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Evolutionary algorithms and swarm intelligence ones are commonly used to solve many 
complex optimization problems in different fields. Yet, some of them have limited performance 
when dealing with high-dimensional complex problems because they often require enormous 
computational resources to yield desired solutions, and some of them may easily trap into 
local optima. To solve this problem, this work proposes a Self-adaptive Teaching-learning-based 
Optimizer with an improved Radial basis function model and a sparse Autoencoder (STORA). In 
STORA, a Self-adaptive Teaching-Learning-Based Optimizer (STLBO) is designed to dynamically 
adjust parameters for balancing exploration and exploitation abilities. Then, a sparse autoencoder 
(SAE) is adopted as a dimension reduction method to compress a search space into a 
lower-dimensional one for more efficiently guiding a population to converge towards global 
optima. Besides, an Improved Radial Basis Function model (IRBF) is designed as a surrogate one 
to balance training time and prediction accuracy. It is adopted to save computational resources 
for improving overall performance. In addition, a dynamic population allocation strategy is 
adopted to well integrate SAE and IRBF in STORA. We evaluate STORA by comparing it with 
several state-of-the-art algorithms through eight benchmark functions. We further test its actual 
performance by applying it to solve a real-world computation offloading problem.

1. Introduction

Evolutionary algorithms (EAs) and swarm intelligence (SI) ones have been widely applied to solve different types of benchmarks 
and real-world engineering optimization problems in a variety of fields, e.g., image classification [1], scheduling problems [2], 
autonomous mobile robots [3], and power system planning [4]. Some practical problems have a large number of decision variables 
and can be characterized as high-dimensional problems [5]. These problems present a large and exponentially growing search 
space with many decision variables that bring big challenges for these metaheuristics to efficiently explore their search spaces with 
limited computational resources. In other words, they often require a large number of function evaluations (FEs) to yield satisfactory 
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solutions. However, FEs in many real-world problems can be computationally intensive or highly costly [6]. Some traditional EAs, 
e.g., genetic algorithm (GA) [7] and some traditional SI algorithms, e.g., grey wolf optimization (GWO) [8] and particle swarm 
optimization (PSO) [9] may easily trap into local optima because their strategies cannot well cover whole high-dimensional spaces.

To solve high-dimensional problems, several studies have been proposed, which can be divided into two types. The first type 
incorporates surrogate models into EAs. Surrogate-assisted EAs (SAEAs) have been considered as viable methods to deal with 
high-dimensional problems. For example, Cui et al. [10] employ a surrogate model to replace a part of a true model for evaluating 
individuals. Thus, it avoids some unnecessary FEs to save computational resources, which can be used for EAs to further explore a 
search space. Dong et al. [11] build a dynamically updated surrogate model to assist EAs. Specifically, subspaces and local surrogate 
models are constructed based on selected promising data points. Then, the most potential points are captured according to the 
prediction result of surrogate models for subsequent updates and optimization. However, surrogate models need to continue their 
updates that bring additional computational cost.

The second type belongs to the dimension reduction, which is widely adopted to deal with the huge amount of high-dimensional 
data because of the curse of dimensionality [12,13]. However, there are relatively few existing studies focusing on the combination 
of dimension reduction and metaheuristics. Yao et al. [14] propose a dimension reduction method of objective functions to reduce 
computational stress. A Spearman correlation coefficient is adopted to evaluate correlations among objective functions. Then, 
objective functions are clustered by the K-means algorithm based on their correlations. Tenne et al. [15] propose two complementary 
dimension reduction frameworks for EAs. One framework identifies an important subset of original variables by adopting selection 
of variables while the other uses topological mapping to project high-dimensional data to a lower-dimensional space.

However, some problems still exist and need to be solved. First, for the first type, SAEAs bring additional surrogate models into a 
structure that also brings additional training time especially for a high-dimensional training set. Moreover, an optimization process 
is partially guided by surrogate models whose accuracy has direct impact on the optimization direction. Inaccurate surrogate models 
may mislead the optimization direction and result in poor or inaccurate search results. Second, for the second type, although the 
feature data is extracted under a specific dimension reduction method, some data including important information for an optimization 
process may be lost. As a result, it is highly important to choose a proper method for dimension reduction.

In addition to two types of methods, it is important to consider real-word situations when designing algorithms. Tao et al.

[16] point out that most modern existing data-driven fault diagnosis methods require sufficient training samples to achieve desired 
diagnostic effect. However, scarcity of fault samples in actual industrial environments leads to limitation of these methods. In 
that case, Tao et al. propose a model for a problem of fewer fault samples and cross-domain among data sets in real industrial 
environments. As a result, to improve feasibility in real-world problems, our work needs to focus on characteristics of real-world 
problems, e.g., data volumes, and various uncertainties. Accordingly, similar to [17], our work adopts a combination of typical 
benchmark functions and a real-word problem to evaluate performance of our proposed algorithm.

Motivated by above analysis, this work proposes a novel Self-adaptive Teaching-learning-based Optimizer with an improved 
Radial basis function model and a sparse Autoencoder (STORA) to solve high-dimensional problems. Main contributions of this work 
are summarized as:

1. A Self-adaptive Teaching-Learning-Based Optimizer (STLBO) is proposed as an SI algorithm in STORA to solve high-dimensional 
problems. Its parameters are dynamically changed as the number of iterations increases to balance exploration and exploitation 
abilities in different stages.

2. An Improved Radial Basis Function model (IRBF) is proposed as a surrogate model in STORA to balance prediction accuracy and 
training time. We take advantage of IRBF to replace a part of true FEs. Those saved computational resources can be used for 
STLBO to better explore a search space.

3. A novel framework is proposed to integrate both dimension reduction and surrogate models into STLBO to solve high-dimensional 
problems. A sparse autoencoder (SAE) is adopted as a dimension reduction tool and IRBF as a surrogate model in STORA. 
Moreover, a dynamic population allocation strategy is adopted to allow SAE and IRBF to cooperate well. We compare STORA 
with state-of-the-art peers by using different unimodal and multimodal high-dimensional functions, and a real-world computation 
offloading problem in mobile edge computing to demonstrate its superior performance.

The rest of this work is organized as follows. Section 2 discusses background of TLBO, autoencoders and surrogate models. 
Section 3 describes an overall framework of STORA. Section 4 gives setting of experimental parameters and experimental results of 
STORA and its benchmark algorithms. Section 5 gives the conclusion.

2. Background

2.1. Teaching-learning-based optimization

Teaching-learning-based optimization (TLBO) is a swarm-based heuristic optimization algorithm, which mimics a traditional 
mode of classroom teaching [18]. In TLBO, learners represent solutions of a problem and knowledge levels of them mean fitness 
values of individuals in a population. The individual with the most knowledge is the teacher and other learners move towards it. 
Compared with other state-of-the-art EAs and SI algorithms, TLBO is not quite sensitive to dimensions of problems. Thus, it is suitable 
to solve high-dimensional problems [19]. However, its optimization speed and results are still affected as dimensions become bigger. 
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It is assumed that there are 𝑁 random learners in a search space.



Information Sciences 630 (2023) 463–481J. Bi, Z. Wang, H. Yuan et al.

Algorithm 1 Learning phase of TLBO.

1: for 𝑗=1:𝑁 do

2: Randomly pick 𝑘∈[1, 𝑁] where 𝑘≠𝑗
3: for 𝑑=1:𝐷 do

4: if 𝑓 (𝑋𝑗 )<𝑓 (𝑋𝑘) then

5: 𝑋
𝑗

𝑑
(𝑡+1)=𝑋𝑗

𝑑
(𝑡)+𝑟𝑑 ⋅

(
𝑋
𝑗

𝑑
(𝑡)−𝑋𝑘

𝑑
(𝑡)
)

6: else

7: 𝑋
𝑗

𝑑
(𝑡+1)=𝑋𝑗

𝑑
(𝑡)+𝑟𝑑 ⋅

(
𝑋𝑘
𝑑
(𝑡)−𝑋𝑗

𝑑
(𝑡)
)

8: end if

9: end for

10: end for

⎡⎢⎢⎢⎢⎣
𝑋1

𝑋2

⋮
𝑋𝑁

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
𝑋1

1 , 𝑋1
2 , ⋯, 𝑋1

𝐷

𝑋2
1 , 𝑋2

2 , ⋯, 𝑋2
𝐷

⋮ ⋮ ⋱ ⋮
𝑋𝑁1 , 𝑋

𝑁
2 , ⋯, 𝑋𝑁

𝐷

⎤⎥⎥⎥⎥⎦
(1)

where 𝐷 denotes the number of decision variables, ∀𝑋𝑗
𝑑
∈ [�̌�𝑑 , ̂𝑏𝑑 ](1≤𝑑≤𝐷), �̌�𝑑 and �̂�𝑑 represent lower and upper bounds of dimension 

𝑑. Besides, 𝑋𝑗 denotes solution 𝑗 where 𝑗∈[1, 2, 3, ⋯ , 𝑁] and 𝑋𝑗
𝑑

denotes its dimension 𝑑. The search process of TLBO consists of two 
phases including teaching and learning ones.

In a teaching phase, a teacher shares the knowledge to learners for increasing the average knowledge level of the class. All 
learners learn from their teacher to improve their knowledge. Relevant formulas of the teaching phase are summarized as:

𝑀𝑑=
1
𝑁

⋅
𝑁∑
𝑗=1
𝑋
𝑗

𝑑

𝑇𝐹=round[1+rand(0,1)]

𝑋
𝑗

𝑑
(𝑡+1)=𝑋𝑗

𝑑
(𝑡)+𝑟𝑑 ⋅

(
𝑋𝑛
𝑑
(𝑡)−𝑇𝐹 ⋅𝑀𝑑 (𝑡)

)
(2)

where 𝑋𝑗
𝑑
(𝑡) (𝑋

𝑗

𝑑
(𝑡+1)) denotes dimension 𝑑 of individual 𝑗 in iteration 𝑡 (𝑡+1). Moreover, 𝑋𝑛

𝑑
(𝑡) denotes dimension 𝑑 of a teacher in 

iteration 𝑡, 𝑟𝑑 denotes a random variable ranging from [0, 1], and 𝑀𝑑 (𝑡) denotes the mean position of the population at dimension 𝑑
in iteration 𝑡. 𝑇𝐹 denotes a learning factor, which is a random integer in [1, 2].

In a learning phase, learners learn from other ones to improve their knowledge, the procedure is shown in Algorithm 1, where 
f(⋅) denotes FE. Given any two individuals 𝑗 and 𝑘, if individual 𝑗 performs better than individual 𝑘, the latter randomly moves to 
the former; otherwise, the former moves to the latter.

2.2. Autoencoder in dimension reduction

Autoencoder (AE) is a type of unsupervised neural networks with three layers. It takes an input vector to the next layer by 
nonlinear mapping that achieves dimension reduction [20]. It tries to approximate the same function by minimizing an expected 
reconstruction error, and therefore, an output value is close to an input one. As a result, AE is an effective tool to reduce dimensions. 
It learns inherent features with reduced hidden nodes, which are expected to completely reconstruct an original function and this 
representation is presented in a lower-dimensional manner. Chen et al. [21] adopt an AE to reduce features of data, and keep critical 
information of data to facilitate information retention. In this way, important features of data are kept while others are removed. 
However, it still has possibility that some important features are removed because of an inaccurate AE. Gao et al. [22] adopt an AE 
to convert an original large-dimensional seismic inversion problem into a compressed one that can be effectively solved by global 
optimization. In addition, there are several studies on integrating AEs with metaheuristics. Miranda et al. [23] apply AEs as reversible 
mapping between an original search space and a compressed one. Then, they organize evolutionary searches in an equivalent 
reduced dimension search space to speed up convergence of metaheuristics. Cui et al. [24] pioneer in an autoencoder-embedded 
evolutionary optimization framework to solve high-dimensional expensive problems. AE is adopted to extract important topographic 
information of a search space. Thus, a lower-dimensional informative space is constructed based on a trained AE where individuals 
generate offspring. However, just like other neural networks, performance of AE drops rapidly when there is a large amount of 
high-dimensional training data.

We also adopt AE to compress an original space into a reduced one that facilitates evolution. We intend to allow some individuals 
to produce offspring in a lower-dimensional space. In that case, individuals may have higher possibility to quickly produce promising 
solutions than those in an original space. To fit large amount of high-dimensional training data, we choose SAE in our structure to be 
introduced later. With the help of the trained SAE, a population is encoded into a low-dimensional space where offspring generation is 
performed. The trained SAE can capture useful landscape information about promising areas as data samples used to train it become 
closer to the optimal case. Guided by this information, metaheuristics are easier to locate promising areas. Then, those offspring in 
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Table 1

Main notations.

Notation Definition

𝑁 Population size

𝐷 Dimension of a problem

𝐴1(𝐴2) Knowledge acquisition factor in a teaching (learning) phase

𝑞 Number of samples used to train SAE

ℎ Number of hidden neurons in SAE

𝑝 Number of samples used to train IRBF

𝑚 Number of basis function centers

𝛾 Trained IRBF

𝑀 Maximum number of re-evaluations

𝑃1(𝑃2) Sub-populations assisted by SAE (IRBF)

𝐵1(𝐵2) Database used to train SAE (IRBF)

2.3. Surrogate models

SAEAs have been widely applied to tackle high-dimensional continuous or combinatorial problems [25]. Surrogate models aim 
to discover main characteristics of a true model, and therefore, they can be adopted to substitute a part of the true model. These 
surrogate models use fewer computational resources to evaluate individuals and they can be used to prescreen candidate solutions. 
Liu et al. [26] propose a Gaussian process surrogate model to assist EAs, and prediction result of a surrogate model is adopted to 
search a promising subregion. Thus, more individuals evolve towards a promising subregion and further explore a search space. 
However, once a surrogate model is inaccurate, the whole search direction is misguided. To solve this problem, Pan et al. [27] adopt 
a surrogate model to predict dominance relationship between candidate solutions and reference ones rather than predicting their 
function values. In that case, it alleviates an approximation error of a surrogate model. It is worth noting that when using a surrogate 
model to prescreen offspring, additional methods are required to ensure accuracy due to an approximation error of a surrogate 
model. For example, Li et al. [28] select individuals whose predicted fitness values are better than previous ones for true model 
evaluations because those individuals have greater chances to locate better solutions. Thus, re-evaluating those individuals helps to 
improve accuracy. Wang et al. [29] put more emphasis on solutions with the highest predicted uncertainty defined by variance of 
prediction values at mid-late stages of evolution. Thus, re-evaluating them alleviates inaccuracy of surrogates to ensure accuracy of 
search.

Several machine learning methods can be adopted as surrogate models, among which Gaussian processes (GPs) [30], random 
forests (RFs) [31], radial basis functions (RBFs) [32] and support vector machines (SVMs) [33] are widely adopted. GPs have lower 
prediction accuracy and higher computation complexity for high-dimensional problems. Thus, it is more suitable for low-dimensional 
problems. RFs have poor performance when solving continuous problems because it cannot give continuous output. In addition, SVMs 
and RBFs are suitable for solving high-dimensional problems. However, SVMs have poor performance when processing large amount 
of data. Among existing models, RBFs work well for problems with a high-dimensional space given large amount of data. RBFs often 
adopt linear activation functions with low complexity, which are summarized as:

𝑓 (𝑋)=𝜀𝖳𝜓=
𝑚∑
𝑖=1
𝜀𝑖𝜓(𝑋−𝑐𝑖)

𝜓𝑖𝑗=𝜓(‖𝑋𝑖−𝑋𝑗‖)=‖𝑋𝑖−𝑋𝑗‖, 𝑖, 𝑗=1,⋯, 𝑝
𝜀=𝜓−1𝑌

(3)

where 𝑓 (𝑋) denotes an RBF model, 𝑋 denotes an input data point, 𝑚 denotes the number of basis function centers, 𝑐𝑖 denotes a 
center point 𝑖, 𝑝 denotes the number of samples used to train RBF, 𝜓(⋅) denotes a radial basis function, ‖ ⋅ ‖ denotes Euclidean

norm, and 𝜀 denotes a vector of weight coefficients that are estimated by data samples 𝑋 and their corresponding function values 
𝑌=(𝑌 1, 𝑌 2, ⋯, 𝑌 𝑝)𝖳.

3. Overall framework

This section introduces an overall framework of STORA. For clarity, main notations of STORA are summarized in Table 1.

3.1. Self-adaptive teaching-learning-based optimizer

STLBO is proposed to speed up an optimization process and balance exploration and exploitation capabilities of TLBO for solving 
high-dimensional problems. In TLBO, a learning factor 𝑇𝐹 is a random integer ranging from [1, 2], which determines improvement 
of an average knowledge level. However, learners can obtain any proportion of knowledge, and 𝑇𝐹 does not have to be an integer. 
Bigger 𝑇𝐹 means that the average knowledge level increases faster, which leads to better exploration ability. On the contrary, lower 
𝑇𝐹 means better exploitation ability. To enhance exploration ability of TLBO, 𝑇𝐹 ranges from [2, 3). Moreover, 𝑇𝐹 dynamically and 
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linearly decreases as iterations continue in STLBO. In the early stage of STLBO, 𝑇𝐹 is assigned to a bigger value to enhance exploration 
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capability. On the contrary, 𝑇𝐹 decreases to enhance exploitation capability for obtaining high-precision solutions in a later stage. 
𝑇𝐹 is updated as:

𝑇𝐹=
(
𝑡1−𝑡1
𝑡1

)2

+2 (4)

where 𝑡1 is the maximum number of iterations, and 𝑡1 is current iteration.

Learners adjust their learning progress from the teacher according to their own current state of knowledge. When the level gap 
between learners and teacher is large, learners make great progress after learning. On the contrary, after learners reach a high level 
of knowledge, their progress becomes slower. To reflect this phenomenon, the progress is represented as a step size. The step size of 
each learner is shown as:

𝑆𝑗 (𝑡)= f (𝑋𝑛(𝑡))
f
(
𝑋𝑗 (𝑡)

) , 𝑗∈[1,2,3,⋯,𝑁] (5)

where 𝑆𝑗 (𝑡) denotes a step size of individual 𝑗 in iteration 𝑡, 𝑋𝑛(𝑡) denotes the teacher in iteration 𝑡, and 𝑋𝑗 (𝑡) denotes individual 𝑗
in iteration 𝑡.

TLBO considers what learners have learned is completely correct. If some of them trap into local optima, some knowledge they 
learned is in a wrong direction. If all learners gain this wrong knowledge, an optimization direction is misguided. As a result, 
a knowledge acquisition factor (𝐴) is introduced to solve this problem. There is a certain probability that learners can fully grasp 
acquired knowledge controlled by 𝐴. Otherwise, learners cannot gain it. In addition, 𝐴 has two different values 𝐴1 and 𝐴2 in teaching 
and learning phases, respectively. 𝐴1 is slightly bigger than 𝐴2 because accuracy of knowledge imparted by the teacher is higher 
than that learned from other learners.

Knowledge level of the teacher is very important because other individuals are approaching it. Once the teacher (the currently 
best solution) falls into local optima, learners (solutions) may also be easy to fall into local optima. Therefore, in mid-late stages of 
an optimization process, the teacher and learners are disturbed to prevent them from falling into local optima. Specifically, some 
parts of the teacher’s knowledge are randomly changed with a random learner. It is worth noting that to ensure accuracy of the final 
search, disturbance can only occur in mid-late stages. The teacher is disturbed as:

𝑋𝑛
𝑑
(𝑡)=𝑋𝑛

𝑑
(𝑡)+𝑟⋅

(
𝑋𝑛
𝑑
(𝑡)−𝑋𝑗

𝑑
(𝑡)
)

(6)

where 𝑋𝑛
𝑑
(𝑡) denotes dimension 𝑑 of the current teacher in iteration 𝑡, 𝑋𝑗

𝑑
(𝑡) denotes dimension 𝑑 of individual 𝑗 in iteration 𝑡. 𝑗

denotes a random number in {1, 2, 3, ⋯ , 𝑁} and 𝑗≠𝑛. 𝑟 is a random number in [0, 1].
Thus, in the teaching phase of STLBO, individuals are updated as:

𝑋
𝑗

𝑑
(𝑡+1)=𝐴1⋅𝑋

𝑗

𝑑
(𝑡)+𝑆𝑗 (𝑡)⋅

(
𝑋𝑛
𝑑
(𝑡)−𝑇𝐹 ⋅𝑀𝑑 (𝑡)

)
(7)

where 𝑋𝑗
𝑑
(𝑡+1) denotes dimension 𝑑 of individual 𝑗 in iteration 𝑡+1.

Knowledge level of learners is improved with the help of their peers in a learning stage of TLBO. In STLBO, in addition to learners 
learning from each other, they also learn through their teacher. In that case, learners progress under guidance of their peers and the 
teacher, which further speeds up an optimization process. In a learning phase of STLBO, if 𝑓 (𝑋𝑗)<𝑓 (𝑋𝑘), 𝑋𝑗

𝑑
(𝑡+1) is updated with 

(8); otherwise, it is updated with (9).

𝑋
𝑗

𝑑
(𝑡+1)=𝐴2⋅𝑋

𝑗

𝑑
(𝑡)+𝑆𝑗 (𝑡)⋅

(
𝑋
𝑗

𝑑
(𝑡)−𝑋𝑘

𝑑
(𝑡)
)
+𝑆𝑗 (𝑡)⋅

(
𝑋𝑛
𝑑
(𝑡)−𝑇𝐹 ⋅𝑋

𝑗

𝑑
(𝑡)
)

(8)

𝑋
𝑗

𝑑
(𝑡+1)=𝐴2⋅𝑋

𝑗

𝑑
(𝑡)+𝑆𝑗 (𝑡)⋅

(
𝑋𝑘
𝑑
(𝑡)−𝑋𝑗

𝑑
(𝑡)
)
+ 𝑆𝑗 (𝑡)⋅

(
𝑋𝑛
𝑑
(𝑡)−𝑇𝐹 ⋅𝑋

𝑗

𝑑
(𝑡)
)

(9)

The overall process of STLBO is given in Algorithm 2.

3.2. Sparse autoencoder assisted by STLBO

We adopt an AE to compress a high-dimensional space into a reduced one for facilitating evolution. In STORA, its initial 
generations are conducted by STLBO for providing samples of training AE. As a population is evolving towards better regions, 
a trained AE can extract some important information of promising evolution directions to compress dimension of individuals. Besides, 
a small step of evolution in a compressed space represents a large one in an original space for speeding up an optimization process. 
When the termination condition is reached, AE is trained and used in the next stage. It is worth noting that low-dimensional offspring 
cannot be evaluated by functions because of dimensional mismatch. Each offspring has to be decoded to an original space for FEs.

SAE is a kind of autoencoders that achieve sparse effect by suppressing hidden layer neurons. Training data for AE is position 
information of a population, which is large and high-dimensional. Feature extraction of large samples by suppressing a part of 
hidden layer neurons has better performance [34]. Thus, adding extra sparse penalties can enhance ability of AE when dealing with 
high-dimensional problems. As shown in Fig. 1, SAE is parameterized by (𝑊 , 𝑏)=(𝑊 (1), 𝑊 (2), 𝑏(1), 𝑏(2)). 𝑊 (𝑖) denotes a weight matrix 
between layers 𝑖 and 𝑖 + 1, and 𝑏(𝑖) denotes a bias in layer 𝑖. We adopt the sigmoid logistic function as an activation function, i.e.,

1
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f(𝑥)=
1+exp(−𝑥)

(10)
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Algorithm 2 STLBO.

Input: Maximum number of iterations (𝑡1), 𝐴1 and 𝐴2
Output: New population 𝑃 ′

1: Initialize the population (𝑃 )

2: for 𝑡1=1:𝑡1 do

3: 𝑇𝐹=
(
𝑡1−𝑡1
𝑡1

)2
+2

4: %Teaching phase

5: if 𝑡1 in mid-late stages then

6: for 𝑖=1:𝑁 do

7: Calculate a fitness value 𝑓 (𝑋𝑖)
8: Choose the best individual as the teacher 𝑋𝑛(𝑡1)
9: Randomly choose 𝑑∈[1, 𝐷], 𝑗∈[1, 𝑁], and 𝑗≠𝑛

10: 𝑋𝑛
𝑑
(𝑡1)=𝑋𝑛𝑑 (𝑡1)+𝑟⋅

(
𝑋𝑛
𝑑
(𝑡1)−𝑋

𝑗

𝑑
(𝑡1)

)
11: end for

12: else

13: for 𝑖=1:𝑁 do

14: Calculate a fitness value 𝑓 (𝑋𝑖)
15: Choose the best individual as the teacher 𝑋𝑛(𝑡1)
16: end for

17: end if

18: for 𝑗=1:𝑁 do

19: 𝑆𝑗 (𝑡)= 𝑓
(
𝑋𝑛 (𝑡1 )

)
𝑓
(
𝑋𝑗 (𝑡1 )

)
20: for 𝑑=1:𝐷 do

21: 𝑀𝑑 (𝑡1)=
1
𝑁

∑𝑁
𝑗=1𝑋

𝑗

𝑑
(𝑡1)

22: Update 𝑋𝑗
𝑑
(𝑡1+1) with (7)

23: end for

24: end for

25: %Learning phase

26: for 𝑗=1:𝑁 do

27: Randomly pick 𝑘 ∈ [1, 𝑁] where 𝑘≠𝑗
28: for 𝑑=1:𝐷 do

29: if 𝑓 (𝑋𝑗 )<𝑓 (𝑋𝑘) then

30: Update 𝑋𝑗
𝑑
(𝑡1+1) with (8)

31: else

32: Update 𝑋𝑗
𝑑
(𝑡1+1) with (9)

33: end if

34: end for

35: end for

36: end for

37: return 𝑃 ′

Thus, given a single input 𝑋, its output is given as:

𝑋′=ℎ𝑊 ,𝑏(𝑋)=f
(
𝑊 (2)f

(
𝑊 (1)𝑋+𝑏(1)

)
+𝑏(2)

)
(11)

where f(⋅) denotes an activation function.

Given a training dataset [𝑋𝑖] where 𝑖=1, 2, ⋯ , 𝑞, where 𝑞 denotes the number of samples used to train SAE. To minimize 
discrepancy between input and output of SAE, a cost function of SAE is defined as:

𝐽𝑠(𝑊 ,𝑏)=
1
2𝑞

𝑞∑
𝑖=1

‖𝑋𝑖−ℎ𝑊 ,𝑏(𝑋𝑖)‖2+𝜆2 ‖𝑊 ‖2
+𝛽

ℎ∑
𝑗=1

KL(𝜌‖𝜌𝑗 ) (12)

The first term is the average sum-of-squares error that describes discrepancy over training data. The second term is a regularization 
term that decreases magnitude of weights where 𝜆 is a coefficient of weight. The third term is sparsity penalty where 𝜌 is a sparse 
parameter that is generally close to zero. 𝛽 is a random variable in [0, 1], which is used to control weight of sparse penalty. ℎ is 
the number of hidden neurons. �̂� represents an average activation value of all neurons in a hidden layer of all training samples for 
ensuring sparsity, and it evolves toward 𝜌. KL(⋅) denotes Kullback-Leibler divergence between two different distributions, i.e., if 𝜌=�̂�, 
KL(𝜌‖𝜌𝑗 )=0.

3.3. STLBO-assisted improved radial basis function

Training time of surrogate models is usually long because of large amount of high-dimensional training data. In addition, the 
number of center points in traditional RBFs equals that of training samples, and it makes network overly complex. In this case, it 
leads to an overfitting problem of neural networks, which results in low prediction accuracy [35]. This work proposes an IRBF as 
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a surrogate model to solve this problem. We extract characteristics of data to construct neural networks for simplifying a network 
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Fig. 1. Structure of SAE.

structure. To realize it, K-means clustering is widely adopted in data mining and compression. Given a set of data points and 
the number (𝐾) of clusters, according to a specific distance function, the K-means algorithm divides data points into 𝐾 clusters 
repeatedly. It has advantages of fast convergence and strong local search ability [36]. In our structure, we take its advantages to 
select centers of a basis function, which locate important areas of an input space after the clustering, and improve prediction accuracy 
of the model. The number of center points in RBF is significantly reduced by the K-means algorithm, the model structure is simplified 
and it results to less training time.

However, the clustering result of the K-means algorithm is easily affected by initial clustering centers [37]. Different initial 
center points may cause different clustering results, and obtained results are unstable and volatile that affect prediction accuracy of 
constructed RBF. This work takes advantage of excellent global optimization ability of some metaheuristics to choose initial clustering 
centers. The goal of the metaheuristic in this problem is to find 𝐾 center points in samples to minimize the sum of distances from all 
points to a category to which they belong. Then, 𝐾 data points are initial centers of the K-means algorithm. Genetic learning particle 
swarm optimization (GLPSO) [38] is adopted in our structure. It combines PSO with GA in a cascade manner to avoid premature 
convergence of GA and enhance exploitation ability of PSO. Because of a selection operation in GA, selected particles are also of 
high quality. They can provide guidance for particles for increasing a searching rate of PSO. On the other hand, search experience of 
PSO provides promising information back to GA which helps GA to yield better solutions. In this way, GLPSO achieves high global 
optimization ability and robust performance.

Based on above analysis, we integrate GLPSO and the K-means algorithm work in a cascade manner. Specifically, GLPSO first 
finds initial clustering centers for the K-means algorithm, which divides a training dataset into 𝑚 groups, and 𝑚 equals the number of 
basis function centers. Then, RBF is built based on chosen center points. Fig. 2 shows a construction process of IRBF. The cooperation 
of GLPSO and the K-means algorithm chooses proper centers of RBF, which leads a model to have less training time and better 
prediction accuracy. In addition, IRBF is trained only when enough data is collected to ensure its accuracy. Before training IRBF, 
all positions and fitness values of individuals are collected. Then, IRBF is trained based on the collected data. The pseudo code of

IRBFtraining is shown in Algorithm 3 where 𝑝𝑖=[𝑝𝑖,1, 𝑝𝑖,2, ⋯ , 𝑝𝑖,𝐷] denotes the locally best position of particle 𝑖, and 𝑔=[𝑔1, 𝑔2, ⋯ , 𝑔𝐷]
denotes the globally best position of the population. Besides, 𝑣𝑖=[𝑣𝑖,1, 𝑣𝑖,2, ⋯ , 𝑣𝑖,𝐷] and 𝑥𝑖=[𝑥𝑖,1, 𝑥𝑖,2, ⋯ , 𝑥𝑖,𝐷] represent the velocity and 
position of particle 𝑖.

3.4. Self-adaptive TLBO with improved RBF and SAE

At the beginning of STORA, a population 𝑃 is initialized randomly in a decision space by Latin hypercube sampling (LHS) [39] for 
well covering a search space. Then, several generations of evolution are carried out by STLBO to collect data samples for training of 
SAE. Once a preset condition is reached, SAE is constructed based on accumulated data samples. After SAE training, a population is 
split into two sub-populations (𝑃1 and 𝑃2) with a dynamic population allocation strategy introduced next. Then, 𝑃1 and 𝑃2 coevolve 
in a distributed manner to ensure diversity. 𝑃1 is assisted by SAE to find promising solutions rapidly and 𝑃2 is guided by STLBO 
(possibly assisted by IRBF) in an original space. The diversity of a population helps STORA to jump out of local optima that are 
imperative to an optimization process.

In SAE-assisted STLBO, 𝑃1 is first encoded by trained SAE into a lower-dimensional space. Then, STLBO is adopted to generate 
offspring. Individuals have higher possibility to find promising offspring in a relatively low-dimensional space to speed up 
optimization. Due to dimensional mismatch, FEs cannot be completed in a low-dimensional space. After a decoding phase of the 
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SAE, a population is in an original and high-dimensional space, its individuals can be directly evaluated by a fitness function. Finally, 
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Fig. 2. Construction process of IRBF.

new 𝑃1 is updated for the next generation. Furthermore, in IRBF-assisted STLBO, to ensure accuracy of IRBF, a training process of IRBF 
is only activated after enough samples are collected. 𝑃2 evolves with STLBO before the activation of IRBF. In addition, all positions 
and their fitness values in previous iterations are stored in a database for later training of IRBF. Once an activation condition is met, 
IRBF is trained based on collected data samples, and it is adopted to prescreen individuals in the rest of an optimization process. After 
STLBO generates the offspring, positions of the offspring are input of IRBF that outputs predicted fitness values of those individuals. 
Furthermore, to ensure search accuracy, some individuals still need to be selected for true model evaluation. In STORA, individuals 
are sorted based on their predicted fitness values, the top 𝑀 individuals are selected for the true model evaluation because they have 
higher possibility to find optima quickly. Then, new 𝑃2 is updated for the next generation. New 𝑃1 and 𝑃2 are combined together 
to form a new population 𝑃 after each iteration. The whole process continues until a termination condition is met. The flowchart 
of STORA is shown in Fig. 3 and its pseudo code is shown in Algorithm 4. Here, SAEtraining(⋅) and IRBFtraining(⋅) denote a 
training process of SAE and IRBF, respectively. In addition, encode(⋅) and decode(⋅) denote encoding and decoding phases of SAE, 
respectively. Finally, STLBO(⋅) means a process of generating offspring.

3.5. Dynamic population allocation strategy

A dynamic population allocation strategy mainly includes two parts. The first one determines the number of individuals in each 
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sub-population, which is called dynamic adjustment. The second one determines selected individuals assigned to each sub-population. 
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Algorithm 3 IRBF training.

Input: Training database (𝐵): a set of fitness values of all particles (ϝ) and a set of positions of all particles (𝑃 ), maximum number of iterations in GLPSO (𝑡2), 
maximum number of iterations in K-means (𝑡3), inertia weight (𝜔), stopping gap (𝑠𝑔), accelerate coefficient (𝑐), and mutation rate (𝑝𝑚)

Output: Trained IRBF model (𝛾): basis function center (𝐶) and weight of output layer (Θ)

1: while 𝑡2≤𝑡2 do

2: Evaluate a fitness value of each particle in 𝑃
3: for 𝑖=1∶𝑚 do

4: for 𝑑=1∶𝐷 do

5: Randomly select a particle 𝑘∈{1, 2, ⋯, 𝑚}
6: if 𝑓 (𝑝𝑖)<𝑓 (𝑝𝑘) then

7: 𝑜𝑖,𝑑=𝑟𝑑 ⋅ 𝑝𝑖,𝑑+(1−𝑟𝑑 )⋅𝑔𝑑
8: else

9: 𝑜𝑖,𝑑=𝑝𝑘,𝑑
10: end if

11: if rand(0, 1)<𝑝𝑚 then

12: 𝑜𝑖,𝑑=rand(�̌�𝑑 , ̂𝑏𝑑 )
13: end if

14: end for

15: if 𝑓 (𝑜𝑖)<𝑓 (𝑒𝑖) then

16: 𝑒𝑖=𝑜𝑖
17: end if

18: if 𝑓 (𝑒𝑖) ceases improving for 𝑠𝑔 generations then

19: Select 𝑒𝑗 by %20N tournament

20: 𝑒𝑖=𝑒𝑗
21: end if

22: for 𝑑=1∶𝐷 do

23: 𝑣𝑖,𝑑=𝜔⋅𝑣𝑖,𝑑+𝑐⋅𝑟𝑑 ⋅(𝑒𝑖,𝑑−𝑥𝑖,𝑑 )
24: 𝑥𝑖,𝑑=𝑥𝑖,𝑑+𝑣𝑖,𝑑
25: end for

26: Select and update 𝑝𝑖 and 𝑔
27: end for

28: 𝑡2=𝑡2+1
29: end while

30: Adopt 𝑔 as initialize centers of K-means

31: while 𝑡3≤𝑡3 do

32: Assign each point to a cluster to which it is closest based on the Euclidean distance

33: Update a center of each cluster

34: 𝑡3=𝑡3+1
35: end while

36: Adopt the clustering result as a basis function center 𝐶
37: Calculate an activation function value matrix 𝐹 of the population with (3)

38: Calculate the weight of output layer Θ=𝐹−1ϝ

39: Return 𝛾

Each individual is allocated to a unique sub-population based on their fitness value, and the number of finished iteration in a 
dynamic manner. At beginning of evolution, STORA aims to locate promising areas quickly. A sub-population 𝑃1 is assisted by SAE 
that compresses an original decision space to a reduced one, which is beneficial to explore a promising region. As a result, more 
individuals are assigned to 𝑃1 at beginning. On the other hand, as promising areas are gradually explored, further compression to 
lower dimensions may lose important area information and affect optimization accuracy. Accordingly, a sub-population 𝑃2 evolves at 
an original space (possibly helped by IRBF) have more assigned individuals. As a result, the number of individuals in 𝑃1 decreases and 
that of 𝑃2 increases as the number of iterations increases. The individuals with worse fitness values are assigned to 𝑃1 because they 
are difficult to evolve towards promising areas due to a high-dimensional search space. However, they may have higher possibility to 
produce better offspring in a compressed space. Two sub-populations are combined to a whole population again after each iteration. 
Details of dynamic adjustment are given as:

𝑃1=𝑃 ⋅
(
𝑡5−𝑡5
𝑡5

)3

𝑃2=𝑃−𝑃1

(13)

where 𝑡5 is the number of maximum iterations for STORA and 𝑡5 is the current iteration number. ( 𝑡5−𝑡5
𝑡5

)3 controls a decreasing rate 
of 𝑃1 for SAE, and an increasing rate of 𝑃2 for IRBF. Then, more individuals are assigned to 𝑃2 in a later stage to further exploit more 
promising areas.

3.6. Computational complexity

Total computation expense (𝑇 ) of STORA is given as:

𝐼∑
𝑖

471

𝑇=𝑇𝑆𝐴𝐸+𝑇𝐼𝑅𝐵𝐹+𝑇𝐹𝐸𝑠⋅𝐹𝐸𝑠+
𝑖=1
𝑆𝑇𝐿𝐵𝑂 (14)
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Fig. 3. Framework of STORA.

where 𝑇𝑆𝐴𝐸 denotes training time of SAE and 𝑇𝐼𝑅𝐵𝐹 denotes that of IRBF. 𝑇𝐹𝐸𝑠 denotes time for each FE and 𝐹𝐸𝑠 denotes total 
number of FEs. 𝐼 denotes maximum number of iterations for STLBO, and 𝑆𝑇𝐿𝐵𝑂𝑖 denotes time of STLBO in iteration 𝑖.

The computing complexity of STORA is given as follows. The complexity of SAE training is 𝑂(𝑞𝐷𝐸), where 𝐸 denotes the number 
of epochs. The complexity of IRBF training comprises the complexity of GLPSO, K-means and RBF. The complexity of GLPSO is 
𝑂[(𝐷+𝑁)⋅𝑡2], and that of K-means is 𝑂(𝑝𝑚𝑡3). The complexity of RBF is 𝑂(𝑝). 𝑝 is much larger than 𝐷 or 𝑡2, and therefore, the overall 
complexity of IRBF is mainly determined by that of K-means, i.e., it is 𝑂(𝑝𝑚𝑡3). The complexity of generating offspring with STLBO 
is 𝑂(𝐼𝐷𝑁). Besides, sub-populations 𝑃1 and 𝑃2 co-evolve in a parallel way. According to above analysis, the complexity of STORA is 
𝑂(𝐼𝐷𝑁)+𝑂(𝑞𝐷𝐸+𝑝𝑚𝑡3).

It is worth noting that STORA adopts two neural networks (a sparse autoencoder and a radial basis function model). Although 
this work adopts a sparse autoencoder and an improved radial basis function model for reducing training time, they still need time 
for training, which inevitably increases time overhead of STORA. Moreover, it is shown that time complexity is higher than that of 
traditional evolutionary algorithms or swarm intelligence ones. As a result, when STORA is applied in real applications, it needs to 
be deployed in high-performance base stations to exert advantages of STORA.

4. Experimental results and discussion

4.1. Benchmark functions and comparative experiments

We compare STORA with two SI algorithms (TLBO [18] and GWO [8]) and one recently proposed algorithm (SAEO [10]), which 
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is suitable to solve high-dimensional problems. We choose eight different benchmark functions adopted by many researchers [40]. 
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Algorithm 4 STORA.

Input: Maximum iterations of STLBO for SAE (𝑡4), maximum number of iterations in STORA (𝑡5), database to train SAE (𝐵1), database to train IRBF (𝐵2), ̂𝑡2 , ̂𝑡3 , 𝜔, 𝑠𝑔, 
𝑐, 𝑝𝑚 and 𝑀
Output: 𝑥𝑏𝑒𝑠𝑡 and 𝑓𝑏𝑒𝑠𝑡
1: Initialize 𝑃 , 𝐵1=∅, and 𝐵2=∅
2: while 𝑡4≤𝑡4 do

3: 𝑃 ′ =STLBO(𝑃 )
4: Evaluate a fitness value of each individual in 𝑃 ′

5: 𝐵1=𝐵1∪𝑃 ′

6: Select 𝑃 ′ as 𝑃 for the next generation

7: 𝑡4=𝑡4+1
8: end while

9: 𝑆 = SAEtraining(𝐵1)
10: while 𝑡5≤𝑡5 do

11: Split 𝑃 into 𝑃1 and 𝑃2 according to a dynamic population allocation strategy

12: 𝑃1 = encode(𝑆, 𝑃1)
13: 𝑃1

′
= STLBO(𝑃1)

14: 𝑃1
′ = decode(𝑆, 𝑃1′)

15: Select 𝑃1′ as 𝑃1 for the next generation

16: if an activation condition of IRBF is not met then

17: 𝑃 ′
2 = STLBO(𝑃2)

18: Evaluate a fitness value of each individual in 𝑃 ′
2

19: 𝐵2=𝐵2∪(𝑓 (𝑃 ′
2 ), 𝑃 ′

2 )
20: Select 𝑃2′ as 𝑃2 for the next generation

21: 𝑡5=𝑡5+1
22: else

23: 𝛾=IRBFtraining(𝐵2 , ̂𝑡2 , ̂𝑡3 , 𝜔, 𝑠𝑔, 𝑐, 𝑝𝑚)
24: 𝑃 ′

2 = STLBO(𝑃2)
25: 𝑓 (𝑃 ′

2 )= IRBFpredict(𝛾, 𝑃 ′
2 )

26: Sort individuals in 𝑃 ′
2 by their predicted fitness values in an ascending order

27: Select top 𝑀 individuals for true model evaluations

28: Select 𝑃2′ as 𝑃2 for the next generation

29: 𝑡5=𝑡5+1
30: end if

31: 𝑃=𝑃1∪𝑃2
32: Update 𝑓𝑏𝑒𝑠𝑡 and 𝑥𝑏𝑒𝑠𝑡
33: end while

34: Return 𝑓𝑏𝑒𝑠𝑡 and 𝑥𝑏𝑒𝑠𝑡

They include unimodal and multimodal functions with dimensions of 100 and 200. Details of benchmark functions are shown in 
Table 2. For benchmark algorithms, the population size is set to 50 and the number of re-evaluation in SAEO is set to five. For each 
benchmark function, 30 independent runs are performed and we record the best, the worst, the average values, and the standard 
deviations of optimal solutions. Moreover, a non-parametric statistical test (Wilcoxon-ranked sum test) is performed to prove that 
there are significant differences among STORA and compared algorithms. To be specific, each algorithm is statistically compared 
with STORA with a significance level of 0.05, i.e., 𝛼 = 0.05. Besides, the logical p-value of 1 represents that STORA is significantly 
different from compared algorithms. The calculated p-value of each compared algorithm is shown in the supplementary file. For 
STORA, its population size is set to 50. 𝑡2 and 𝑡3 are both set to 100. 𝑡4 and 𝑡5 are set to 50 and 1000, respectively. 𝐴1 and 𝐴2 are 
set to 0.8 and 0.7, respectively. ℎ is set to 50. Parameters of GLPSO are set as suggested in [38], 𝜔=0.7298, 𝑠𝑔=7, 𝑐 = 1.49618 and 
𝑝𝑚=0.01. 𝑚 is set to 125, and 𝑀 is set to five. IRBF is activated when 500 FEs are executed as recommended in [41] to balance 
training time and accuracy of IRBF. Moreover, sensitivity analysis of 𝐴1, 𝐴2 and 𝑚 are discussed in the supplementary file. All these 
algorithms are implemented in a computer with an Intel(R) Core(TM) i7 CPU 10750H at 2.60 GHz with 16 GB of RAM.

4.2. Experimental results

Table 3 provides statistical results of F1, F3, F5 and F6 after 1000 iterations with 100-D cases and Fig. 4 shows corresponding 
convergence curves. F2, F4, F7 and F8 with 100-D problems are shown in Fig. 1 and Table 1 in the supplementary file. It is shown that 
STORA’s final fitness value is the least among these algorithms. Moreover, p-values for all compared algorithms are all one, which 
proves that STORA is significantly different from them. As for unimodal problems, e.g., F1 in Fig. 4(a), STORA has faster optimization 
speed and better search result after 1000 iterations than other algorithms because of better exploration ability of STLBO and usage of 
SAE. Search results of GWO and TLBO are worse for F3 due to complexity of a high-dimensional space in Fig. 4(b). Compared with 
GWO and TLBO, SAEO can further explore the search space. However, STORA has better search performance over SAEO. Results of 
F2 and F4 have similar trend. For multimodal problems, e.g., F5 in Fig. 4(c), TLBO and SAEO both find global optima due to great 
performance of TLBO. Among three algorithms including TLBO, SAEO, and STORA, STORA still has the steepest slope on its iterative 
curve. For F6 in Fig. 4(d), STORA rapidly converges to high-quality solutions within fewer iterations and it further exploits a search 
space to find better solutions. As shown in Table 3, STORA achieves better average results for all benchmark functions. In addition, 
standard deviation of STORA is particularly small, which indicates that STORA has stable performance and great robustness. Thus, 
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STORA achieves the best search result for 100-D problems over other algorithms.
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Table 2

Benchmark functions.

Functions 𝐷 Range Property 𝑓

F1(𝑥)=
𝑁∑
𝑖=1

(|𝑥𝑖+0.5|)2 100 [−100,100] Unimodal 0

F2(𝑥)=
𝑁∑
𝑖=1

|𝑥𝑖|+ 𝑁∏
𝑖=1

|𝑥𝑖| 100 [−10,10] Unimodal 0

F3(𝑥)=max𝑖{|𝑥𝑖|,1≤𝑖≤𝑁} 100 [−100,100] Unimodal 0

F4(𝑥)=

(
𝑁∑
𝑖=1
𝑖𝑥4
𝑖

)
+random[0,1) 100 [−1.28,1.28] Unimodal 0

F5(𝑥)=
𝑁∑
𝑖=1

[𝑥2
𝑖
−10cos(2𝜋𝑥𝑖)+10] 100 [−5.12,5.12] Multimodal 0

F6(𝑥)=−20exp

⎛⎜⎜⎝−0.2
√

1
𝑁

𝑁∑
𝑖=1
𝑥2
𝑖

⎞⎟⎟⎠−exp

(
1
𝑁

𝑁∑
𝑖=1

cos(2𝜋𝑥𝑖)

)
+20+𝑒 100 [−32,32] Multimodal 0

F7(𝑥)= 1
4000

𝑁∑
𝑖=1
𝑥2
𝑖
−
∏𝑁

𝑖=1 cos
(
𝑥𝑖√
𝑖

)
+1 100 [−600,600] Multimodal 0

F8(𝑥)=418.9829𝐷−
𝑁∑
𝑖=1
𝑥𝑖𝑠𝑖𝑛

√|𝑥𝑖| 100 [−500,500] Multimodal 0

Table 3

Results of F1, F3, F5 and F6 with 100-D problems.

Functions Algorithms Best Mean Worst Std p-value

F1 STORA 1.96×10−271 𝟏.𝟗𝟎×𝟏𝟎−𝟐𝟔𝟗 9.98×10−268 2.61×10−270 N/A

SAEO 5.26×10−182 2.13×10−179 6.62×10−176 7.96×10−179 1

GWO 5.32×10−35 1.53×10−34 4.36×10−34 6.64×10−34 1

TLBO 1.11×10−168 3.73×10−166 9.67×10−158 2.62×10−165 1

F3 STORA 1.36×10−133 𝟑.𝟐𝟐×𝟏𝟎−𝟏𝟑𝟏 7.32×10−130 3.22×10−130 N/A

SAEO 3.26×10−26 3.12×10−25 5.52×10−23 2.35×10−25 1

GWO 0.11×10+00 0.25×10+00 0.88×10+00 0.63×10+00 1

TLBO 1.16×10+00 9.65×10+00 3.46×10+01 2.63×10+01 1

F5 STORA 0.00×10+00 𝟎.𝟎𝟎×𝟏𝟎+𝟎𝟎 0.00×10+00 0.00×10+00 N/A

SAEO 0.00×10+00 𝟎.𝟎𝟎×𝟏𝟎+𝟎𝟎 0.00×10+00 0.00×10+00 1

GWO 1.12×10−13 1.36×10−13 3.11×10−13 1.93×10−13 1

TLBO 0.00×10+00 𝟎.𝟎𝟎×𝟏𝟎+𝟎𝟎 0.00×10+00 0.00×10+00 1

F6 STORA 1.26×10−15 𝟐.𝟒𝟔×𝟏𝟎−𝟏𝟓 5.31×10−15 1.46×10−15 N/A

SAEO 3.25×10−15 8.99×10−15 9.34×10−15 2.61×10−15 1

GWO 2.38×10−14 3.41×10−14 6.27×10−14 3.61×10−14 1

TLBO 8.26×10−15 9.78×10−15 9.99×10−15 2.31×10−15 1

For 200-D problems, this work selects two unimodal problems (F2 and F3) and two multimodal problems (F6 and F8). Final 
statistical results and convergence curves of F3 and F8 are shown in Table 4 and Fig. 5, respectively. F2 and F6 with 200-D problems 
are shown in Fig. 2 and Table 2 in the supplementary file. Final results on p-value for all compared algorithms are all one, which 
proves that STORA is significantly different from them in 200-D problems. Moreover, final results on all algorithms are influenced by 
the increase of dimensions except STORA for F3. It is worth noting that STORA’s performance is better for F3 with 200-D than that 
for F3 with 100-D. The reason is that SAE extracts more useful features of a 200-D search space, and better guides STORA to further 
explore it. Fig. 5(a) shows that benchmark algorithms cannot well explore a high-dimensional search space for F3, yet STORA shows 
the best performance on this problem. For F2, STORA has faster optimization speed and better search result than other benchmark 
algorithms. For F6, STORA further exploits a high-dimensional search space to find better solutions, and it also converges faster than 
benchmark algorithms. For F8 in Fig. 5(b), TLBO and GWO trap into local optima in an early stage due to a high-dimensional search 
space. SAEO and STORA maintain their performance because of AE. However, STORA still has faster convergence speed and better 
search results than SAEO. This is mainly caused by efficiency of SAE and exploitation ability of STLBO.

4.3. Effectiveness of IRBF

IRBF prescreens fitness values of individuals, and avoids unnecessary FEs to save more computational resources especially for 
those problems that have optimization potentials. This is significant to computationally expensive optimization problems. To verify 
effectiveness of IRBF, we show results of STORA and TLBO under the same computational resources (1000 FEs) for one unimodal 
problem (F2) and one multimodal problem (F6), which have different characteristics. Other results on benchmark functions show 
similar phenomenon.

Fig. 6 shows results after activation of IRBF when 500 FEs are performed. It is shown that STORA has faster optimization 
speed than a case when 500 FEs are not reached. This is because some unnecessary FEs are saved for STLBO to further explore 
474

a high-dimensional search space. In addition, prediction accuracy of surrogate models is important. Large prediction errors lead to 
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Fig. 4. Results of F1, F3, F5 and F6 with 100-D problems.

wrong individuals evaluated by the true model that influences accuracy of final search results. Moreover, if training time of surrogate 
models is too long, their use becomes meaningless. As a result, we compare prediction accuracy and training time of IRBF, RBF and 
other three common surrogate models including back propagation neural network (BPNN) [42], SVM [43], RF [44] under the same 
circumstance. We adopt the mean-square error (MSE) and the mean absolute error (MAE) to measure their prediction error, defined 
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as:
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Fig. 5. Results of F3 and F8 with 200-D problems.

Table 4

Results of F3 and F8 with 200-D problems.

Functions Algorithms Best Mean Worst Std p-value

F3 STORA 1.23×10−153 𝟑.𝟔𝟐×𝟏𝟎−𝟏𝟓𝟑 5.01×10−153 1.61×10−153 N/A

SAEO 9.66×10−13 1.97×10−10 3.78×10−09 9.93×10−10 1

GWO 1.13×10+01 1.89×10+01 2.32×10+03 5.67×10+01 1

TLBO 4.24×10+02 5.97×10+02 8.47×10+02 7.78×10+02 1

F8 STORA 2.15×10−15 𝟔.𝟗𝟑×𝟏𝟎−𝟏𝟓 7.73×10−15 6.47×10−16 N/A

SAEO 9.22×10−15 7.11×10−14 9.36×10−14 2.24×10−15 1

GWO 1.99×10+01 2.14×10+01 2.45×10+01 1.17×10−01 1

TLBO 1.98×10+01 2.11×10+01 2.94×10+01 1.37×10−02 1

MSE=1
𝑛

𝑛∑
𝑖=1

(𝑥𝑖−𝑥𝑖)2

MAE=1
𝑛

𝑛∑
𝑖=1

||𝑥𝑖−𝑥𝑖||
(15)

where 𝑥𝑖 denotes an actual fitness value of individual 𝑖 calculated by a true model, and 𝑥𝑖 denotes its predicted fitness value. 𝑛
denotes the number of predicted values by IRBF. Besides, smaller metrics indicate better prediction accuracy.

Table 5 shows that IRBF has the shortest training time especially compared with traditional RBF and BPNN. This is because the 
K-means algorithm reduces the number of centers of basis functions. Thus, the structure of the neural network is greatly simplified 
to significantly reduce training time of IRBF. Furthermore, RBF and BPNN choose each known sample in the training dataset as a 
center point, which leads a network overly complex and causes a problem of overfitting. Thus, RBF and BPNN have lower prediction 
accuracy than IRBF. GLPSO cooperates with the K-means algorithm locates centers of basis functions in promising areas of training 
data, which helps to enhance prediction ability of IRBF. The comparison of prediction results of different models demonstrates that 
prediction error of IRBF is the best among these methods.

4.4. Real-world computation offloading problem

We apply STORA to solve a real-world computation offloading problem in mobile edge computing [45]. This problem considers to 
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migrate a part of data processing of mobile applications from resource-constrained smart mobile devices (SMDs) to high-performing 
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Fig. 6. Effectiveness of IRBF in TLBO and STORA.

Table 5

Statistical results of surrogate models.

Functions Surrogate models MSE MAE Time

F2 IRBF 𝟐.𝟐𝟑𝟎𝟕×𝟏𝟎−𝟏𝟑 𝟒.𝟕𝟐𝟑𝟎×𝟏𝟎−𝟎𝟕 3.21

RBF 8.0570×10−11 8.9761×10−06 13.65

BPNN 8.8152×10−05 9.4632×10−03 15.69

RF 8.6475×10−05 9.3243×10−03 7.24

SVM 2.5952×10−05 5.1362×10−03 4.59

F6 IRBF 𝟏.𝟒𝟕𝟏𝟗×𝟏𝟎−𝟎𝟖 𝟑.𝟖𝟑𝟔𝟓×𝟏𝟎−𝟎𝟑 2.85

RBF 1.8182×10−03 1.4723×10−01 14.29

BPNN 3.7012×10−01 6.0842×10−01 18.63

RF 2.2747×10−02 1.5082×10−01 6.41

SVM 2.0841×10−05 4.6219×10−03 5.76

platforms in a network edge, which is known as computation offloading [46]. Therefore, the network edge can share part of 
computational pressures to enhance capabilities of SMDs. Furthermore, this problem focuses on applications that support data 
partitioning where the amount of data to be processed is known beforehand, e.g., virus scan applications. In addition, this problem 
assumes that data of applications in SMDs can be partitioned into any size of subsets. Optimized decision variables include a 
computational speed of each SMD, its data transmission power, and task offloading ratio. Moreover, constraints include maximum 
latency for executing applications, maximum transmission power and maximum computational speed of each SMD. The objective of 
the problem is to minimize total energy consumed by all SMDs and edge servers while guaranteeing above-mentioned constraints for 
prolonging battery life. It is worth noting that this problem is a high-dimensional and single-objective problem that is fit for STORA. 
A constrained mixed-integer nonlinear program is formulated. A penalty function method is used to handle these constraints and 
integrate them into an unconstrained optimization problem. Each constraint is transformed into a non-negative penalty. For example, 
zero penalty means all the constraints are strictly met. Parameter setting of the problem is the same as that in [45].

We compare STORA with GWO, TLBO, SAEO and GLPSO by applying them to solve the real-world optimization problem. Fig. 7

shows their total energy consumption curves. It shows that total energy consumption of STORA is the least among all algorithms. In 
addition, STORA needs less than 150 iterations to converge to its final value, which is faster than its compared algorithms. Fig. 8

shows their final energy consumption given different numbers of SMDs. It is shown that total energy consumption of all algorithms 
increases with the number of SMDs. Among all algorithms, STORA achieves the least energy consumption as the number of SMDs 
increases. Fig. 9 shows their final energy consumption with different distances between each SMD and its nearest edge server. It 
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is shown that final energy consumption of STORA is still the least among all algorithms as distances increase. Fig. 10 presents 
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Fig. 7. Energy consumption in each iteration for each algorithm.

Fig. 8. Energy consumption v.s. number of SMDs for each algorithm.

Fig. 9. Energy consumption v.s. distance for each algorithm.

comparison of penalty values of STORA and its peers. It is shown that penalty of STORA is quite small at beginning and it keeps 
the least during iterations. Furthermore, final penalty of STORA is zero, which proves that STORA produces a high-quality solution 
meeting all constraints in this problem. Fig. 11 shows final energy consumption of each SMD, which is a function of 𝜆 under several 
simulation settings. The minimum energy consumption can be obtained by adjusting 𝜆 and the final values of 𝜆 under different 
conditions are all 0.6. Moreover, Fig. 12 shows final energy consumption of STORA given different numbers of SMDs and values of 
maximum latency (𝐿𝑚𝑎𝑥). It demonstrates that STORA always finds final solutions under different latency requirements.

5. Conclusions

This work proposes a novel Self-adaptive Teaching-learning-based Optimizer with an improved Radial basis function model and a 
sparse Autoencoder (STORA) for high-dimensional problems. First, to trade off exploration and exploitation abilities, a Self-adaptive 
Teaching-Learning-Based Optimizer (STLBO) is designed to adjust parameters in a search process. Second, a sparse autoencoder 
(SAE) is adopted to speed up optimization in a high-dimensional space and give more possibility to worse individuals evolving 
towards promising areas. Third, an Improved Radial Basis Function model (IRBF) is designed as a surrogate model to find better 
solutions with fewer computing resources and less training time. Then, a dynamic population allocation strategy is designed to 
enhance integration of SAE and IRBF for improved performance of STORA. Finally, STORA is compared against its state-of-the-art 
peers on eight high-dimensional benchmark functions. Experimental results demonstrate that STORA yields the best search results 
with the least time among all compared algorithms. Furthermore, we apply STORA to solve a real-world computation offloading 
problem in mobile edge computing, and results demonstrate that STORA yields higher-quality solutions meeting all constraints than 
478

its typical peers. Our next work will extend it to solve many-objective optimization high-dimensional problems with discrete and 
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Fig. 10. Penalty in each iteration for each algorithm.

Fig. 11. Energy consumption v.s. 𝜆 of STORA.

Fig. 12. Energy consumption with different values of 𝐿𝑚𝑎𝑥 and numbers of SMDs of STORA.

continuous parameters. In addition, other advanced surrogate models can be applied to better solve these problems, thus further 
improving performance of STORA.
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