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Abstract—As an emerging framework, edge computing
achieves Internet of Things by providing computing, storage and
network resources. It moves computation to edge devices located
near users. Nevertheless, nodes in the edge often own limited
resources and constrained energy capacities. It is impossible to
entirely execute tasks in the edge due to their unsatisfied quality
of service. Cloud data centers (CDCs) own almost unlimited
resources yet they might cause large transmission delay and high
resource cost. Consequently, it is highly needed to intelligently
offload tasks between CDC and edge. This work proposes a task
offloading algorithm for hybrid cloud-edge systems to achieve
profit maximization of a system provider with response time
bound assurance. It comprehensively investigates CPU, memory
and bandwidth limits of nodes in the edge, and constraints of
available energy and servers in CDC. These factors are integrated
into a single-objective constrained optimization problem, which
is solved by a simulated-annealing-based migrating birds opti-
mization algorithm to yield a close-to-optimal offloading policy
between CDC and the edge. Real-life data-driven experimental
results show that its profit outperforms its four typical peers.

Index Terms—Cloud data centers, cloud computing, edge
computing, intelligent optimization, task offloading, simulated
annealing, and migrating birds optimization

I. INTRODUCTION

Smart mobile devices (SMDs) have been gaining enormous
attention with advanced mobile technologies, e.g., wearable
devices and Internet of Things (IoTs) devices [1]. These
technologies give a powerful platform for smart mobile appli-
cations, e.g., speech/face recognition and health monitoring.
The gap between limited computing resources and need for
running applications is growing [2]. It is challenging to execute
them in SMDs that own limited computation resources and
battery capacities. It is shown that cloud data centers (CDCs),
e.g., Amazon EC2, and Microsoft Azure, provide distributed
computing to efficiently tackle the limitation of battery and
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processing capabilities by offloading part or all computation-
intensive tasks to CDCs [3]. In 2019, over 70% of calculations
were completed in CDCs [4]. However, CDCs are usually far
away from SMDs, and this leads to unacceptable communica-
tion delay and economic cost for utilizing resources in CDCs
[5], [6].

To tackle the shortcomings of using CDCs, edge computing
is an emerging architecture for the network, and it provides
pervasive resources to IoT applications with strict latency
needs anytime and anywhere [7]. The need for real-time and
scalable data analysis in IoT devices is a major driving force
for edge computing where data is generated and processed in
network edge. It is shown that about 40% of IoT-produced data
is stored and processed in the edge [8]. Local computing in
the edge greatly reduces the response latency because waiting
or communication delay between edge and CDCs is avoided.
Yet, limits of energy, computation and storage resources of
nodes in IoT restrict the number of tasks of resource-hungry
applications [9] locally computed in the edge. It is unlikely to
execute all tasks in nodes of edge (i.e., local computing), and
some of them have to be offloaded to CDCs to avoid energy
depletion and performance degradation. Thus, it is critically
important to rationally schedule all tasks between CDC and the
edge, and maximize the profit of hybrid cloud-edge systems
while ensuring response time limits of tasks.

To solve this issue, this work aims to maximize the profit of
a system provider by smartly offloading tasks between CDC
and the edge. It explicitly specifies the task service rate of
servers in CDC, and determines the node for processing each
task in the edge. This work proposes a fine-grained mechanism
to obtain an optimal offloading strategy for tasks. It jointly
considers CPU, memory and bandwidth limits, and processing
capacities of nodes in the edge. In addition, it jointly considers
limits of energy and servers in CDC. By investigating these
factors, this work proposes a profit-maximized task offloading
algorithm for maximizing the system profit and enforcing
response time limits of tasks to be strictly met. Real-life data,
e.g., tasks in Google cluster and prices of power grid are

2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
October 11-14, 2020. Toronto, Canada

978-1-7281-8526-2/20/$31.00 ©2020 IEEE 1218

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 17,2020 at 21:35:35 UTC from IEEE Xplore.  Restrictions apply. 



adopted to evaluate it. The experiments prove that it achieves
higher profit than its typical scheduling peers.

II. PROBLEM FORMULATION

This section formulates a constrained optimization problem
for a cloud and edge computing system shown in Fig. 1. The
framework includes three layers, i.e., terminal, the edge, and
CDC. Users’ tasks are sent through heterogeneous SMDs,
e.g., iPad, smart phones, computers, sensors on the road,
and all they are produced at the terminal layer, and returned
results after their completion are sent back to this layer
eventually. As shown in Fig. 1, the wireless infrastructure
mainly includes many WiFi access points and multiple small-
cell base stations (SBSs), which are mutually interconnected to
transmit messages. Tasks are delivered to the edge, including
a task scheduler and nodes in the edge. The scheduler smartly
allocates tasks between the edge and CDC. If a task is
scheduled to CDC, a macro base station (MBS) just forwards
it to CDC; otherwise, an MBS needs to execute it in its
node. MBS is located at the edge, and consists of many
heterogeneous nodes with limited storage, computing and
transmission abilities. It receives tasks from the terminal layer,
and executes some of them locally and sends others to CDC
through Internet backbone. It reduces tasks’ latency in CDC,
which owns multiple interconnected server clusters with large
computing and storage capacities, and provides different cloud
resources to handle tasks.

Edge 

computing 

scheduler

Mobile devices WiFi access 

point

Small-cell 

base station

Internet 

backbone/

core network

Edge computing servers

Macro base station

Edge computing layer

Cloud data center layer
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Fig. 1. Illustrative system framework.

A. Decision variables

Let oi,jτ be a binary variable. If task i is scheduled to execute
in node j in the edge in time slot τ , oi,jτ =1; otherwise, oi,jτ =0.
Let Iτ denote the number of tasks scheduled to nodes in the
edge in time slot τ . Let µτ denote the task service rate of
CDC servers in time slot τ . Iτ needs to be less than or equal
to the total number of arriving tasks in time slot τ , λτγ, i.e.,

Iτ≤λτγ (1)

where λτ is the task service rate of CDC in time slot τ , and
γ is the length of each time slot.

Let njτ denote the maximum number of tasks that can be
executed by node j in the edge in time slot τ . Thus,

Iτ∑
i=1

oi,jτ ≤njτ (2)

In time slot τ , task i has to be and can only be scheduled
to execute in only one node in the edge. Thus,

J∑
j=1

oi,jτ =1 (3)

B. Response time

The total number of arriving tasks in time slot τ is λτγ
according to (1). Then, the number of tasks scheduled to
execute in CDC in time slot τ is λτγ−Iτ . Let λcτ denote
the arriving rate of tasks scheduled to CDC in time slot τ ,
i.e., λcτ=λτγ−Iτ

γ . Let T̂τ denote the maximum response time
of tasks executed in all nodes in the edge in time slot τ . Let
T̃τ denote the average response time of all tasks executed in
CDC in time slot τ . In the edge, there are J heterogeneous
nodes. Let T i,jτ denote the execution time of task i (1≤i≤Iτ )
on node j (1≤j≤J). Let ki denote the size of task i. Let pj
denote the processing speed of node j. Then,

T i,jτ =
ki
pj
oi,jτ (4)

The maximum response time (T̂τ ) of all tasks executed in
the edge includes transmission and computation time in CDC.
Then, T̂τ is obtained as:

T̂τ=
J

max
j=1

[
Iτ∑
i=1

T i,jτ

]
(5)

Let T+ denote users’ response time limit for tasks scheduled
to execute in the edge. Thus, T̂τ cannot exceed T+, i.e.,

T̂τ≤T+ (6)

Similar to [10], [11], this work adopts an M /M /1/β/∞
queuing system to analyze the behavior of switched-on servers
in CDC. Here, β denotes the maximum number of tasks that
all servers in CDC can execute. It is assumed that users’ tasks
arrive in a Poisson process with mean rate λcτ and task service
time has an exponential distribution with mean rate µτ . Let
T̃τ denote the average response time of tasks scheduled to
execute in CDC. Let T c denote users’ response time limit of
tasks scheduled to execute in CDC. Then, T̃τ is obtained as:

T̃τ=dτ+
Ψτ

µτ (1−Q0
τ )

(7)

where

Ψτ=
ρτ

1−ρτ
− (β + 1) (ρτ )

β+1

1− (ρτ )
β+1

,

Q0
τ=

1−ρτ
1− (ρτ )

β+1
,

ρτ=
λcτ
µτ
,

dτ is the total transmission time of input/output data to/from
CDC through MBS, and Q0

τ is the possibility when there are
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no tasks in CDC in time slot τ . In addition, to guarantee the
stability of a task queue in CDC, we have:

λcτ≤µτ (8)

In time slot τ , T̃τ cannot exceed its limit T c, i.e.,

T̃τ≤T c (9)

C. Profit

Then, let zτ , iτ and Γτ denote total revenue, total cost
and total profit in time slot τ . Then,

Γτ=zτ−iτ (10)

We use Service Level Agreements (SLAs) [12] that specify
the revenue or penalty if the response time of tasks is within
or beyond its limits. Here, if the actual response time of a
task is less than or equal to 0.1 seconds, its revenue is 0.5 $;
otherwise, its penalty is 0.2 $. The revenue brought by each
task scheduled to execute in the edge is f(T̂τ ). Then, the total
revenue brought by all tasks scheduled to the edge is f(T̂τ )Iτ .
Similarly, the revenue brought by each task scheduled to CDC
is f(T̃τ ). Then, the revenue brought by all tasks scheduled to
CDC is f(T̃τ ) (λτγ−Iτ ). Hence,

zτ=f(T̂τ )Iτ+f(T̃τ ) (λτγ−Iτ ) (11)

Let iEτ denote the execution cost of all tasks scheduled to
execute in the edge in time slot τ . Let iCτ denote the energy
cost of all tasks scheduled to execute in CDC in time slot τ .
Then, iτ consists of iEτ and iCτ . Let ηi,jτ denote the execution
cost of task i scheduled to execute in node j in the edge in
time slot τ . Let η̂ denote the upper limit of ηi,jτ .

ηi,jτ ≤η̂ (12)

iEτ is obtained as
∑Iτ
i=1

∑J
j=1

(
oi,jτ η

i,j
τ

)
. Let eτ denote the

price of power grid in time slot τ . Let Eτ denote the amount
of energy consumed by all tasks scheduled to execute in CDC
in time slot τ . Thus, iEτ =eτEτ . Similar to [13], [14], the data
transmission cost between CDC and edge is ignored. Thus,

iτ=eτEτ+

Iτ∑
i=1

J∑
j=1

oi,jτ η
i,j
τ (13)

D. Energy consumption

P̂ and P̃ denote the peak and idle power of each server in
CDC, respectively. σ denotes the number of tasks processed
by each powered-on server per time in CDC, and χ denotes
the power usage effectiveness value [15] of CDC. Following
[16], energy consumption Eτ is calculated as:

Eτ=
νµτ+ψλcτ (1−q (λcτ , µτ ))

σ
γ (14)

ν=P̃+ (χ−1) P̂

ψ=P̂−P̃

δ(λcτ , µτ )=
1− ρτ

1− (ρτ )β+1
(ρτ )β

Let ∆ denote the maximum amount of the total available
energy in CDC. Then, Eτ cannot exceed ∆, i.e.,

νµτ+ψλcτ (1−q (λcτ , µτ ))

σ
γ≤∆ (15)

The execution cost of all tasks scheduled to execute in the
edge needs to be less than or equal to the energy cost of all
tasks scheduled to execute in CDC in time slot τ , i.e.,

Iτ∑
i=1

J∑
j=1

oi,jτ η
i,j
τ ≤eτEτ (16)

Let $ denote the maximum number of servers in CDC.
Then, the number of powered-on servers is µτ/σ, satisfying:

µτ
σ
≤$ (17)

E. Resource limits in the edge

This work considers three important resources including
CPU, memory and bandwidth in the edge [17]. Cu,jτ , Mu,j

τ and
Bu,jτ denote the utilization of CPU, memory and bandwidth
resources of node j in time slot τ , respectively, and they cannot
exceed 1, satisfying:

Cu,jτ =

Iτ∑
i=1

oi,jτ ςi

C̃
≤1 (18)

Mu,j
τ =

Iτ∑
i=1

oi,jτ ϕi

M̃
≤1 (19)

Bu,jτ =

Iτ∑
i=1

oi,jτ ξi

B̃
≤1 (20)

where ςi, ϕi and ξi denote the amount of CPU, memory and
bandwidth resources needed by task i, respectively. C̃, M̃ and
B̃ are the maximum amount of CPU, memory and bandwidth
resources in node j, respectively.

F. Profit maximization problem

The objective is to maximize Γτ , i.e.,

Max
oi,jτ ,Iτ ,µτ

{Γτ} (21)

subject to (1), (2), (3), (6), (8), (9), (12), (15), (16), (17), (18)–
(20) and (22).

Iτ∈N+, µτ≥0, oi,jτ ∈{0, 1} (22)

III. SIMULATED-ANNEALING-BASED MIGRATING BIRDS
OPTIMIZATION (SMBO)

To solve (21), we can use many nature-inspired
metaheuristic-based optimization algorithms [18], e.g., tabu
search, genetic algorithm and particle swarm optimization, to
find near optimal solutions. We adopt a metaheuristic algo-
rithm named Migrating Birds Optimization (MBO) is proposed
in [19] as a basic algorithm. It is inspired and derived from
an effective V flight formation of migrating birds (solutions),
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which brings benefits in energy saving because birds in other
positions get benefit from the birds in front. Fig. 2 shows a
7-solution V flight formation where bird 1 is the leading bird.

In MBO, there is a leader bird and two lines of other birds
follow it. The leader bird becomes tired after flying for a
certain time, it then flies to the end of a line and one of
other following birds becomes a new leader. Each solution
compares itself with a number of its own neighbors, and
several best neighbors of the front solution. It is replaced
by the best of them if it becomes worse. Then, the leader
solution goes to the last position, and one of the second
solutions goes to the first position. In MBO, the neighborhood
within more promising solutions is explored in more details.
After several iterations, these solutions might move to different
directions if they are improved along their ways. However,
finally most solutions of MBO may converge to one or several
local optima. Simulated annealing (SA) can conditionally jump
from local optima by moving to some worse solutions with the
Metropolis acceptance rule [20]. SA can thus obtain global
optima with large probability in theory, and is widely used to
find high-quality solutions to different problems. This work
proposes a hybrid algorithm called SA-based Migrating Birds
Optimization (SMBO) by combining SA’s Metropolis accep-
tance rule and MBO. Specifically, this work adopts the SA-
based update mechanism to change a solution. The flowchart
of SMBO is shown in Fig. 3.

1

2 3

4 5 6 7

Fig. 2. A 7-solution V flight formation.

IV. PERFORMANCE EVALUATION

This work evaluates the proposed SMBO with real-life data.
SMBO is implemented with MATLAB 2017 in a computer
with an Intel Xeon CPU with 2.4 GHz and a 32-GB memory.

A. Parameter setting

This work uses realistic tasks collected from Google cluster
trace1 to evaluate the proposed method. Fig. 4 illustrates the
task arriving rate in one day. In addition, this work uses
realistic price of power grid collected from the New York
Independent System Operator2. Fig. 5 illustrates the price of
power grid in one day. Besides, the length of one time slot is
300 seconds, i.e., γ=300 seconds.

The following parameters are set as follows. J=30,
B̃=3000 MB/s, M̃=1024 MB and C̃=2048 MIPS. In ad-
dition, ξi, ϕi and ςi are randomly produced in (0,0.1). In
addition, σ=0.05 tasks/second, $=2×103, ∆=1×105 WH,

1https://github.com/google/cluster-data
2https://www.nyiso.com/

Initialize a population of solutions randomly

Sort initial population according to bird fitnesses

Output the leader bird in the population

Termination 

condition

Organize birds in a V formation and select the leader bird

Create neighbors for each bird and sort them

Update neighbor set of each bird

Adopt SA's Metropolis rule to update each bird

Update the leader bird with its left or right successor

Sort all birds except the leader one

Decrease the temperature linearly

No

Yes

Fig. 3. Flowchart of SMBO.
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Fig. 4. Task arriving rate.
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Fig. 5. Price of power grid in one day.

P̂=600 W, P̃=300 W, χ=1.6 and η̂=0.01 $. Besides, dτ
is set to 1

5Ψτ/
(
µτ
(
1−Q0

τ

))
. ηi,jτ is randomly produced in

(0,0.01). T c=T+=0.1 seconds, β=30, and njτ=1000. Besides,
ki∈(1×106, 8×106). pj∈(1×1011, 2×1011). The parameters
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of SMBO are set as follows. The population size is 51. The
number of neighbors for the leader solution is 3. The total
number of iterations of SBA is 132651. The initial temperature
of SMBO is 5×106 and its cooling rate is 0.985.

B. Experimental results
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Fig. 6. Number of tasks scheduled to edge and CDC.
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Fig. 7. Number of powered-on servers in CDC.

Fig. 6 shows the number of tasks scheduled to the edge and
CDC. It is shown that the number of tasks scheduled to CDC
is much lower than that scheduled to the edge in each time
slot. The reason is that nodes in the edge are much closer
to users and can avoid the transmission delay of input/output
data to/from CDC through MBS. Fig. 7 shows the number of
powered-on servers in CDC. The maximum number of servers
in CDC is 2000, i.e., $=2000. It is shown that the number of
powered-on servers in CDC is less than its limit in each time
slot.
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Fig. 8. Amount of energy consumed in CDC.

Fig. 8 shows the amount of energy consumed in CDC in
each time slot. It is shown that the amount of energy consumed
in CDC is less than its limit in each time slot. Fig. 9 shows
the total response time of each task executed in CDC and the
edge. Therefore, it is shown that the total response time of
each task executed in CDC and the edge is less than its limit
in each time slot, i.e., (6) and (9) are both met in each time
slot. Hence, the execution results with our obtained schedule
can strictly meet response time limits of tasks.
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Fig. 9. Total response time of each task in CDC and edge.

C. Comparison results

This work compares it with firefly algorithm (FA) [21]
and Genetic Learning Particle Swarm Optimization (GL-PSO)
[22], local computing and entire offloading. SMBO, FA and
GL-PSO are repeated independently for 30 times to produce
their respective results.

1) FA [21]: FA can efficiently find high-quality optima of
multimode functions. Its convergence is fast, but it suffers
from a premature convergence problem.

2) GL-PSO [22]: GL-PSO applies a learning mechanism of a
genetic algorithm to construct exemplars hybridized with
particle swarm optimization in a cascade manner.

3) Local computing. All tasks are executed by nodes in the
edge.

4) Entire offloading. All tasks are offloaded to CDC.
The comparison between SMBO and FA can demonstrate

the former’s convergence speed. The comparison between it
and GL-PSO can demonstrate its solution accuracy. SMBO,
FA and GL-PSO stop their search processes if their solutions
are not improved in 10 consecutive iterations.
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Fig. 10. Convergence time comparison of SMBO, FA and GL-PSO.
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Fig. 10 shows the convergence time comparison of SMBO,
FA and GL-PSO in each time slot. It is shown that compared
to FA and GL-PSO, SMBO’s average convergence time of
all time slots is reduced by 49.26% and 72.21% on average,
respectively. Therefore, SMBO increases the profit in less time
and fewer iterations than FA and GL-PSO. Fig. 10 proves that
the adoption of SA’s Metropolis acceptance rule increases the
diversity of population and search performance.
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Fig. 11. Profit of SMBO, FA, GL-PSO, local computing and entire offloading.

Fig. 11 illustrates the profit comparison of SMBO, FA,
GL-PSO, local computing and entire offloading. It is shown
that compared with its four peers, its profit is increased by
66.83%, 21.32%, 34.81% and 30.22% on average, respectively.
The solution accuracy of SMBO is higher than those of FA,
GL-PSO, and therefore the profit of SMBO is larger than
those of FA and GL-PSO. Battery energy, CPU, memory and
bandwidth resources are all limited in the edge, and energy,
servers, etc. in CDC are also limited. Thus, tasks scheduled
with local and entire offloading need to wait for execution
and suffer from higher latency than SMBO, resulting in bad
user experience and low profit. The results validate that the
proposed offloading method outperforms four peers.

V. CONCLUSION

The emerging edge computing is widely implemented be-
cause of its quick response and local processing capacities.
Nevertheless, its computing, storage and network resources,
and energy are not enough t execute all tasks. Cloud data
centers (CDCs) have sufficient resources for users to utilize
but they are far away from users in the edge. Thus, it
causes additional latency and consumes energy to deliver data
between CDC and edge. Therefore, edge computing provides
an alternative way to partially offload its tasks to CDC for
achieving profit maximization of hybrid cloud-edge systems
while meeting tasks’ response time requirements. To achieve
it, this work designs a profit-maximized task offloading al-
gorithm. In each time slot, a single-objective constrained
optimization problem is given and further addressed by a
newly designed Simulated-annealing-based Migrating Birds
Optimization (SMBO) algorithm. Real-world data-driven re-
sults demonstrate that the obtained offloading strategy yields
higher profit than its four benchmark methods.
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