356 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.8, NO.3, MAY/JUNE 2015

Time-Aware Service Recommendation
for Mashup Creation

Yang Zhong, Yushun Fan, Keman Huang, Member, IEEE,
Wei Tan, Senior Member, IEEE, and Jia Zhang, Member, IEEE

Abstract—Web service recommendation has become a critical problem as services become increasingly prevalent on the Internet.
Some existing methods focus on content matching techniques, while others are based on QoS measurement. However, service
ecosystem is evolving over time with services publishing, prospering and perishing. Few existing methods consider or exploit the
evolution of service ecosystem on service recommendation. This paper employs a probabilistic approach to predict the popularity of
services to enhance the recommendation performance. A method is presented that extracts service evolution patterns by exploiting
latent dirichlet allocation (LDA) and time series prediction. A time-aware service recommendation framework is established for mashup
creation that conducts joint analysis of temporal information, content description and historical mashup-service usage in an evolving
service ecosystem. Experiments on a real-world service repository, ProgrammableWeb.com, show that the proposed approach leads
to a higher precision than traditional collaborative filtering and content matching methods, by taking into account temporal information.

Index Terms—Service recommendation, service ecosystem, time-aware, mashup creation, latent dirichlet allocation

1 INTRODUCTION

ITH the wide adoption of service-oriented architec-
ture and cloud computing [28], the number of web
services (nowadays usually in the form of web APIs) pub-
lished on the Internet has been rapidly growing [1].
Mashup, a web application created through service compo-
sition, has become a popular technique to reuse existing
services and shorten software development cycle [2]. As a
consequence, several web service ecosystems (represented
by ProgrammableWeb.com' and myExperiment.org®) have
emerged in recent years, continuously accumulating web
services and their mashups [3], [4]. In spite of such encour-
aging facts, creating a mashup may take an inexperienced
developer a great amount of time to search in the sea of
available services in the repositories for appropriate service
components. Therefore, service discovery and recommen-
dation approach is essential to facilitate mashup developers
in locating desired services.
Most existing service recommendation methods are
based on content matching, mainly focusing on keyword
search [6], [7] and semantic-based approach [8]. However,

1. http:/ /www.programmableweb.com
2. http:/ /www.myexperiment.org

o Y. Zhong and Y. Fan are with the Department of Automation, Tsinghua
University, Beijing, China.
E-mail: zhongy12@mails.tsinghua.edu.cn, fanyus@mail .tsinghua.edu.cn.

e K. Huang is with the School of Computer Science and Technology, Tianjin
University, Beijing, China. E-mail: victoryhkm@gmail .com.

e W. Tan is with the IBM Thomas].WatsonResearch Center, Yorktown
Heights, New York, NY. E-mail: wtan@us.ibm.com.

o |. Zhang is with the Department of Electrical and Computer Engineering,
Carnegie Mellon University, Moffett Field, CA.
E-mail: jia.zhang@sv.cmu.edu.

Manuscript received 13 Oct. 2014; accepted 2 Dec. 2014. Date of publication
17 Dec. 2014; date of current version 12 June 2015.

For information on obtaining reprints of this article, please send e-mail to:
reprints.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TSC.2014.2381496

keyword search is usually inefficient while semantic-based
approach is expensive to construct in practice. A probabilis-
tic approach for service discovery based on latent dirichlet
allocation (LDA) is proposed in [9] to address the challenge.
It extracts features from WSDL documents and employs the
LDA model to characterize the latent topics between serv-
ices and user queries. In contrast to these methods consider-
ing content description, others focus on helping developers
find services meeting expected quality of service (QoS) crite-
ria. Non-functional properties of services under consider-
ation include reliability, availability, and response time. In
addition to formal QoS measurement, user-centric collabo-
rative filtering mechanism [10], [11] has also been used to
support service recommendation. For example, a hybrid
approach that combines collaborative filtering and content
matching is proposed in [12] to improve the performance of
service recommendation. Recently, some researchers also
apply social network analysis to service recommendation
[13], [14], [23] and combine service ranking with service
clustering [15].

One phenomenon that has usually been ignored in ser-
vice discovery is that, services and their mashups evolve
over time. Few existing methods consider or exploit such
temporal information (TI) for service recommendation. Our
previous work [5], [16] proposed a method based on link
prediction in a time-varying service network. This paper
takes a step further to study the evolution pattern of service
usage. Additionally, we conduct joint analysis on temporal
information, topology and content in an evolving service
ecosystem to combine their advantages to improve the rec-
ommendation precision.

Two assumptions are put forth. First, services with simi-
lar functions form a particular service domain that can be
interpreted as a specific topic. Second, developers tend to
adopt popular services in popular domains at the moment
of request. Under these two assumptions, service usage

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:26:02 UTC from IEEE Xplore. Restrictions apply.
1939-1374 © 2014 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

ZHONG ET AL.: TIME-AWARE SERVICE RECOMMENDATION FOR MASHUP CREATION 357

over time is modeled as a probabilistic generative model.
Our key idea is to represent each sliced time interval as a
“bag of services” and introduce the concept of topic
modeling to describe the relations between timestamps,
topics and services. Through parameter estimation, our
model is able to predict service usage at subsequent inter-
vals. In addition, combining with past usage and text
description of services and mashups, our model offers a
comprehensive service recommendation technique taking
into account functional requirements as well as peer expe-
rience. The main contributions of this paper are summa-
rized as follows:

1) We propose a novel service activity prediction
method based on latent dirichlet allocation, which is
capable of extracting a time sequence of topic activi-
ties and service-topic correlation matrix from service
usage history. Applying our time series prediction
method, we can forecast topic evolution and predict
service activity in the near future.

2) Combining service activity prediction with mashup-
description-based collaborative filtering (MDCEF)
and service-description-based content matching
(SDCM), we propose a time-aware service recom-
mendation framework for mashup creation in an
evolving service ecosystem.

3) Comprehensive experiments on a real-world data
set from ProgrammableWeb.com show that our
approach yields better precision by taking into
account temporal information.

The remainder of this paper is organized as follows.
Section 2 introduces a model to describe an evolving service
ecosystem and formulates the service recommendation
problem. Section 3 describes model training methods.
Section 4 presents our time-aware service recommendation
framework. Section 5 reports the experimental results.
Section 6 summarizes the related work and Section 7 con-
cludes the paper.

2 PROBLEM DEFINITION

We model an evolving service ecosystem along three
dimensions: topology, content and temporal information.

Definition 1 (Topology). The topology of a service ecosystem is
modeled in an undirected graph G = (M U S, E) where M is
the set of mashups and S is the set of services. E C M xS repre-
sents the historical composition relation between mashups and
services, i.e., if a mashup invokes a service, there exists a rela-
tion between them.

Definition 2 (Content). Every mashup m comprises a collection
of words MW(m) to describe its functions. Similarly, each ser-
vice s is associated with a collection of words SW (s) to describe
its functions.

Definition 3 (Temporal Information). Given a sequence of
timestamps with a particular time granularity (e.g., day, week,
month) TG = {1,2,...t}, the service usage history in an
evolving service ecosystem is described in a set of ordered tri-
ples H = {(s,m,t)|s € S,m € M,t € TG}, in which (s,m,t)
indicates that service s is invoked by mashup m at time marked
by timestamp t.

Ranked List of Services

User Queries s
|

Similar Compositions

Integrate
| SDCM | | MDCF | &
ic Similarity | Recommend
—
| Content | -
fon, | i — -~ T
P“ﬂh‘ s i \ \‘>.] Functional |
1 /\)\/ff |Requirement | ‘
| LS
X "
@) -
; Vi \' [’ﬁ-éné-il"
- w / Requirement |
Content -|_' ———— g
1“’2- : Legend |’_“ Service :] Mashup

Fig. 1. Overview of time-aware service recommendation framework.

A service ecosystem is dynamic in nature, i.e., with inter-
actions between mashups and services evolving over time.
Unlike the static topological view of G, H takes such evolu-
tion into account. Based on the 3-dimensional service eco-
system definitions, we formulate the problem of service
recommendation for mashup creation as follows:

Problem 1 (Time-aware Service Recommendation for
Mashup Creation). Given past mashup-service usage with
timestamps and text description about mashups and services
in an evolving service ecosystem, for a new required mashup at
the moment with user queries as a collection of words, a ranked
list of services will be recommended to the requesting user.
Services with higher rank in the list should have higher proba-
bility to be adopted by the user than others with lower ranks.

The mashup creation problem is thus turned into the
ranked recommendation list generation problem. Hence
we propose a time-aware service recommendation frame-
work that systematically considers temporal information,
topology and content in an evolving service ecosystem.
As shown in Fig. 1, the framework consists of three
major components: (1) temporal information extraction,
(2) mashup-description-based collaborative filtering and (3)
service-description-based content matching. The three compo-
nents offer advice on service recommendation from dif-
ferent perspectives.

TI exploits service usage history to predict service
activity in the near future. It offers popularity scores of
services in recent time frame regardless of functional
requirements of individual mashups. Complementary to
TI, MDCF and SDCM score the relevance of services
against functional requirements of the required mashup.
Particularly, MDCF recommends services based on histor-
ical mashups with similar functional requirements; SDCM
calculates content similarity between the functional
requirements of the new required mashup and the con-
tent description of services. All scores will be integrated
to generate the recommended list of services for the
required mashup.

We will discuss the three components in details in the
next section, and the time-aware service recommendation
framework will be presented in Section 4.

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:26:02 UTC from IEEE Xplore. Restrictions apply.

358 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.8, NO.3, MAY/JUNE 2015

TABLE 1
Notations Used in This Model
Symbol Description
T Number of topics
] Number of services
ITG| Number of timestamps
|ST3| Number of service tokens in timestamp #
ST Vector form of all service tokens
Sti The ith service token in timestamp ¢
Zi Topic assigned to sy
0, The parameters of multinomial distribution
over topics specific to timestamp ¢
¢. The parameters of multinomial distribution
over services specific to topic z
a, B The parameters of Dirichlet priors to the

multinomial distribution 6, and ¢,

3 MODEL FRAMEWORK

In this section, we will describe the construction of the three
components in our approach: TI, MDCF and SDCM.

3.1 Temporal Information Extraction

The objective of TI is to predict service activity in the near
future based on service usage history. Directly predicting
service activity at the service level will encounter the sparse-
ness problem, since the reuse rate of most services is very
low [23]. Instead, we propose to predict service activity at
the topic level to alliveate the sparseness issue.

3.1.1 Model of Service Usage History

One fundamental assumption to model service usage his-
tory is that users tend to consume popular services in popu-
lar service domains at the moment of request. Based on this
assumption, we apply an idea similar to topic modeling and
analyze the service usage history in a probabilistic manner.
Specifically, service domains are viewed as latent topics,
thus the concepts of latent dirichlet allocation [17] can be
employed to model the generative process of service usage
over time. Table 1 summarizes the notations that we use in
this model.

As a preliminary step, we retrieve a collection of service
tokens that are consumed at timestamp ¢ from H and denote
it as ST;. For example, if a mashup m is created at timestamp
t that consists of two services s; and s,, then we add s; and s,
into ST;.

The graphical model of temporal information extraction
is shown in Fig. 2. The generative process of service usage
history can be described as follows:

1) For each topic z = 1.T
Draw ¢, ~ Dirichlet (8)
2) For each timestamp tin TG
a) Draw 6;~ Dirichlet («)
b) For each service token s;; in ST;
Draw a topic z; ~ Multinomial (6,)
Draw a service sy ~ Multinomial (¢.,,).
According to the generative process, we define the joint
probability of service tokens ST and the set of correspond-
ing topics Z as follows:

16110

S

7
®

Fig. 2. Graphical model of temporal information extraction.

7 ST

el

5!

|
P(ST, 2|0, ¢) =

S|

T
”z n
[TTI1I# 0% M

z=1 s=1

ﬂ
Il
—_

where 7, is the number of times that topic z has been asso-
ciated with timestamp t and n. is the number of times that
service s has been generated from topic z.

By placing a Dirichlet prior o over 6 and another prior g
over ¢, we can obtain the following equation:

P(ST, ZJat, B) = / P(ST, 2,6, ¢lar, B)d6dg
- / P(ST, 2|6,) P(6]ar) P(|f)d6de
_ ﬁf@z%) I1.T(ne: +) @

i
—
®
=
L
e
3
183
Jr
Q
{_/

H F(”ZS"‘IB)
INODNISE-NN

x
Eﬂ
o)
M
F"
~—

3.1.2 Learning Algorithm

A variety of algorithms have been developed to estimate
parameters of topic models. In this paper, we apply the
Gibbs sampling [18] to infer unknown parameters {0, ¢}
mainly due to its ease of implementation. More specifically,
we begin with the posterior probability for sampling the
latent topic for each service token with flat priors

ﬁn —iti
, Y ta n +B
P(Zt7:|Zﬁ1‘/7,7 ST) I f ti tiSti

Z (n;’z + (X)) Z (n;ltzs + ,3)

where the superscript — denotes a quantity excluding the
current instance.

We then estimate the parameters by the sampling results.
Through a similar deduction with LDA, we update the
parameters as follows:

3)

Ny, +

0, = m 4)
Nz + B

S N 5

e S et B ©

where 6;, can be interpreted as activity of topic z at time-
stamp t and ¢., represents the correlation strength between
service s and topic z. The algorithm of applying Gibbs sam-
pling to estimate parameters is listed below

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:26:02 UTC from IEEE Xplore. Restrictions apply.

ZHONG ET AL.: TIME-AWARE SERVICE RECOMMENDATION FOR MASHUP CREATION 359

Algorithm 1. Gibbs sampling

Input:
1) Hyper-parameters o and
2) Service tokens ST

3) Iteration number N
Output
1 Parameters estimates {6, ¢}
Procedure
01. Initialize Z randomly
02. For iter = 1:N
03. For each service token s;;
04. sample z;; according to equation (3)
05. End
06. End
07. Read out 6 according to equation (4)
08. Read out ¢ according to equation (5)

3.1.3 Service Activity Prediction

With the model learned, we can further predict service
activity through topic evolution. More specifically, {0;.},c7¢
constitute a time series for each fixed topic z. By applying a
time series prediction method to the set, activity of topic z at
time t + 1 can be forecasted. Several methods exist to solve
this problem, such as linear weighted moving average
(LWMV) [19] and auto regression [20]. In this paper,
we choose to adopt the linear weighted moving average
because of its efficiency and simplicity. Some advanced
methods such as auto regression may not be suitable here
due to the sparseness problem, since the reuse rate of most
services is very low [42].

Given a time window length [, linear weighted moving
average predicts the activity of topic z at time ¢ + 1 through
the following equation:

Oi11): = Z Aib (1102 (6)

i=1

where)\; are positive real numbers subject to the constraint
>-; A = 1. By tuning \;, we can adjust the impact of topic
activities in different past time intervals on that of future. A
reasonable policy is to place more weight on more recent
time intervals.

With topic evolution as a bridge between timestamps
and services, activity of service s at time t + 1 (popularity
score) can be calculated as follows:

T
pTI 5,1 +1 Z 0 t+1)z¢zs' (7)
z=1

3.2 Mashup-Description-Based
Collaborative Filtering

Collaborative filtering is one of the state-of-the-art methods
in the recommendation community [27]. Its basic idea is that
similar users are likely to consume similar items. Previous
works such as [10], [12] focus on application of collaborative
filtering to QoS-aware service recommendation. However, it
is often hard to obtain QoS data in reality. In contrast to exist-
ing work, we collect objective description data about mash-
ups and services to support collaborative filtering.

We propose to recommend services for a new required
mashup based on composite services in similar historical
mashups. For example, if a new required mashup m is simi-
lar to a historical mashup m" and m’ constitutes services s;
and s,, then we believe m is also likely to consume s; and s,.
Thus, the key to this component is the similarity measure-
ment. Since we leverage mashup description to calculate
the similarities between mashups, this component is named
as mashup-description-based collaborative filtering.

3.2.1 Similarity Computation

Traditional methods typically model the words descrip-
tions using the Vector Space Model (VSM), and then
adopt cosine similarity between vectors as measurement.
However, the VSM-based similarity calculation method
has an inherent drawback since it cannot capture
the semantic similarity between different words. For
example, “map” and “geology” are two frequent words
used to describe mapping-related service compositions.
Clearly, the two words are perceived to have close
semantic association, but the VSM-based method fails to
catch the semantic similarity, treating them as two inde-
pendent and different words.

To address the challenge and enhance the similarity mea-
surement, we employ the LDA model to calculate the
similarity among mashups based on their functional
requirements. LDA can capture the semantic association
between words, by introducing latent topics as a bridge
between mashup and its functional requirements. Experi-
ments on our data set with collaborative filtering show that
LDA-based method is relatively 20 percent higher than
VSM-based method in terms of precision.

Specifically, we model the generation of functional
requirements of mashups by LDA. Thus we can feed word
tokens of all mashups’ functional requirements MW into
Algorithm 1 (instead of service tokens) to get 0,,, (distribu-
tion of mashup m over topics) and ¢.,, (distribution of topic
z over words).

When a new required mashup m comes up with user
query @, its similarity with a historical mashup m, can be
calculated using the following equation:

=3 Z Ormy= B ®)

we® z=1

sim(m,m;)

The intuition behind the above equation is that, the simi-
larity between the new required mashup and historical
mashup is calculated as the likelihood of generating the cur-
rent user query according to the estimated language model
of the historical mashup, i.e., the topic distribution of the
historical mashup along with words distribution of topics.

3.2.2 Collaborative Filtering

With similarities among mashups in hand, further filtering
can be conducted.

Given a positive integer K, historical mashups whose
similarity rankings are higher than K are to be retained
while others will be filtered out. The value of K can be
set empirically and will be discussed in detail in the experi-
mental section.

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:26:02 UTC from IEEE Xplore. Restrictions apply.

360 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.8, NO.3, MAY/JUNE 2015

Once the set of most similar historical mashups are
obtained, the relevance score of services with respect to the
new required mashup m can be evaluated as follows:

rep(s,m) = sim(m, m;)I(m;, s), €
m;eU(K,m)

where U (K,m) contains the Top-K similar mashups with m;
the indicator function I(m;,s) is 1 if (m;,s) € E and 0
otherwise.

3.3 Service-Description-Based Content Matching
Different from MDCF, which recommends services based
on similar mashups, content matching directly calculates
the content similarity between the new required mashup
and services. Since we employ service description data to
calculate the content similarities between user queries and
services, this component is named as service-description-
based content matching.

Similar with [9], we model the generation of content
descriptions of services by LDA. Thus we can feed word
tokens of all services’ content descriptions SW into Algo-
rithm 1 to get 0,, (distribution of service s over topics) and
¢.,, (distribution of topic z over words).

Similar with MDCF, we measure the content similarity as
the likelihood of generating the current user query accord-
ing to the estimated language model of the service. Accord-
ingly, when a new required mashup m comes up with user
queries as a collection of word tokens, SDCM calculates the
content similarity between m and service s as follows:

T
7“(,';\1(57 m) = Z Z Os.0.-

weQ) z=1

(10)

Note that our SDCM is slightly different from [9], in that
we apply summation over queries in equation (10) instead
of multiplication in [9]. Our hypothesis is that over a large
candidate service pool, extracting feature union may yield
higher performance comparing to feature intersection.
Experimental results on our data set have demonstrated our
hypothesis. SDCM works significantly better with MDCF
than [9] with MDCEF. Details will be discussed in the experi-
mental section about Fig. 8.

4 RECOMMENDATION ALGORITHM

Based on our previously introduced components TI, MDCF
and SDCM, in this section, we show how to integrate them
to support time-aware service recommendation.

4.1 Component Integration

When a new mashup m is requested with user queries at
time t + 1, we employ the three components to provide
advice on suitability of services from different perspectives.
TI is responsible for popularity scores while MDCF and
SDCM are invoked to obtain relevance scores. By integrat-
ing the three kinds of scores through multiplication, we can
generate a new kind of score to measure the suitability of
service s as follows:

pr(s, m) = pT1(57 t+ 1)7'0F(57 7”)7'(,';\1(57 m) (11)

The rationale behind integration by multiplication, which
is equivalent to geometric mean, is that it is less sensitive to
extreme values than traditional arithmetic mean. Services
with higher integrated scores have a higher probability to
be adopted by mashup m. Therefore, we can rank and rec-
ommend a list of services for the new required mashup in a
descending order of the integrated scores.

4.2 Algorithm Design

Now we present the details of our time-aware service
recommendation algorithm for mashup creation in the fol-
lowing table:

Algorithm 2. Time-aware service recommendation

Input:
1) G:Topology model
2) ST:Service tokens of all timestamps
3) MW: Word tokens of all functional requirement
4) SW: Word tokens of all content descriptions
5) T: The number of latent topics in LDA model
6) N: The number of iterations in Gibbs sampling
7) «aand B: The prior parameters in LDA model
8) Iland)\;: Window length and weights in LWMV
9) K: Top-K similar mashups in MDCF

10 Q: User queries for new mashup m

Output:

1) LS(m): Ranked list of services for m

Procedure:

01. {6, ..} = GibbsSampling («, B, N, ST)

02. Fortopic z = 1:T

03. predict topic evolution by equation (6)
04. End

05. For each service s

06. get pri(s,t + 1) by equation (7)

07. End

08. {0z P.} = GibbsSampling (o, B, N, MW)
09. {bs:,¢.,} = GibbsSampling (o, B, N, SW)
10. for each historical mashup m;

11 get sim(m, m;) by equation (8)
12. end

13. for each service s

14. get rcp (s, m) by equation (9)
15. end

16. for each service s

17. get ¢y (s, m) by equation (10)
18. end

19. for each service s

20. get pr(s, m) by equation (11)
21. end

22, return LS(m) in descending order w.r.t. pr(s, m)

The algorithm can be divided into two stages: offline
stage (Lines 01 ~ 09) and online stage (Lines 10 ~ 22).
The offline part only needs to be conducted once at the
start of each time interval. The online part performs
every time when receiving a query. Lines 01 ~ 07 are the
implementation of TI that predicts service activity in the
near future. Lines 08 and 10 ~ 15 describe the construc-
tion of MDCF. Lines 09 and 16 ~ 18 complete the calcula-
tion of SDCM. Lines 19 ~ 22 integrate the three
components and generate a recommended list of services
to the user for mashup creation.

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:26:02 UTC from IEEE Xplore. Restrictions apply.

ZHONG ET AL.: TIME-AWARE SERVICE RECOMMENDATION FOR MASHUP CREATION 361

4.3 Computational Complexity

This section discusses the upper bound on the computa-
tional complexity of the proposed algorithm. In the follow-
ing discussion, we assume the online query has a number of
P word tokens on average.

4.3.1 Complexity of Tl

The complexity of Gibbs sampling to estimate the parameters
in TI (Line 01) is bounded by O(N |H |T), where |H |is the
number of service tokens in ST. From equation (6), we know
the complexity of topic activity prediction (Lines 02 ~ 04) is O
(IT). Similarly, the complexity of service activity prediction
(Lines 05~07)is O(T|S|).

4.3.2 Complexity of MDCF

MDCEF involves both offline (Line 08) and online (Lines 10 ~
15) computation. The complexity of LDA in Line 08 is O
(NVT), where V is the number of word tokens in MW. For
the online part, the time complexity of similarities computa-
tion among mashups is O(P | M | T) according to equation (8),
where |M | is the number of historical mashups. Lines 13 ~
15 involves sorting of mashups with a complexity of O
(|M|log|M| +K|S]).

4.3.3 Complexity of SDCM

Similarly, for the offline part of SDCM (Line 09), the compu-
tational complexity is ONWT) where W is the number of
word tokens in SW. By equation (10), we know the compu-
tational complexity of Lines 16 ~ 18 is O(P | S| T).

4.3.4 Overall Computational Complexity
The complexity of the integration (Lines 19 ~ 21) is O(|S|)
and the ranking of services (Line 22) is O(| S|log|S|).

In practice, it is usually the case that | S |and [are negligi-
ble compared with NW, K is much greater than log| S|, and
PT is much greater than log|M|. Therefore, the overall
complexity of offline computing is ONT(V + |H| + W))
and the online part is O(PT(|M| + |S|) + K|S|). The com-
plexity analysis demonstrates that the proposed algorithm
is computationally feasible in practice.

5 EXPERIMENTS

In this section, we explain how we applied our time-aware
service recommendation approach for mashup creation to a
real data set, crawled from ProgrammableWeb.com, to eval-
uate its performance. A collection of experiments were
designed to compare our approach with state-of-the-art
methods.

5.1 Data Set Preparation

To the best of our knowledge, ProgrammableWeb.com is by
far the largest online repository of web services and their
mashups. Through RESTful APIs, we crawled the metadata
of services and mashups from the web with timestamps
ranging from September 2005 to August 2012. Each service
contains metadata such as name, summary and description.
Every mashup contains metadata such as name, creation
date, description and the list of services used. Table 2 sum-
marizes the basic properties of our data set.

TABLE 2
Basic Properties of ProgrammableWeb
Data Set
Number of services 7,077
Number of mashups 6,594
Number of unique words 13,648

5.2 Preprocessing
For each service in the data set, there is a description consist-
ing of a bag of words that describe the functionality of the
service. Before the description can be used as the underlying
service’s associated collection of words in our model, several
nature language preprocessing tasks have to be conducted.
In this work, we applied the four-step data preprocessing
method similar in [21] to extract meaningful words from the
original descriptions:

1) Original words generating. First of all, we extract all
original words contained in the descriptions.

2) Pruning. Secondly, we filter out words that are not
meaningful for recognizing the service. Some exam-
ples include: some articles such as a, an, the; some
prepositions such as in, on, with, by, for, at, about,
from, etc; and some adverbs such as where, when, quite,
etc.

3) Suffix striping. In the third step, we perform suffix
stripping to obtain stem words. For example, map,
mapping, maps, and mappings will be replaced with
the same stem map.

4) Spell correcting. In the last step, we use spell correct
tool to adjust misspelled word. For example, websit
will be corrected as website.

The topology model can be directly derived from the ser-
vice list of a mashup. Given a time granularity, we can
obtain the sequence of timestamps and service usage history
according to the creation dates and the service list of the
mashup. Moreover, we use the processed description data
of a service as its associated collection of words in our
model. Similar actions are performed on mashups.

Without losing generality, in our experiment, we
adopted a time granularity as one month. To examine the
performance of our approach, we divided the data set into
training sets and testing sets, with a moving cutoff time-
stamp. We use the data before the cutoff timestamp as the
training set and the data with exactly that cutoff timestamp
as testing set. As shown in Fig. 3, we move the cutoff time-
stamp from September 2011 to August 2012, obtaining
twelve corresponding training data sets and testing data
sets. For each mashup appeared in the testing month, we
use its description as a user query and its composite services
as the ground truth.

5.3 Evaluation Metric

The evaluation metric that we used in this experiment is
mean average precision (MAP) [22], which is a widely used
measure in recommender system

MAP — 1 1 top(s,m)

12
M) 2~ |CS,| 12

)
o rank(s,m)

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:26: 02 UTC from IEEE Xp7lore Restrictions apply.

362 IEEE TRANSACTIONS ON SERVICES COMPUTING,

I i se
B e s

t t+1

MAP

t+1 t+2

t+11 t+12

Fig. 3. Generaton of training and testing data sets.

where M, represents the set of mashups in the testing
month and |M,| is the cardinality of M,; C'S,, represents the
set of component services of mashup m and |CS,,,| is the car-
dinality of CS,,; rank(s, m) is the ranking position of service
s in the recommended list of services for a testing mashup
m; top(s, m) is the number of composite services of mashup
m whose ranking position is higher or equal to rank(s, m).

MAP is a real number between 0 and 1. The higher MAP
indicates a better recommendation performance. By moving
the cutoff timestamp, we can calculate the MAP for each
testing month and use the average value of MAP for all test-
ing months as the evaluation metric to compare different
methods.

5.4 Comparison Methods
We compare our method with others generated from a com-
bination of the three components. MDCF alone can return a
ranked list of services in a descending order of r¢p (s, m),
and it is exactly the well-known collaborative filtering
adapted to our setting. SDCM alone generates a list of
services based on r¢y, (s, m), and can be viewed as the repre-
sentative of content matching approaches. MDCF*TI recom-
mends services in a descending order of r¢r (s, m) pry (s, t +
1). Similarly, we can define SDCM*TI, MDCF'SDCM, and
MDCF'SDCMTI. Note that our proposed approach can be
viewed as MDCF*SDCM*TL

To make our comparison more complete, we have intro-
duced an alternative method to calculate popularity scores
named as FR. It gives the popularity scores of services by
normalizing service usage frequency. We can also combine
FR with MDCF, SDCM and MDCF*SDCM respectively.
Taking MDCF as an example, the newly formed method
MDCF'ER calculates the integrated score of a service s for a
new required mashup m with user queries Q as follows:

proper(s,m) = rep(s,m) f(s), 13)

where f (s) is equal to the usage times of service s divided by
the sum of usage times for all services. Finally, MDCFFR
returns a ranked list of services for m in a descending order
of the integrated scores. Similarly, we can define SDCM"FR
and MDCF*SDCM FR by analogy with MDCF'FR, and their
descriptions are omitted due to space limitation.

In summary, we consider nine methods: MDCEF,
MDCF'TI, MDCFFR, SDCM, SDCM'TI, SDCM'FR,
MDCF*SDCM, MDCF'SDCM™TI and MDCF*'SDCM"FR.

VOL.8, NO.3, MAY/JUNE 2015

0.7 l MDCF*TI
@ MDCF*FR
W MDCF

i ¥

3 4 5 6 7 8 9
Testing Month

10 11 12

Fig. 4. MAP for MDCF*TI, MDCF*FR and MDCF in 12 testing months. Tl
helps boost the performance of MDCF.

5.5 Experimental Results and Analysis

Next, we set up the parameters used in this experiment. As
to parameters in the LDA model, we set T'= 40, « = 1.25
and B=0.01 for all components. For MDCF, we set
K = 150. With respect to TI, we set Ay = 0.1, A\; =0.9 and
[= 2. The selection of T and K is explained in the following
sections and other parameters are set empirically by
experiments.

Fig. 4 reports the MAP of MDCF, MDCF'TI and
MDCFFR in the twelve testing months. MDCF employs
functional requirements of mashups and mashup-service
past usage to predict the relevance scores of services, and its
performance is moderate. With the help of popularity scores
offered by TI, MDCF'TI gets the highest MAP among the
three methods in nine of the twelve testing months. On the
other hand, MDCF'FR is poorer in overall performance
than MDCF.

Fig. 5 depicts the MAP of SDCM, SDCM*TTand SDCM*FR
in the twelve testing months. SDCM only employs content
description of services and its performance is unsatisfactory.
SDCM'TI gets a significant improvement over SDCM with
TI included, and ranks the highest in all testing months
except one. SDCMFR wins in only one month.

Fig. 6 demonstrates the MAP of MDCF'SDCM,
MDCF'SDCM™TI and MDCF*'SDCMFR in the experi-
ment. MDCF*SDCM™TI surpasses others in 11 of the 12

W SDCM*TI
B SDCM*FR
W sDCM

e
S

MAP
S
(%]

1 2 3 4 5 6 7 8 9
Testing Month

10 11 12

Fig. 5. MAP for SDCM*TIl, SDCM*FR and SDCM in 12 testing months.TI
helps boost the performance of SDCM.

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:26:02 UTC from IEEE Xplore. Restrictions apply.

ZHONG ET AL.: TIME-AWARE SERVICE RECOMMENDATION FOR MASHUP CREATION 363

Il MDCF*SDCM*TI
[l MDCF*SDCM*FR
W MDCF*SDCM

n_o.‘*l
-
0.3

0.2

0.1

0

1 2 3 4 5 6 7 8 9 1011 12
Testing Month

Fig. 6. MAP for MDCF*SDCM*TI, MDCF*SDCM*FR and MDCF*SDCM
in 12 testing months. Tl helps boost the performance of MDCF*SDCM.

testing months. MDCF*SDCM"ER gets the highest MAP in
one month, and there is not much difference between the
overall performance of MDCF'SDCM and that of
MDCF*SDCM"FR.

Table 3 summarizes the average MAP in twelve testing
months for all nine methods considered in this paper as
follows:

Three conclusions can be drawn from the experimental
results shown in Table 3

1) The proposed approach, MDCF'SDCM™TI, achieves
the best performance as expected. Our explanation is
that it employs comprehensive information (content,
topology and temporal information) of an evolving
service ecosystem.

2) As to relevance scores calculation, MDCF gets much
better MAP than SDCM and their combination also
presents good performance.

3) With respect to popularity scores, TI is much more
effective than FR to help improve the performance of
MDCF, SDCM and MDCF*SDCM. The reason for the
different performance is that TI is able to capture
recent usage trends of services at the moment of
request while FR fails to do so by simply normaliz-
ing service usage frequency.

5.5.1 Component Contribution Analysis

We integrate three different components in our model: TI,
MDCF and SDCM. Here we further examine the individual
contribution of different components to the recommenda-
tion performance.

We first rank the individual components by their pre-
dictive power. We respectively remove each particular
component from MDCF'SDCM*TI and evaluate the
decrease of MAP according to Table 3. A larger decrease

TABLE 3
The Average MAP for Different Methods
Alone TI FR
MDCF 38% 41% 35%
SDCM 4% 38% 29%
MDCF'SDCM 36% 42% 36%

MAP
o
I:\,J

; . .

MDCF*SDCM*TI MDCF*SDCM SDCM

Fig. 7. MAP of three methods for component contribution analysis.

means a higher predictive power. Afterwards we remove
the three components one by one in descending order of
predictive power (TI > MDCF > SDCM). Finally we
show in Fig. 7 the MAP of the three generated methods:
MDCF*SDCM"TI, MDCF*SDCM and SDCM.

We can observe a clear drop on MAP when ignoring each
of the components. This demonstrates that our approach
works well by combining the different components and
each component contributes improvement to the recom-
mendation performance.

We also designed an experiment to test our hypothesis
described in Section 3.3, to compare our approach with the
method proposed in [9] (denoted by LCM). We examine the
recommendation performance of using the two methods
alone, combining with MDCF, and with MDCFTI,
respectively.

Fig. 8 reports the average MAP of SDCM, SDCM*MDCEF,
SDCM'MDCF'TI and their counterpart methods while
SDCM being replaced by LCM. As individual methods,
LCM is better than SDCM in recommendation performance.
However, when combined with other components MDCF
and T1I, the integrated methods with SDCM significantly out-
perform those with LCM, which demonstrates the comtribu-
tion of SDCM. Fig. 8 also shows that our proposed integrated
method (SDCM "MDCEF"TI) significantly outperforms LCM.

5.5.2 Impactof K

MDCF selects only Top-K similar historical mashups for
collaborative filtering in equation (9). Mashups whose

0.45

0.4

W LCM
W SDOM

with MDCF with MDCF*TI

Alone

Fig. 8. Average MAP for SDCM, LCM and their combinations with MDCF
and MDCF*TI, respectively.

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:26:02 UTC from IEEE Xplore. Restrictions apply.

364 IEEE TRANSACTIONS ON SERVICES COMPUTING,

0.43 -

0.4

MAP

0.34

0 50 100 150 200 250
Top-K
Fig. 9. Impact of K on MAP of proposed approach.

similarity ranking is lower than K are considered as dissimi-
lar ones, and are not included in the computation process.
To study the impact of K on recommendation performance,
we perform an analysis by varying K from 10 to 250 with a
step value of 50. Fig. 9 shows the MAP of our approach
with K varied under the experimental setting of other
parameters unchanged as before.

Observing from Fig. 9, we can draw the conclusion that
K impacts the recommendation performance significantly.
When K is small (<150), increasing the number often
receives a performance improvement. The trend becomes
stable when K is up to 150. This explains why we choose
K =150 in our experimental setting.

We take a test instance as an example to further explore
the causes of trends between K and MAP. We calculate the
similarity between the test instance and all historical mash-
ups. Afterwards we obtain a ranked list of mashups in a
descending order of their similarities.

Fig. 10 shows the relationship between similarity and
ranking position. The similarity drops dramatically as rank-
ing gets lower. Similarity of the 1*'mahup is nearly 10 times
as that of the 1,000th mashup in the list, and the value tends
to become zero as ranking position extends beyond 4,000.
Therefore, we can conclude that only a small portion of his-
torical mahups can be perceived similar with the test
instance and be included in collaborative filtering for

Similarity

0 L N L 1 o - . =ty L -
500 1000 1500 2000 2500 000 E=) 4000 4500

Ranking

Fig. 10. Example to show the relationship between similarity and ranking
position in MDCF.

VOL.8, NO.3, MAY/JUNE 2015

0.45

0.4

0.35

0.3

MAP

0 L 1 1
20 30 40 a0
T

Fig. 11. MAP of the proposed approach with the number of topics varied.

service recommendation. The remaining mashups’ similar-
ity values are too low to have significant contributions to
the recommendation performance according to equation (8).
These dissimilar mashups can be neglected to save compu-
tation cost without harming precision.

5.5.3 Impact of Number of Topics

We studied how the number of topics in the LDA model
influences the recommendation performance.

With prior knowledge that there are about 30 service
domains in ProgrammableWeb.com, we show the MAP of
the proposed method with T varied from 20 to 50 (with all
other parameters fixed) in Fig. 11.

It shows that although the performance changes with T
varied, the largest difference is less than 0.02. This demon-
strates that our time-aware service recommendation
approach is not sensitive to the number of topics.

5.5.4 Convergence Property

We take testing month 1 for example to see the effect of the
number of Gibbs sampling iterations on recommendation
performance.

Fig. 12 shows the MAP of our proposed algorithm with N
varied. We see that the algorithm can converge in less
than 60 iterations and the recommendation performance
becomes stable after that. This suggests that our algorithm
is efficient and has a good convergence property.

0.59

MAP

0. 52 L 1 L]
20 40 60 80 100

N

Fig. 12. MAP of the proposed approach with number of iterations in
Gibbs sampling varied.

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:26:02 UTC from IEEE Xplore. Restrictions apply.

ZHONG ET AL.: TIME-AWARE SERVICE RECOMMENDATION FOR MASHUP CREATION 365

TABLE 4
Ranking Of Ground Truth By
Different Methods
MDCF MDCF'TI MDCF'SDCM*TI
G 1 1 1
T 24 9 3
A 33 16 12

5.5.6 Qualitative Case Study

We now present a case study to illustrate the effectiveness
of our approach.

The testing mashup for illustration consists of three
services: Google Maps (G), Twilio (T) and Google Apps
Engine (A). The corresponding functional requirement
(i.e., user query) is: “Geospeaker is a web application provid-
ing a virtual loudspeaker to communicate with people around
you.” Table 4 reports the ranking of ground truth in the
recommended list of services given by MDCF, MDCF*TI
and MDCFTI"'SDCM, respectively.

As shown in the table, MDCF successfully puts Google
Maps in the first place, but the ranking of the rest two serv-
ices are not satisfactory. By MDCF alone, which leverages
similar compositions for recommendation, we can only get
a MAP of 39 percent for this instance. Armed with TI,
MDCEF"TI improves the ranking of both Twilio and Google
Apps Engines at least 50 percent, by taking popularity
scores into consideration while keeping Google Maps
unchanged. With the help of SDCM, our approach further
boosts the ranking of Twilio and Google Apps Engine, by
adding content matching into the model and the final MAP
is increased to 55 percent.

6 RELATED WORK

Service discovery and recommendation has been acknowl-
edged as a key problem since the dawn of web service
technologies.

6.1 Semantic-Aware Recommendation

Early works usually applied techniques from the informa-
tion retrieval (IR) community, such as TF/IDF and Vector
Space Model, on WSDL documents of services [6], [7].
Meng et al. [24] proposed a user-based collaborative filter-
ing algorithm to recommend services. However, these key-
word search-based methods typically suffer from poor
performance in practice.

Several methods take into consideration the semantic
compatibility between services and the query. In Mashu-
pAdvisor, the Al planner and the semantic matcher are
used to recommend services for composition [31]. Zhao
et al. [32] constructed a semantic Bayesian network based
on the semi-supervised learning method for the recommen-
dation. A recent work [8] focused on services described in
semantic languages to automate the process of service dis-
covery. A hybrid approach was proposed in [12], which
combined semantic-based content matching and QoS pre-
diction. However, it is always difficult to acquire semantic
information and the construction of ontology is trapped in
expensive running time and high complexity.

Different from traditional content-based methods, [9]
proposed a probabilistic approach for service discovery
based on LDA. It extracts features from WSDL documents
and exploits LDA model to characterize the latent topics
between services and user queries. It then recommends
related services based on topic relevance. Chen et al. [33]
developed a service clustering method, in which WSDL
documents and services tags are both utilized to cluster serv-
ices to facilitate the service recommendation. However, it
has become difficult to get WSDL documents since RESTful
services have been widely used. Even worse, due to business
interests and the privacy protection requirement, service
providers tend not to offer the WSDL documents [34].

In our mind, the service’s description can be viewed as
its source of information. LDA can be used to learn the
latent functional topics of services based on their descrip-
tions [21], [44]. Hence, in this work, based on the service-
s’decription, we extract the topic-level semantic vector to
characterize functionality of services.

6.2 QoS-Aware Recommendation

A number of research work center on QoS-based web ser-
vice selection and recommendation [10], [11], [26]. For
example, collaborative filtering has been introduced into
QoS prediction recently [10]. Cao et al. [35] presented a
hybrid collaborative filtering algorithm based on QoS to
provide bidirectional recommendation for both providers
and consumers. Zheng et al. [36] proposed two personalized
QoS ranking prediction approaches to calculate the QoS of
the services for different users, and then recommended the
services with a higher QoS quality for consumers. Chen
et al. [25] provided instant recommendation for partially
composed composite service while meeting QoS require-
ments. W. Ahmed et al. [37] proposed a novel hidden
Markov models (HMM) method for QoS metrification,
which measures and predicts the behavior of web services
in terms of response time.

Services are deployed geo-distributed and delivered to
users located in different geographic locations over the
Internet. Hence, the network condition will affect the user-
experience of the services. Klein et al. [38] evaluated the
latency between any two network locations and then pro-
posed a generic algorithm to achieve the near-optimal com-
position with low latency. Wang et al. [39] employed the
historical network latency records and the IP address infor-
mation to predict the missing values of network delay.
Then simulated annealing algorithm was used to recom-
mend the near-optimal composition solutions to the users.
However, the latencies between all the location pairs are
dynamic over time and it is time-consuming to evaluate.
Based on the assumption that users with near-by location
may have similar service experience, Lo et al. [40] incorpo-
rated the local connectivity between users to identify the
neighborhood and then developed a location-aware matrix
factorization model to predict the missing QoS values. Chen
et al. [41] grouped the users based on the IP address, clus-
tered the services based on QoS similarity and then applied
the collaborated filtering method.

However, QoS information is not always available. There-
fore, instead of using QoS attributes, we employ descriptions
of mashups to calculate similarities in our work.

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:26:02 UTC from IEEE Xplore. Restrictions apply.

366 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.8, NO.3, MAY/JUNE 2015

6.3 Network-Aware Recommendation

Another group of researchers try to introduce social net-
work analysis into service recommendation. Zhang et al.
[42] modeled past service usage behaviors into social net-
works and leveraged social network analysis to facilitate
service reuse. Tan et al. [43] studied the usage patterns of
services in the service-workflow system and then a GPS-
like assistance tool, ServiceMap, is developed to recom-
mend the service operation chains for users. In [13], a ser-
vice recommendation algorithm is presented, which takes
into consideration users’ interest and social relationship
between mashups. [14] proposed a matrix model where
multi-dimensional social relationships among users,
topics, mashups, and services are described. A recent
work [15] tries to perform services ranking and clustering
mutually in a heterogeneous service network to improve
the performance of service ranking. Zhang et al. [46] pre-
sented the correction policy and the precision policy for
computing user similarity to improve the accuracy of the
recommendation. Maaradji et al. [47] introduced the SoCo
framework, where a social network was built from the
interactions between users and services, as well as serv-
ices compositions. Wang et al. [45] emphasized on mining
mashup community from users’ perspective. Huang et al.
[30] exploited the data dependency, similarity and usage
to construct a component layered graph and a Steiner-
Tree-Search-based algorithm was introduced to recom-
mend service compositions.

However, we observed that services and their mashups
evolve over time such as publishing, prospering and perish-
ing [4]. Few existing methods take into account the evolu-
tion of service usage over time. Our previous work [5], [16]
proposed a service recommendation method based on link
prediction in a dynamic service network. However, it is
purely based on past service usage and does not consider
the functional requirements of individual mashups. [29]
presents a Dynamic Topic Model (DTM), which explicitly
models the evolution of topics by introducing nature
parameters of topic distribution for each time slice. Applied
in the context of this paper, however, DTM suffers from
data sparseness due to substantially increased complexity.
Instead, we have presented a time-aware service recom-
mendation approach based on LDA, which seamlessly com-
bines topology, content, and temporal information in an
evolving service ecosystem.

7 CONCLUSION

We have presented a model that combines network
structure, content description and service usage history to
describe an evolving service ecosystem. Based on our
model, we have developed a time-aware service recommen-
dation framework for mashup creation based on LDA,
consisting of three components: temporal information
extraction, mashup-description-based collaborative filtering
and service-description-based content matching. The three
components exploit temporal information, topology and
content of an evolving service ecosystem, respectively.
Experimental results on a real-world data set from Pro-
grammableWeb.com show that our approach is relatively
10 percent better than collaborative filtering (38->42

percent) and much better than content matching (4—>42
percent) in terms of mean average precision.

In the future work, we plan to refine the algorithm of
forecasting topic activity to improve the short-term predic-
tion of service activity. Moreover, we plan to incorporate
user behavior into the model to make our recommendation
framework more personalized.

ACKNOWLEDGMENTS

This work was partially supported by the National Natu-
ral Science Foundation of China (No. 61033005 and
No. 61174169), the National Key Technology Support
Program of China (2012BAF15G01) and the Independent
Research Program of Tsinghua University (20111080998).
Yushun Fan is the corresponding author.

REFERENCES

[1] V. Andrikopoulos, S. Benbernou, and M. P. Papazoglou, “On the
evolution of services,” IEEE Trans. Softw. Eng., vol. 38, no. 3,
pp- 609-628, May/Jun. 2012.

[2] X.Liu, Y. Hui, W. Sun, and H. Liang, “Towards service composi-
tion based on mashup,” in Proc. IEEE World Congr. Serv., 2007,
pp- 332-339.

[3] A.P.Barros and M. Dumas, “The rise of web service ecosystems,”
IEEE IT Prof., vol. 8, no. 5, pp. 31-37, Sep./Oct. 2006.

[4] E. Al-Masri and Q. H. Mahmoud, “Investigating web services on
the world wide web,” in Proc. 17th Int. Conf. World Wide Web,
2008, pp. 795-804.

[5] K. Huang, Y. Fan, and W. Tan, “Recommendation in an evolving
service ecosystem based on network prediction,” IEEE Trans.
Autom. Sci. Eng., vol. 11, no, 3, pp. 906-920, Jul. 2014.

[6] X. Dong, A. Halevy,]. Madhavan, E. Nemes, and J. Zhang,
“Similarity search for web services,” in Proc. 13th Int. Conf. Very
Large Data Bases, 2004, vol. 30, pp. 372-383.

[7] C. Platzer and S. Dustdar, “A vector space search engine for web
services,” in Proc. 3rd IEEE Eur. Conf. Serv. Comput., 2005, pp. 62-71.

[8] G.C.Hobold and F. Siqueira, “Discovery of semantic web services
compositions based on SAWSDL annotations,” in Proc. IEEE 19th
Int. Conf. Web Serv., 2012, pp. 280-287.

[9] C. Li R. Zhang, J. Huai, X. Guo, and H. Sun, “A probabilistic

approach for web service discovery,” in Proc. IEEE Int. Conf. Serv.

Comput., 2013, pp. 49-56.

Z. Zheng, H. Ma, M. R. Lyu, and I. King, “QoS-aware web service

recommendation by collaborative filtering,” IEEE Trans. Serv.

Comput., vol. 4, no. 2, pp. 140-152, Apr.—Jun. 2011.

X. Chen, X. Liu, Z. Huang, and H. Sun, “RegionKNN: A scalable

hybrid collaborative filtering algorithm for personalized web ser-

vice recommendation,” in Proc. 17th IEEE Int. Conf. Web Serv.,

2010, pp. 9-16.

L. Yao, Q. Z. Sheng, A. Segev, and]. Yu, “Recommending web

services via combining collaborative filtering with content-based

features,” in Proc. IEEE 20th Int. Conf. Web Serv., 2013, pp. 42-49.

J. Cao, W. Xu, L. Hu, J. Wang, and M. Li, “A social-aware service

recommendation approach for mashup creation,” Int.]. Web Serv.

Res., vol. 10, pp. 53-72, 2013.

B. Cao, J. Liu, M. Tang, Z. Zheng, and G. Wang, “Mashup service

recommendation based on user interest and social network,”

in Proc. IEEE 20th Int. Conf. Web Serv., 2013, pp. 99-106.

Y. Zhou, L. Liu, C. Perng, A. Sailer, I. Silva-Lepe, and Z. Su,

“Ranking services by service network structure and service attrib-

utes,” in Proc. IEEE 20th Int. Conf. Web Serv., 2013, pp. 26-33.

K. Huang, Y. Fan, W. Tan, and X. Li, “Service recommendation in

an evolving ecosystem: A link prediction approach,” in Proc. IEEE

20th Int. Conf. Web Serv., 2013, pp. 507-514.

D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet

allocation,” J. Mach. Learn. Res., vol. 3, pp. 993-1022, 2003.

I. Porteous, D. Newman, A. Ihler, A. Asuncion, P. Smyth, and

M. Welling, “Fast collapsed gibbs sampling for latent dirichlet

allocation,” in Proc. 14th ACM SIGKDD Int. Conf. Knowl. Discovery

Data Mining, 2008, pp. 569-577.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:26:02 UTC from IEEE Xplore. Restrictions apply.

ZHONG ET AL.: TIME-AWARE SERVICE RECOMMENDATION FOR MASHUP CREATION

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[371

[38]

[39]

[40]

[41]

[42]

R. Winter, J. H. Schiller, N. Nikaein, and C. Bonnet, “CrossTalk:
Cross-layer decision support based on global knowledge,” IEEE
Commun. Mag., vol. 44, no. 1, pp. 93-99, Jan. 2006.

Y. Matsubara, Y. Sakurai, C. Faloutsos, T. Iwata, and M. Yoshikawa,
“Fast mining and forecasting of complex time-stamped events,” in
Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
2012, pp. 271-279.

K. Huang, J. Yao, Y. Fan, W. Tan, S. Nepal, Y. Ni, and S. Chen,
“Mirror, Mirror, on the web, which is the most reputable service
of them all?” in Proc. 11th Int. Conf. Serv.-Oriented Comput., 2013,
pp. 343-357.

Y. Yue, T. Finley, F. Radlinski, and T. Joachims, “A support vector
method for optimizing average precision,” in Proc. 30th ACM
SIGIR Int. Conf. Res. Develop. Inf. Retrieval, 2007, pp. 271-278.

W. Tan, J. Zhang, and I. Foster, “Network analysis of scientific
workflows: A gateway to reuse,” IEEE Comput., vol. 43, no. 9,
pp- 54-61, Sep. 2010.

S. Meng, W. Dou, X. Zhang, and J. Chen, “KASR: A keyword-
aware service recommendation method on MapReduce for big
data application,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 12,
pp- 3221-3231, Dec. 2014.

L. Chen, J. Wu, H. Jian, H. Deng, and Z. Wu, “Instant recommen-
dation for web services composition,” IEEE Trans. Serv. Comput.,
vol. 7, no. 4, pp. 586-598, May 2013.

L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam, and

H. Chang, “QoS-aware middleware for web services
composition,” IEEE Trans. Softw. Eng., vol. 30, no. 5, pp. 311-327,
May 2004.

G. Adomavicius and A. Tuzhilin, “Toward the next generation of
recommender systems: A survey of the state-of-the-art and possi-
ble extensions,” IEEE Trans. Knowl. Data Eng., vol. 17, no. 6,
pp- 734749, Jun. 2005.

D. Agrawal, S. Das, and A. El Abbadi, “Big data and cloud com-
puting: New wine or just new bottles?” Proc. VLDB Endowment,
vol. 3, pp. 1647-1648, 2010.

D. M. Blei and J. D. Lafferty, “Dynamic topic models,” in Proc.
23rd ACM Int. Conf. Mach. Learn., 2006, pp. 113-120.

G. Huang, Y. Ma, X. Liu, Y. Luo, X. Lu, and B. Blake, “Assisting
navigation and complementary composition of complex service
mashups,” IEEE Trans. Serv. Comput..

H. Elmeleegy, A. Ivan, R. Akkiraju, and R. Goodwin, “Mashup
advisor: A recommendation tool for mashup development,”
in Proc. IEEE Int. Conf. Web Serv., 2008, pp. 337-344.

C. Zhou, H. Chen, Z. Peng, Y. Ni, and G. Xie, “A semantic Bayes-
ian network for web mashup network construction,” in Proc.
IEEE/ACM Int. Conf. Green Comput. Commun. Int. Conf. Cyber, Phys.
Soc. Comput., 2010, pp. 645-652.

L. Chen, Y. Wang, Q. Yu, Z. Zheng, and J. Wu, “WT-LDA: User
tagging augmented LDA for web service clustering,” in Proc. Int.
Conf. Serv.-Oriented Comput., 2013, pp. 162-176.

C. Ye and H. Jacobsen, “Whitening SOA testing via event
exposure,” IEEE Trans. Softw. Eng., vol. 39, no. 10, pp. 1444-1465,
Oct. 2013.

J. Cao, Z. Wu, Y. Wang, and Y. Zhuang, “Hybrid collaborative fil-
tering algorithm for bidirectional web service recommendation,”
Knowl. Inf. Syst., vol. 36, pp. 607-627, 2012.

Z. Zheng, Y. Zhang and M. R. Lyu, “Cloudrank: A qos-driven
component ranking framework for cloud computing,” in Proc.
29th Int. Symp. Reliable Distrib. Syst., 2010, pp. 184-193.

W. Ahmed, Y. Wu, and W. Zheng, “Response time based optimal
web service selection,” IEEE Trans. Parallel Distrib. Syst..

A. Klein, F. Ishikawa, and S. Honiden, “Towards network-aware
service composition in the cloud,” in Proc. 21st Int. Conf. World
Wide Web, 2012, pp. 959-968.

X. Wang, J. Zhu, and Y. Shen, “Network-aware QoS prediction for
service composition using geolocation,” IEEE Trans. Serv. Comput..
W. Lo, J. Yin, S. Deng, Y. Li, and Z. Wu, “Collaborative web ser-
vice QoS prediction with location-based regularization,” in Proc.
IEEE 19th Int. Conf. Web Serv., 2012, pp. 464-471.

X. Chen, Z. Zheng, Q. Yu, and M. Lyu, “Web service recommen-
dation via exploiting location and QoS information,” accepted by
IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 7, pp. 1913-1924,
Jul. 2014.

J. Zhang, W. Tan,]. Alexander, I. Foster, and R. Madduri,
“Recommend-as-you-go: A novel approach supporting services-
oriented scientific workflow reuse,” in Proc. IEEE Int. Conf. Serv.
Comput., 2011, pp. 48-55.

[43]

[44]

[45]

[46]

[47]

367

W. Tan, J. Zhang, R. Madduri, I. Foster, D. De Roure, and
C. Goble, “ServiceMap: Providing Map and GPS assistance to ser-
vice composition in bioinformatics,” in Proc. IEEE Int. Conf. Serv.
Comput., 2011, pp. 632—-639.

B. Xia, Y. Fan, C. Wu, K. Huang, W. Tan, J. Zhang, and B. Bai, “A
Domain-aware service recommendation method for service
composition,” in Proc. 21st Int. Conf. Web Serv., 2014, pp. 439-446.
J. Wang, H. Chen, and Y. Zhang, “Mining user behavior pattern in
mashup community,” in Proc. IEEE Int. Conf. Inf. Reuse Integr.,
2009, pp. 126-131.

C. Zhang, X. Zhao, and]. Wang, “An item-targeted user similarity
method for data service recommendation,” in Proc. IEEE 16th Int.
Enterprise Distrib. Object Comput. Conf. Workshops, 2012, pp. 172-178.
A. Maaradji, H. Hacid, J. Daigremont, and N. Crespi, “Towards a
social network based approach for services composition,” in Proc.
IEEE Int. Conf. Commun., 2010, pp. 1-5.

Yang Zhong received the BS degree in control
theory and application in 2012 from Tsinghua
University, China. He is currently working toward
the PhD degree at the Department of Automa-
tion, Tsinghua University. His research interests
include services computing, service recommen-
dation and big data.

Yushun Fan received the PhD degree in control
theory and application from Tsinghua University,
China, in 1990. He is currently a professor with
the Department of Automation, Director of the
System Integration Institute, and Director of the
Networking Manufacturing Laboratory, Tsinghua
University. From September 1993 to 1995, he
was a visiting scientist, supported by Alexander
von Humboldt Stiftung, with the Fraunhofer Insti-
tute for Production System and Design Technol-
ogy (FHG/IPK), Germany. He has authored 10

books in enterprise modeling, workflow technology, intelligent agent,
object-oriented complex system analysis, and computer integrated
manufacturing. He has published more than 300 research papers in jour-
nals and conferences. His research interests include enterprise model-
ing methods and optimization analysis, business process reengineering,
workflow management, system integration, object-oriented technologies
and flexible software systems, petri nets modeling and analysis, and
workshop management and control.

Keman Huang received the BS degree in auto-
mation and another BS degree in economics
from Tsinghua University, China, in 2014 and
2009, respectively and the PhD degree in control
theory and application. He is currently an assis-
tant professor with the School of Computer Sci-
ence and Technology, Tianjin University, China.
His research interests include services comput-
ing, web service composition, social network
analysis, data mining, and service recommenda-
tion. He is a member of the ACM and the IEEE.

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:26:02 UTC from IEEE Xplore. Restrictions apply.

368 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.8, NO.3, MAY/JUNE 2015

Wei Tan received the BS and PhD degrees from
the Department of Automation, Tsinghua Univer-
sity, China in 2002 and 2008, respectively. He is
currently a research staff member with the IBM
T. J. Watson Research Center, NY. From 2008 to
2010, he was a researcher at the Computation
Institute, University of Chicago and Argonne
National Laboratory. At that time, he was the
technical lead of the caBIG workflow system. His
research interests include NoSQL, big data,
cloud computing, service-oriented architecture,
business and scientific workflows, and petri nets. He has published
more than 50 journal and conference papers, and a monograph
“Business and Scientific Workflows: A Web Service-Oriented Approach”
(272 pages, Wiley-IEEE Press). He received the Best Paper Award from
the IEEE International Conference on Services Computing (2011), the
Pacesetter Award from the Argonne National Laboratory (2010), and
caBIG Teamwork Award from the National Institute of Health (2008). He
is an associate editor of the IEEE Transactions on Automation, Science
and Engineering. He was in the program committees of many conferen-
ces and has co-chaired several workshops. He is a member of the ACM
and a senior member of the IEEE.

b

Jia Zhang received the MS and BS degrees in
computer science from Nanjing University, China
and the PhD degree in computer science from the
University of lllinois at Chicago. She is currently
an associate professor at the Department of Elec-
trical and Computer Engineering, Carnegie Mellon
University. Her recent research interests center
on service oriented computing, with a focus on col-
laborative scientific workflows, Internet of Things,
cloud computing, and big data management. She
has co-authored one textbook titled “Services
Computing” and has published more than 130 refereed journal papers,
book chapters, and conference papers. She is currently an associate edi-
tor of the IEEE Transactions on Services Computing (TSC) and of Inter-
national Journal of Web Services Research (JWSR), and editor-in-chief
of International Journal of Services Computing (IJSC). She is a member
of the IEEE.

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on October 19,2024 at 04:26:02 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

