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Abstract—Cloud computing is increasingly implemented by
a growing number of organizations in recent years. Their
critical business applications are deployed in distributed cloud
data centers (CDCs) for fast response and low cost. The ever-
increasing consumption of energy makes it highly important to
schedule tasks efficiently in CDCs. In addition, many factors
in CDCs, e.g., the wind and solar energy and prices of power
grid have spatial differences. It becomes a challenging problem
of how to achieve the energy cost minimization for CDCs in
such a market. This work applies a G/G/1 queuing system to
evaluate the optimization of servers in each CDC. Furthermore,
a single-objective constrained optimization problem is given
and addressed by a proposed Simulated-annealing-based Bees
Algorithm to yield a close-to-optimal solution. Based on it, a
Fine-grained Task Scheduling (FTS) algorithm is designed to
minimize the energy cost of CDCs by intelligently scheduling
heterogeneous tasks among distributed CDCs. In addition, it
also determines running speeds of servers and the number of
switched-on servers in each CDC while strictly meeting tasks’
delay bounds. Realistic data-driven results demonstrate that FTS
outperforms its typical benchmark scheduling peers in terms of
energy cost and throughput.

Index Terms—Cloud data centers, simulated annealing, bees
algorithm, energy management, intelligent optimization

I. INTRODUCTION

Cloud computing has been changing the way that infrastruc-
ture of information technology is provided to meet business
requirements of global users [1], [2]. It enables different
organizations to dynamically adjust resources based on their
requirements by provisioning infrastructure resources in a pay-
as-you-go way. A growing number of large-scale enterprises,
e.g., Microsoft, Amazon, Facebook and Google, deploy their
applications in cloud data centers (CDCs) and provide services
in a more cost-efficient manner. According to [3], CDCs need
roughly 2.2% of the total electricity in U.S., and produce over
43 million tons of CO2 in each year. It is also shown that
they would need over 101.3 billion kilowatt-hours and the
electricity cost would be over $7 billion in 2020. Servers and
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other facilities, e.g., cooling and lighting in each CDC usually
consume as much energy as over 25,000 families. Therefore,
the ever-increasing increase in energy cost makes it highly
challenging to optimize the energy cost of CDC providers.

It is shown that servers in CDCs consume 28% of energy
consumption of CDC providers [4], [5]. There are typically
two ways to reduce the energy cost: switching off servers
or deteriorating Quality of Service (QoS) of tasks. However,
purely decreasing the energy cost also lowers their QoS. In
addition, users’ QoS requirements are often set in Service
Level Agreements (SLAs) [6], [7]. Any compromises of QoS
lead to the penalty to a CDC provider because users’ perfor-
mance needs tend to be strict in most cases, thus increasing the
total cost. Consequently, CDC providers have to adopt some
mechanisms to ensure that their total cost is not increased
because of SLA compromises. In addition, users’ tasks are
transmitted to distributed CDCs located in different sites for
cost and performance concerns. Many factors, e.g., available
renewable energy, prices of power grid, available number of
servers, running speeds of servers, and available energy in each
CDC all have spatial differences [8].

Therefore, it becomes a big challenge of how to achieve
the energy cost minimization for a CDC provider in such
a market. To address it, this work applies a G/G/1 queu-
ing model to evaluate the performance of servers in CDCs.
The interarrival time and running time of tasks can have
any distributions of probability. Furthermore, a Fine-grained
Task Scheduling (FTS) algorithm is proposed to minimize
CDCs’ energy cost by considering spatial differences such
that tasks’ delay bounds are met. The spatial variations are
incorporated into a constrained optimization problem. It is
addressed by an improved Simulated-annealing-based Bees
Algorithm (SBA) to yield a close-to-optimal task scheduling
strategy. It properly utilizes power grid and renewable energy
by optimally scheduling tasks among CDCs, and determining
running speeds of servers and the number of switched-on
servers in CDCs. Realistic data including green energy data,
prices of power grid, arriving tasks in Google cluster trace1, are
adopted to evaluate the performance of FTS. The experimental

1https://github.com/google/cluster-data
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results prove that FTS yields smaller energy cost and higher
throughput than its typical benchmark scheduling peers with
QoS assurance.

II. PROBLEM FORMULATION

Fig. 1 illustrates the architecture of multiple CDCs. The
number of CDCs is denoted by NC . Users send tasks through
their different end devices, e.g., laptops, smart phones and
computers to NC CDCs. Task Scheduler periodically runs
FTS and schedules tasks in a First-Come-First-Served (FCFS)
manner.
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Fig. 1. Illustrative framework of multiple CDCs.

A. Task response time

The number of applications is denoted by NA. N̂c,n is
the number of application n’s servers in CDC c (1≤c≤NC).
No
τ,c,n is the number of application n’s switched-on servers in

CDC c in time slot τ . Thus, No
τ,c,n cannot exceed N̂c,n, i.e.,

0≤No
τ,c,n≤N̂c,n, No

τ,c,n∈N+ (1)

This work adopts a G/G/1 queuing model to evaluate
the performance of servers of each application. T c,nτ is the
interarrival time for each application n’s server in CDC c in
τ . Its mean and variance are T̄ c,nτ and σ̃τ,c,n, respectively,
and they are determined by analyzing real-life tasks collected
from, e.g., Google cluster trace. λc,nτ is application n’s task
arriving rate in CDC c in τ , and it is obtained as λc,nτ = 1

T c,nτ
.

rnc is the size of each application n’s task scheduled to CDC
c, and its probability distribution can be arbitrary. Its mean
and variance are r̄nc and σ̆c,n, respectively.
tc,nτ and %c,nτ are the running time and the running speed

of each task on each application n’s server in CDC c in τ .
Thus, tc,nτ =

rnc
%c,nτ

. t̄c,nτ , σ̃τ,c,n and Ωc,nτ are mean, variance and
coefficient of variation of tc,nτ , respectively. Then,

t̄c,nτ =
r̄nc
%c,nτ

(2)

σ̃τ,c,n=
σ̆c,n

(%c,nτ )
2 (3)

Ωc,nτ =
σ̃τ,c,n
t̄c,nτ

(4)

%̂nc is each server’s maximum running speed for application
n in CDC c. Thus, %c,nτ is less than or equal to %̂nc , i.e.,

0≤%c,nτ ≤%̂nc (5)

Besides, each server’s running speed for application n in
CDC c has to be sufficient to run its scheduled tasks in τ .
Thus, %c,nτ needs to be larger than r̄nc

T̄ c,nτ
, i.e.,

%c,nτ >
r̄nc
T̄ c,nτ

(6)

λnτ is task arriving rate of application n in τ , and λc,nτ is
task arriving rate of application n in CDC c in τ . Then,

λnτ=

NC∑
c=1

λc,nτ (7)

Then, T c,nτ ia tasks’ response time of application n in CDC
c with No

τ,c,n servers in τ . L is the length of each time slot.
Then, following [9], we have:

T c,nτ =
r̄nc
%c,nτ

+
(
(r̄nc )2+σ̆c,n

)
∆1
τ,c,n (8)

∆1
τ,c,n=

σ̂τ,c,n(%c,nτ )2+σ̆c,n

2%c,nτ (T̄ c,nτ %c,nτ −r̄nc )
(
(T̄ c,nτ )2(%c,nτ )2+σ̆c,n

)
where r̄nc =

λc,nτ L
Noτ,c,n

and T̄ c,nτ =
Noτ,c,n
λc,nτ

.

T̂n is a user-specified delay bound of each application n.
Then, T c,nτ cannot exceed T̂n, i.e.,

T c,nτ ≤T̂n (9)

B. Energy cost

The power consumption is a major part of CDCs’ energy
cost [10]. P c,nτ is the power consumed by each application n’s
server in CDC c in τ . χc,nτ and U c,nτ are clock frequency and
supply voltage of application n’s servers in CDC c. Following
[11], U c,nτ ∝ (χc,nτ )

γ0
1,c,n for γ0

1,c,n>0 and γ0
1,c,n is a constant.

Besides, %c,nτ is proportional linearly to χc,nτ , i.e., %c,nτ ∝χc,nτ .
Then, following [12], U c,nτ =γ0

2,c,n (χc,nτ )
γ0
1,c,n and

%c,nτ =γ0
3,c,nχ

c,n
τ . γ0

2,c,n and γ0
3,c,n denote constants for

application n’s servers in CDC c. Then, P c,nτ is calculated as:

P c,nτ =Ψn
c ω

n
c (U c,nτ )

2
χc,nτ

=Ψn
c (γ0

2,c,n)2ωnc (χc,nτ )
2γ0

1,c,n+1

=Ψn
c (γ0

2,c,n)2ωnc
(%c,nτ )

2γ0
1,c,n+1(

γ0
3,c,n

)2γ0
1,c,n+1

=knc (%c,nτ )
Ψnc (10)

where Ψn
c , U c,nτ , ωnc and χc,nτ are activity factor,

supply voltage, loading capacitance and clock
frequency of each application n’s server in CDC c.
knc=Ψn

c (γ0
2,c,n)2ωnc /

(
γ0

3,c,n

)2γ0
1,c,n+1

and Ψn
c=2γ0

1,c,n+1.
Each idle server still needs some power due to the dis-

sipation of short-circuit and static power, and other wasted
power [13]. Φ̌cn is the power consumed by each application

1213

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on December 17,2020 at 21:38:04 UTC from IEEE Xplore.  Restrictions apply. 



n’s idle server in CDC c. P cτ is the total power of CDC c in
τ . Following [14], P cτ is obtained as:

P cτ=

NA∑
n=1

P c,nτ =

NA∑
n=1

(
No
τ,c,n

(
knc (%c,nτ ) Ψn

c+Φ̌cn
))

(11)

Êc denotes the available energy in CDC c. The energy
consumption of CDC c in time slot τ is P cτL, and it cannot
exceed Êc, i.e.,

NA∑
n=1

(
No
τ,c,n

(
knc (%c,nτ ) Ψn

c+Φ̌cn
))
≤Êc (12)

P̃τ,c and P ◦τ,c denote wind and solar power produced by
CDC c in time slot τ . Following [14], P̃τ,c is obtained as:

P̃τ,c=
1

2
φ1cφ2cφ3c (φτ,4c)

3 (13)

where φ1c, φ2c, φ3c and φτ,4c denote conversion rate of wind
to electricity, air density, area of wind turbine rotor, and wind
speed of CDC c in time slot τ , respectively.

Following [14], P ◦τ,c is obtained as:

P ◦τ,c=ψτ,1cψ2cψ3c (14)

where ψτ,1c, ψ2c and ψ3c denote solar irradiance, area of
solar panel irradiation and conversion rate of solar radiation
to electricity of CDC c in time slot τ , respectively.

The price of power grid of CDC c in τ is denoted by pcτ ,
and CDC c’s energy cost, Ecτ , is obtained as:

Ecτ=
(

max
(
P cτ−P ◦τ,c−P̃τ,c, 0

))
pcτL (15)

Then, the energy cost of the CDC provider is given as:

Eτ=

NC∑
c=1

Ecτ=

NC∑
c=1

(
max

(
P cτ−P ◦τ,c−P̃τ,c, 0

))
pcτL (16)

Our optimization objective is to minimize Eτ , i.e.,

Min
Noτ,c,n,λ

c,n
τ ,%c,nτ

{Eτ} (17)

subject to (1), (5), (6), (7), (9), (12), (18)–(20).

No
τ,c,n∈N+, %c,nτ ≥0, λc,nτ ≥0 (18)

λc,nτ =0, if No
τ,c,n=0 (19)

λc,nτ >0, if No
τ,c,n>0 (20)

III. SIMULATED-ANNEALING-BASED BEES ALGORITHM

There are several traditional algorithms, e.g., Lagrange
multiplier and dynamic programming, to solve the formulated
problem [15]. Yet they require the first-order or second-order
derivatives of (17) that do not exist [16]. They can efficiently
find good solutions to different types of complex optimization
problems [17]. Among them, bees algorithm (BA) is motivated
by foraging process of honey bees in nature. It is widely
adopted because of its high feasibility and fast convergence
[18]. A population of honey bees in BA change their locations
in multiple directions. Flower patches that have more pollen

attract more honey bees because they are easier to be collected.
Each scout bee randomly moves among different patches.
Then, it deposits pollen and performs a waggle dance to
exchange its search information with others. Then, patches
that have more pollen are searched by more honey bees.

Initialize a population of scout bees randomly

Output the best scout bee

Termination 

condition

Initialize the starting temperature of SA

Sort scout bees with disruptive update

Select a number of sites for neighborhood search

Recruit bees for each elite site and update it with SA’s 

Metropolis acceptance rule

Recruit bees for each non-elite site and update it with 

SA’s Metropolis acceptance rule

Update the fittest scout bee in each selected site

Decrease the temperature linearly

No

Yes

Randomly update other non-selected scout bees

Fig. 2. Flowchart of SBA.

BA can efficiently yield high-quality solutions when it is
applied to solve complicated optimization problems. but it
often converges to local optima. Simulated annealing (SA) can
jump out of local optima by conditionally allowing several
moves that deteriorate quality of solutions with its Metropolis
acceptance rule. It is shown that SA can yield global optima
with high probability, and it can produce high-quality solu-
tions to complex optimization problems [19]. Nevertheless, it
suffers from slow convergence. To overcome such drawback,
this work proposes an improved algorithm called SA-based
Bees Algorithm (SBA) to solve (17)–(20) by adding SA’s
Metropolis acceptance rule into BA. Specifically, all non-elite
and elite bees are updated conditionally with the rule. The
flowchart of SBA is given in Fig. 2. The details of scout bee
encoding, population initialization, disruptive update and SA-
based selection are given next.

A. Population initialization

xi is the position of each scout bee i, and it corresponds to
decision variables including No

τ,c,n, λc,nτ and %c,nτ . |X| is the
population size. x0

i,d is the initial decision variable d of scout
bee i (i∈{1, 2, . . . , |X|}), i.e.,

x0
i,d = θ̌d + θ1,i∗

(
θ̂d−θ̌d

)
(21)
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where θ̌d and θ̂d are lower and upper limits of d, and θ1,i

(θ1,i∈(0, 1)) is a random number for scout bee i.

B. Disruptive update
Disruptive update prefers lower and higher scout bees in

each population. To achieve it, the fitness (F̃(xi)) of each
scout bee i is defined as:

F̃(xi)=|F́(xi)−F̄| (22)

F̄=

|X|∑
i=1

F́(xi)

|X|
, F́(xi)=

Eτ (xi)
|X|∑
i=1

Eτ (xi)

where F́(xi) denotes the normalized value of Eτ (xi) and
F̄ denotes the average value of all normalized values. The
disruptive selection increases the diversity of scout bees by
keeping diverse ones. Then, all scout bees are sorted by F̃(xi).

C. SA-based selection
The SA-based selection is adopted to update all elite or

non-elite bees. xgi and xg+1
i are positions of scout bee i in

iterations g and g+1. If F̃(xgi )≥F̃(xg+1
i ), xg+1

i is selected;
otherwise, it is selected only if

e(F̃(xgi )−F̃(xg+1
i ))

θg
>θ2,i (23)

where θ2,i is a random number in (0,1) and θg is temperature
in iteration g.

IV. PERFORMANCE EVALUATION

A. Parameter setting
As shown in Fig. 3, this work collects real-life task arriving

rates of three types of applications in Google cluster trace to
evaluate SBA and its peers. As illustrated in Fig. 4(a), this
work collects real-life prices of power grid in three locations2

for three CDCs. In addition, L=5 minutes,NC=3 andNA=3.
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Fig. 3. Task arriving rates of three types.

According to [8], energy-related parameters are set in
Table I. This work collects realistic data about solar irra-
diance3 and wind speed4 for one day. Figs. 4(b) and 4(c)

2http://www.energyonline.com/Data/
3http://www.nrel.gov/midc/srrl bms/
4http://www.nrel.gov/midc/nwtc m2/

TABLE I
PARAMETER SETTING OF WIND AND SOLAR ENERGY

Wind energy Solar energy
φ1c φ2c(kg/m3) ψ3c(m2) ψ2c(m2) ψ3c

c=1 0.3 1.225 250 150 0.2
c=2 0.375 1.5313 312.5 187.5 0.25
c=3 0.45 1.8375 375 225 0.3

illustrate solar irradiance and wind speed in three CDCs,
respectively. knc , Ψn

c , Φ̌cn, N̂c,n and %̂nc are given in Table
II. T̂1=0.05 seconds, T̂2=0.1 seconds, and T̂3=0.15 seconds.
In addition, Ê1=2.1×1011 (WH), Ê2=2.5×1011 (WH), and
Ê3=1.25×1011 (WH). Based on [19], [20], the total number
of iterations of SBA is 1000. The population size is 30. The
number of selected sites is 15. The number of elite sites is 6.
The number of recruited bees for each elite site and each non-
elite one is 30 and 15, respectively. The initial temperature of
SBA is 5×106 and its cooling rate is 0.985.

B. Experimental results

To demonstrate the performance of SBA, this work com-
pares SBA with its two typical meta-heuristic optimization
peers, including BA [18] and Genetic Learning Particle Swarm
Optimization (GL-PSO) [21]. All algorithms are repeated
independently for 30 times to yield comparison results. The
reasons of choosing them for comparison are described as:

1) BA [18]: As a population-based optimization algorithm,
BA can efficiently obtain high-quality solutions to differ-
ent problems. However, its several parameters need to be
tuned carefully, and it is easy to converge to local optima.

2) GL-PSO [21]: GL-PSO adopts crossover, mutation and
selection operations on search information of particles to
yield diverse and high-quality elite particles that guide its
search. Then, PSO’s search accuracy is improved.

BA has the same setting of parameters as SBA. GL-PSO’s
parameters are given as follows. The iteration number and the
population size are 1000 and 100, respectively. The intertia
weight and maximum velocity are 0.7298 and 10, respectively.
The mutation probability and the learning coefficient of elite
particles are 0.1 and 1.49618, respectively. The learning coef-
ficients of the globally and the locally best particles are both
set to 2. All three algorithms stop their searches if their current
solutions are not improved in consecutive 10 iterations.

Fig. 5(a) illustrates the energy cost of BA, SBA and GL-
PSO in each time slot, respectively. Compared with BA and
GL-PSO, SBA’s energy cost is reduced by 59.07% and 92.83%
on average, respectively. Fig. 5(b) illustrates their running
time comparison. SBA’s running time is reduced by 26.31%
and 46.15% on average, respectively in comparison with BA
and GL-PSO. Furthermore, Fig. 5(c) shows iterations of their
energy cost in time slot 1. It is observed that GL-PSO and BA
require 996 and 951 iterations to stop their searches, and their
energy cost are 218339.94$ and 76165.77$, respectively. SBA
only requires 201 iterations to stop its search, and its energy
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(a) Prices of power grid
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(b) Solar irradiance
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(c) Wind speeds

Fig. 4. Prices of power grid, solar irradiance and wind speeds.

TABLE II
PARAMETER SETTING OF THREE CDCS

kn
c (tasks/second) Ψn

c (W) Φ̌c
n (W) N̂c,n %̂nc

n=1 n=2 n=3 n=1 n=2 n=3 n=1 n=2 n=3 n=1 n=2 n=3 n=1 n=2 n=3

c=1 10.5 7.4 4.4 1.1 1.15 1.25 200 300 400 110 120 130 2.9×104 3.0×104 3.1×104

c=2 12.5 9.4 6.4 1.0 1.1 1.2 400 500 600 140 150 160 3.0×104 3.1×104 3.2×104

c=3 14.5 11.4 6.4 1.1 1.2 1.3 600 700 800 160 170 180 3.2×104 3.3×104 3.4×104
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Fig. 5. Comparison of SBA, BA and GL-PSO.

cost is 14832.58$. Therefore, SBA achieves less energy cost
in much less time than GL-PSO and BA.

To demonstrate the performance of FTS, this work compares
it with the following up-to-date scheduling peers [16], [22]–
[24] in terms of energy cost and throughput.

1) M1. Similar to cheap-power-grid-price-first scheduling in
[22], it executes tasks in CDCs according to the order of
power grid prices.

2) M2. Similar to renewable-energy-first scheduling in [16],
it executes tasks in CDCs according to the order of
amount of renewable energy.

3) M3 [23]. It executes tasks among CDCs by considering
spatial and temporal differences of power grid prices.

4) M4 [24]. It smartly executes tasks among CDCs by
considering spatial differences of power grid prices.

Fig. 6 illustrates the throughput of FTS, and M1–M4,
respectively. It is shown that FTS’s throughput is larger than
those of M1–M4 for each type, respectively. For example,
FTS’s throughput of application 1 is larger than those of
M1–M4 by 25.99%, 25.37%, 10.30% and 7.74% on average,
respectively. This is because that running speeds of servers,
maximum number of servers, and available energy in different
CDCs are all constrained. FTS jointly considers these limits
and schedules tasks among CDCs, and determines running
speeds of servers and number of switched-on servers in CDCs.

Fig. 6 shows the energy cost of FTS, and M1–M4, respec-
tively. According to SLAs [25], the penalty of each refused
task is larger than its largest energy cost among CDCs. In
Fig. 6, the energy cost is obtained by calculating the energy
cost of executed tasks, and the penalty of refused tasks in
each time slot. Fig. 7 shows that compared with M1–M4,
FTS reduces the energy cost by 50.11%, 51.55%, 29.15%,
and 25.27% on average, respectively. The reason is that FTS
schedules tasks among CDCs by jointly considering spatial
variations in available renewable energy and prices of power
grid of CDCs.

V. CONCLUSION

Cloud computing enables organizations to cost-effectively
improve the performance of their key tasks and decrease their
capital cost. However, it suffers from a problem of high energy
consumption due to increase of users’ arriving tasks. More
and more large-scale organizations adopt cloud data centers
(CDCs) to manage their applications and provide services to
global users. Current studies fail to analyze tasks’ performance
and energy cost of a CDC provider in a fine-grained manner.
Besides, several factors, e.g., amount of renewable energy
and prices of power grid in different CDCs have spatial
variations. Thus, it brings an opportunity to achieve the energy
cost minimization for the CDC provider. This work adopts a
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Fig. 6. Throughput of FTS, M1, M2, M3 and M4.
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Fig. 7. Energy cost of FTS, M1, M2, M3 and M4.

G/G/1 queuing model to evaluate the performance of servers
in CDCs, based on which a constrained optimization problem
is given and solved by a designed Simulated-annealing-based
Bees Algorithm to yield a high-quality solution. In this way,
a Fine-grained Task Scheduling (FTS) method is developed to
minimize energy cost of the CDC provider. Simulations verify
that FTS outperforms its several up-to-date peers in terms of
energy cost and throughput.
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