would
become successful and we name them as the rectification
operations for convenience. Obviously, the original semantic
annotations for these operations are incorrect and these
reclaimed records (RR) can be used to help the annotators
correct their annotations. Here we formally define them as
the following tuple:

,, , ,,{ , | 0 }
i ji i j i j krr sa ip lin j n=< < > ≤ ≤ > (7)

where
,, , ,{ , | 0 }

i ji j i j kip lin j n< > ≤ ≤ is the instance
combination which succeeds the original fault invocation.

Apparently, each instance
,, , i ji j klin is allocated with a

concept lirc , if the original annotated concept ,i jc for the
parameter ,i jip is different from lirc . This means that the
original annotation is inaccurate and we can replace it into

lirc to update the annotation. Therefore, the global-feedback
strategy for the annotation optimization can be described as
follows:

Definition 5 (Global-feedback Strategy for QoSA
optimization) For each reclaimed records generated during
the LFS, identify the inaccurate annotation for the input
parameter and update it into the new concept.

Algorithm 5 details the global-feedback strategy. Line 03
gets the concept of the instance from the local instance
repository. Lines 04~07 identify the inaccurate annotation

and update it into the new one. Line 10 reevaluates the
QoSA to prove the effectiveness of the GFS. Table III shows
a snapshot of annotation correction during the GFS.

Algorithm 5: Global-feedback Strategy (GFS)
Input: { }sRR rr= // the reclaimed records from LFS
Output: QoSA : Quality of Semantic Annotation
Procedure:
01. FOR srr RR∈
02. FOR

,, , ,,
i ji j i j k sip lin rr< >∈

03.
,, ,(,);

i jlir i j kc getConcept lin LIR← //get the
concept of

,, , i ji j klin in LIR
04. IF ,.i i j lirsa c c≠
05. ,.i i j lirsa c c← ;
06.

,, , ,.
i ji i j i j ksa cin lin← ;

07. ENDIF
08. ENDFOR
09. ENDFOR
10. , (, , ,);QoSA EIR Evaluation SA x LIR IP< >← //

Evaluation the QoSA based on Algorithm 2.

TABLE III. ANNOTATION UPDATE DURING GFS (PART)

Original Annotation Instance (
,, , i ji j klin) Replace Annotation

DBpedia:Currency Dollar DBpedia:Currency
Name

DBpedia:Currency CAD DBpedia:Currency
Code

DBpedia:Programmin
gLanguage English DBpedia:Language

Name
DBpedia:endDate 2014-12-16T08:00:00 DBpedia:Datetime

DBpedia:Country CN DBpedia:Country
Name

Note that the GFS will be used after the LFS reaches
convergence. This is because the LFS will update the LIR
and generate the reclaimed records which can enable the
GFS. However, after the annotation updated by GFS, the
LFS can be used to optimize the quality.

VI. PROTOTYPE AND EXPERIMENTS

A. Prototype Implementation
In order to prove the effectiveness of the presented

framework, we have implemented a prototyping system
based on our proposed lifecycle model. The annotation
approach presented in [20] is used to generate the original
semantic annotation as a baseline. Dbpedia is used as the
semantic web knowledge base and the Httpclient is
integrated to invoke the web service operation.

Similar to [20], we employed a dataset consisting of 300
real-world web services with WSDL documents. Since only
the web services available for invocation can be used for the
QoSA evaluation, we removed the services whose endpoints
or WSDL references are inactive. Afterwards, we further
filtered the services with errors because they are not actually

366

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:28:33 UTC from IEEE Xplore. Restrictions apply.

available. Error messages we used include "Endpoints refer
to other websites or services," ''Service data has been
ported," "Endpoints turn out to be other URLs while
accessing," and " Services have no truly useful content"..
Finally, we received a dataset summarized in Table IV,
consisting of 121 services, 941 operations and 15,888
parameters as the benchmark.

TABLE IV. BENCHMARK DATAST

#web service #operations #parameters
121 941 15,888

Note that our framework is generic and it can be further
extended in the following aspects: 1) the annotation approach
can be replaced by other techniques such as KINO [13],
Iridescent [11], Meteor-S [12] etc.; 2) the knowledge base
can be switched by OpenCYC [22], workflow provenance
[15], or Biocatalogue [23] etc.; 3) the dataset can be
substituted by other WSDL-based service dataset [28].

B. Experiment Results and Discussions
1) Local-feedback for Annotation Optimization

In order to evaluate the effectiveness of our local-
feedback strategy for annotation optimization, we set the
instances for evaluation as 6 and then considered the
following two methodologies:

• Original Semantic Annotation (OSA): all instances for
each annotation are generated from Dbpedia and no
feedback strategy is employed.

• Semantic Annotation with Local-feedback (LF-SA):
instances are generated from both Dbpedia and the local
instance repository. Additionally, our local-feedback strategy
is used to optimize the semantic annotation.

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

Round

Q
oS

A

QoSA Comparison

LF-SA
OSA

Figure 3. QoSA comparison between the original semenatic annotation

and the semantic annotation with local-feedback strategy.

Figure 3 reports the QoSA over the two methodologies. It
can be seen that LF-SA gains a higher QoSA than OSA. The
QoSA in LF-SA is increasing as time goes on and after 7
rounds, the LF-SA reaches the convergence at 0.5749.
However, the QoSA for OSA is oscillating around 0.3. The
LF-SA brings a 65.95% ~ 148.16% improvement for the
QoSA.

Furthermore, we conducted a depth analysis over the
service annotations which were inaccurate at the beginning
but were corrected by the local-feedback strategy. The result
shows that the exception for the illegal invocation is "Server
was unable to process request. Object reference not set to an
instance of an object." Such an error message means the
instances generated from the knowledge base were not
accurate.

Additionally, for the service operations that are still
incorrect after the local-feedback optimization, we find that
151 operations are always failed with the return information
"There is a problem with the resource you are looking for,
and it cannot be displayed." This means that there is an
internal error of the services thus no approach can verify or
improve the QoSA. After excluding such operations, the
QoSA for LF-SA reached 0.6848.

2) Global-feedback for Annotation Optimization
Based on the reclaimed records generated from the LFS,

we updated the original semantic annotations for web
services and then reevaluated the QoSA for the Updated
Semantic Annotation (USA). From Figure 4, it can be seen
that the GFS can effectively identify the inaccurate
annotations and assist annotators in improving the QoSA.
Comparing with the vintage QoSA from the original
semantic annotation, the GFS gains a 60.45% improvement
in QoSA. If we further filter the operations with internal
error, the QoSA for USA will reach 66.20%. Such an
enhancement will make the semantic annotation more
valuable for applications.

OSA USA0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 QoSA improvement by GFS

With Insternal Error Filtration
Without Insternal Error Filtration

41.27%

34.64%

55.58%

66.20%

Figure 4. QoSA comparison between the original semenatic annotation

and the semantic annotation after the global-feedback optimization.

367

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:28:33 UTC from IEEE Xplore. Restrictions apply.

VII. CONCLUSIONS
Semantic annotation plays a foundational role for

semantic-aware solutions to improve web service discovery,
recommendation and composition. Many tools have been
developed to assist users in annotating web services.
However, annotation quality evaluation and optimization
have not gained sufficient attention.

This paper presents a four-phase annotation lifecycle
framework to assist annotators in evaluating and improving
the QoSA, including semantic annotation, annotation quality
assessment, annotation optimization and semantic-aware
usage. Specially, QoSA is formally defined as the success
rate of invocations and the evolution framework acts as an
instrument to verify the QoSA for the given annotations.
Based on the local instance repository consisting of the local
instances and reclaimed records generated from the
invocation response information, a local-feedback strategy is
presented to optimize the annotated instance and a global-
feedback strategy is presented to correct the inaccurate
annotation. Our empirical study based on real-world web
services shows that comparing with the original annotation
based on the methodology presented in [20], our framework
gains a 65.95% ~ 148.16% QoSA improvement during
evaluation and a 60.45% improvement for annotation.

In the future, we will further extend our framework into a
benchmark platform which can evaluate the performance of
different semantic annotation approaches such as Iridescent,
Meteor-S, Kino and so on. Moreover, additional services will
be imported in our framework to strengthen the results of the
evaluation.

ACKNOWLEDGMENT
This work is supported by the National Natural Science

Foundation of China grant 61070202, 61173155 and
National High-Tech Research and Development Pro-gram of
China grant 2013AA013204.

REFERENCES

 [1] T. Berners-Lee, J. Hendler and O. Lassila, "The semantic web,"
Scientific American, vol. 284, pp. 28--37, 2001.
 [2] B. Medjahed, A. Bouguettaya and A. K. Elmagarmid, "Composing web
services on the semantic web," The VLDB journal, vol. 12, pp. 333-351,
2003.
 [3] S. A. McIlraith, T. C. Son and H. Zeng, "Semantic web services," IEEE
intelligent systems, vol. 16, pp. 46--53, 2001.
 [4] A. V. Paliwal, B. Shafiq, J. Vaidya, H. Xiong, and N. Adam,
"Semantics-based automated service discovery," IEEE Transactions on
Services Computing, vol. 5, pp. 260-275, 2012.
 [5] K. P. Joshi, Y. Yesha and T. Finin, "Automating cloud services life
cycle through semantic technologies," IEEE Transactions on Services
Computing, vol. 7, pp. 109-122, 2014.
 [6] J. Zhang, J. Wang, P. Hung, Z. Li, N. Zhang, and K. He, "Leveraging
incrementally enriched domain knowledge to Enhance service
categorization," International Journal of Web Services Research (IJWSR),
vol. 9, pp. 43-66, 2012.
 [7] J. Zhang, R. Madduri, W. Tan, K. Deichl, J. Alexander, and I. Foster,
"Toward Semantics Empowered Biomedical Web Services," in IEEE
International Conference on Web Services (ICWS): 2011, pp. 371 - 378.
 [8] Q. Y. Hong, Z. Xia, S. Reiff-Marganiec, and J. Domingue, "Linked
Context: A Linked Data Approach to Personalised Service Provisioning,"
in 2012 IEEE 19th International Conference on Web Services (ICWS),
Honolulu, HI, 2012, pp. 376-383.

 [9] J. Kopecky, T. Vitvar, C. Bournez, and J. Farrell, "SAWSDL:
Semantic Annotations for WSDL and XML Schema," IEEE Internet
Computing, vol. 11, pp. 60 - 67, 2007.
[10] A. Segev and Q. Z. Sheng, "Bootstrapping ontologies for web
services," IEEE Transactions on Services Computing, vol. 5, pp. 33-44,
2012.
[11] T. G. Stavropoulos, D. Vrakas and I. Vlahavas, "Iridescent: A tool for
rapid semantic annotation of web service descriptions," in Proceedings of
the 3rd International Conference on Web Intelligence, Mining and
Semantics, 2013, p. 12.
[12] A. A. Patil, S. A. Oundhakar, A. P. Sheth, and K. Verma, "Meteor-s
web service annotation framework," in Proceedings of the 13th
international conference on World Wide Web, 2004, pp. 553-562.
[13] A. Ranabahu, P. Parikh, M. Panahiazar, A. Sheth, and F. Logan-
Klumpler, "Kino: a generic document management system for biologists
using SA-REST and faceted search," in 2011 Fifth IEEE International
Conference on Semantic Computing (ICSC), 2011, pp. 205-208.
[14] K. Belhajjame, S. M. Embury and N. W. Paton, "Verification of
Semantic Web Service Annotations Using Ontology-Based Partitioning,".
IEEE Transactions on Services Computing, vol. 7, pp. 515-528, 2014.
[15] K. Belhajjame, S. M. Embury, N. W. Paton, R. Stevens, and C. A.
Goble, "Automatic annotation of web services based on workflow
definitions," ACM Transactions on the Web (TWEB), vol. 2, p. 11, 2008.
[16] S. Mokarizadeh, P. Kungas and M. Matskin, "Evaluation of a semi-
automated semantic annotation approach for bootstrapping the analysis of
large-scale web service networks," in 2011 IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent Agent Technology (WI-
IAT), 2011, pp. 388-395.
[17] I. Salomie, V. R. Chifu, I. Giurgiu, and M. Cuibus, "SAWS: A tool for
semantic annotation of web services," in IEEE International Conference on
Automation, Quality and Testing, Robotics, 2008, pp. 387-392.
[18] B. Liu, K. Huang, J. Li, and M. Zhou, "An Incremental and
Distributed Inference Method for Large-Scale Ontologies Based on
MapReduce Paradigm," IEEE Transactions on Cybernetics, vol. 45, pp. 53-
64, 2015.
[19] F. Daniel, F. M. Facca, V. Saquicela, L. M. Vilches-Blázquez, and Ó.
Corcho, "Semantic Annotation of RESTful Services Using External
Resources," in Current Trends in Web Engineering, F. Daniel and F. M.
Facca, Eds.: Springer Berlin Heidelberg, 2010, pp. 266-276.
[20] Z. Zhang, S. Chen and Z. Feng, "Semantic Annotation for Web
Services Based on DBpedia," in 2013 IEEE 7th International Symposium
on Service Oriented System Engineering (SOSE), 2013, pp. 280-285.
[21] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z.
Ives, "Dbpedia: A nucleus for a web of open data,": Proceedings of the 6th
international The semantic web and 2nd Asian conference on Asian
semantic web conference, 2007, pp. 722-735.
[22] C. Matuszek, J. Cabral, M. J. Witbrock, and J. DeOliveira, "An
Introduction to the Syntax and Content of Cyc.," in AAAI Spring
Symposium: Formalizing and Compiling Background Knowledge and Its
Applications to Knowledge Representation and Question Answering, 2006,
pp. 44-49.
[23] J. Bhagat, F. Tanoh, E. Nzuobontane, T. Laurent, J. Orlowski, M.
Roos, K. Wolstencroft, S. Aleksejevs, R. Stevens, and S. Pettifer,
"BioCatalogue: a universal catalogue of web services for the life sciences,"
Nucleic acids research, p. gkq394, 2010.
[24] C. Kankanamge, Web services testing with soapUI: Packt Publishing
Ltd, 2012.
[25] D. Repchevsky and J. L. Gelpi, "BioSWR--semantic web services
registry for bioinformatics," PLoS One, vol. 9, p. e107889, 2014.
[26] S. N. Han, G. M. Lee and N. Crespi, "Semantic context-aware service
composition for building automation system," IEEE Transactions on
Industrial Informatics, vol. 10, pp. 752-761, 2014.
[27] S. Mokarizadeh, P. Küngas and M. Matskin, "Ontology learning for
cost-effective large-scale semantic annotation of web service interfaces," in
Knowledge Engineering and Management by the Masses: Springer, 2010,
pp. 401-410.
[28] Z. Zheng, Y. Zhang and M. R. Lyu, "Investigating QoS of real-world
web services," IEEE Transactions on Services Computing, vol. 7, pp. 32-
39, 2014.

368

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:28:33 UTC from IEEE Xplore. Restrictions apply.

