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Abstract—Mobile edge computing (MEC) paradigm supports
cloud-like computing capabilities at the edge of the network and
offers low-latency services. Proxy servers of MEC with mobility
and limited computing, e.g., flying unmanned aerial vehicles
(UAVs) have emerged as competitors in providing services. This
work considers a task offloading problem for an UAV-assisted
MEC system and designs an integrated cloud–edge network with
multiple mobile users (MUs) and layered UAVs to improve MEC
with a network of UAVs. In our system, edge UAVs (EUAVs)
and the cloud collaborate to provide caching and computing
services for MUs. We consider static and dynamic applications
that support task offloading. Our proposed approach mini-
mizes the weighted cost of latency and energy consumption by
jointly optimizing caching and offloading, deployment of EUAVs,
and allocation of computation resources. Simultaneously, this
work also considers UAVs’ caching and computation capacities
while meeting MUs’ latency and energy constraints. Thus, a
constrained mixed integer nonlinear program for a layered
UAV-assisted hybrid cloud-edge system is formulated. To solve
it, this work designs a hybrid metaheuristic algorithm named
adaptive and genetic simulated annealing (SA)-based particle
swarm optimization (AGSP). Experimental results with a real-life
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dataset verify that the AGSP’s system energy consumption and
task latency are reduced by at least 7.4% and 8.46%, respectively,
compared with the state-of-the-art algorithms, thus proving that
AGSP greatly enhances the energy and latency of the system.

Index Terms—Computation offloading, mobile edge computing
(MEC), particle swarm optimization (PSO), unmanned aerial
vehicles (UAVs), wireless caching.

I. INTRODUCTION

THE CURRENT demand for energy-efficient and fast
services of mobile users (MUs) intensifies due to

their dramatic increase [1]. Mobile edge computing (MEC)
emerges, where MUs can partially offload computation-
intensive tasks to the network’s edge [2] for reducing
congestion of a backbone network in an energy-saving and
cost-effective manner [3]. In recent years, a new paradigm
of unmanned aerial vehicle (UAV)-enabled MEC has been
proposed, where UAVs provide high mobility, lightweight
features, and the capability to offer uninterrupted services
to MUs, irrespective of the geographical limits [4]. UAV-
supported MEC networks have the following advantages. First,
UAVs can be deployed flexibly even in places that are unre-
liable to build terrestrial MEC networks [5]. Second, UAVs
provide short-range Line of Sight (LoS) links for offloading
tasks and transmitting their results [6]. Third, UAVs have
mobility, flexibility, and maneuverability, and therefore, their
trajectories can be optimized arbitrarily to realize dynamic
planning in different heterogeneous scenarios [7].

Several global companies, such as Google, Facebook,
Amazon, and Huawei have launched projects for the UAV-
assisted MEC systems. Unlike the traditional MEC servers,
UAVs realize real-time scheduling with their computation
resources via trajectory planning. Yet, they have to handle
dramatic variations in both temporal and spatial aspects.
In a network with multiple MUs and UAVs, multiple
MUs often transmit data simultaneously, inevitably causing
interference and resource competition among them [8]. Thus,
data transmissions of all MUs suffer from loss because of
mutual influence. Besides, multiple MUs compete to offload
computing tasks to UAVs. Their offloading performance is
significantly influenced by resource sharing and wireless band-
width allocation of UAVs [9]. In addition, in a multi-UAV
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environment, there are many UAVs available to each MU, and
the performance of computation offloading largely depends on
the selection of UAVs [10].

Current multilayer UAVs can be divided into two types of
architectures.

1) Multilayer Centralized Architecture: It includes a layer
of MUs on the ground, a layer of distributed UAVs, and
a centralized UAV layer [11]. MUs transmit their tasks to
the distributed UAV layer. Then, these distributed UAVs
relay the queued tasks to the centralized UAV, which
acts as the decision center. This architecture imposes
high-performance requirements on the centralized UAV
with large battery and computation capacities. This
architecture is advantageous for applications requiring
centralized data processing and immediate responsive-
ness, e.g., the surveillance systems.

2) Multilayer Distributed Architecture: In this architecture,
multilayer UAVs of various types and flying alti-
tudes utilize directional antennas to communicate with
MUs [12]. UAVs in each layer maintain a fixed height
but are distributed horizontally. This architecture places
less performance requirements on individual UAVs. It
focuses on the communication connectivity, association
probability, and coverage probability within the multi-
tier UAV networks. Depending on specific application
requirements and network conditions, it offers different
tradeoffs regarding communication overhead, scalability,
and fault tolerance. This architecture is suitable in sce-
narios characterized by extensive coverage and flexible
deployment, e.g., the disaster relief systems.

There are a few studies on computing and caching in an
UAV-assisted MEC network [13], [14], [15]. Yet, few studies
have comprehensively considered both of them. Integrating
caching into computing enhances resource reuse to improve
the performance of MUs. Investigating correlations between
the caching and computing in a layer of UAVs and a cloud
becomes crucial. In addition, it is also critical to balance the
latency and the energy consumption in the system. However,
a challenge arises from the computing tasks of uneven MUs
and system heterogeneity, which complicates the selection
of cached data and offloading locations. Unlike the existing
studies, this work focuses on a layered UAV-assisted MEC
system with multiple MUs. These UAVs collaborate with a
cloud to offer caching and computation offloading services
to MUs and leverage the edge layer’s caching capacity and
computing resources. The main contributions of the work are
threefold.

1) It formulates an offloading problem in such a system, and
innovativelyconsiders staticanddynamicapplications that
support offloading their tasks. A mixed integer nonlinear
program (MINLP) is formulated to minimize the weighted
cost of latency and energy consumption of the system.

2) It designs a hybrid optimization algorithm called adap-
tive genetic SA-based particle swarm optimization
(AGSP), which integrates genetic operations of the
genetic algorithm (GA) and a Metropolis acceptance
criterion of SA into a nonlinear and dynamic particle
swarm optimizer (PSO) with adaptive inertial weights.

3) It finds a close-to-optimal strategy that jointly optimizes
computing resources, transmission power, associations
between MUs and UAVs, task offloading ratios, and
coordinates of MUs and UAVs to minimize the weighted
cost of latency and energy consumption of the system.

The remainder of this article is structured as follows.
Section II gives the related work. Section III introduces our
system model. Section IV describes the proposed AGSP.
Section V presents the numerical results. Finally, Section VI
concludes the work.

II. RELATED WORK

This section reviews the UAV-assisted MEC system. The
integration of UAVs and MEC is classified according to the
roles of UAVs.

A. UAVs as User Nodes

UAVs act as the user nodes that offload local tasks to nearby
ground base stations (BSs), which return the executed result
to themselves [16]. Existing studies include the deployment
of UAVs [17], wireless transmission power distribution [18],
and associations of MUs and deployment of UAVs [19]. The
study in [20] focuses on a heterogeneous network enabling the
uplink and downlink data transmission simultaneously, where
a single UAV acts as a communicator while other UAVs act as
aerial BSs gathering data from diverse sensor nodes. It jointly
considers allocating communication resources, transmission
power, and UAV trajectories to maximize the network through-
put. The study in [21] optimizes both the wireless transmission
power and 3-D trajectories of UAVs for enhancing the total
aggregation rate of UAV-assisted interference channels. The
study in [22] integrates cellular-connected UAVs with existing
wireless networks and discusses their efficiency at the network
and user levels. It analyses the performance of users and
networks in a cellular network serving both ground users
and UAVs in the downlink. The study in [7] investigates an
UAV-assisted communication model, where rotary-wing UAVs
are deployed to provide continuous coverage for the mobile
nodes and optimize their trajectories while ensuring sufficient
coverage for MUs.

B. UAVs as MEC Servers

UAVs can also serve as the MEC servers, assisting MUs
in executing their computation tasks. This architecture is
particularly suitable when an UAV has sufficient computation
resources and battery capability. Alternatively, it is applicable
in scenarios where the MEC servers on the ground are
unavailable. In [23], an MEC network assisted by UAVs is
presented, which integrates UAVs’ path planning and collabo-
ration between the air and ground to facilitate communication
and edge computing. It is expanded in [24] to a broader
scenario where an UAV serves as a cloudlet, providing chances
for computation offloading to MUs with limited execution
capabilities. In [25], an MEC-enabled UAV architecture is
introduced to minimize the UAV’s energy consumption by
optimizing both the computing and network resources of MUs.
In [26], a resource allocation problem in an UAV-enabled MEC
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system is explored, considering both the partial and binary
computation offloading modes. This work jointly optimizes
the CPU frequencies, user transmission power, task offloading,
and UAVs’ trajectories to maximize the weighted sum of
computation rates of all MUs. The study in [27] proposes a
task offloading framework in an UAV-assisted MEC network
to minimize the average task delay by jointly optimizing MUs’
associations and UAV deployment.

C. UAVs as Relays

UAVs can also act as aerial dynamic relays, efficiently
assisting MUs in offloading their compute-intensive tasks
to remote BSs or other MEC servers and receiving the
computed data. In [28], a hybrid system adopts UAVs as the
MEC servers connected with terrestrial BSs. UAVs navigate
along a cell periphery to manage task offloading for the
users at the cell edge, transmitting computation tasks to
BSs on the ground. It presents an innovative framework to
maximize the total throughput of MUs, considering MUs’
partitioning, dynamic spectrum allocation, and UAVs’ tra-
jectories. Its system performance is significantly enhanced
by considering UAVs’ path planning and utilizing cyclical
multiple access. In [29], an amplify-and-forward protocol
for UAVs is proposed, focusing on scheduling time division
relays among multiple pairs of MUs. It considers time slot
allocation, wireless transmission power, and UAVs’ trajecto-
ries and maximizes the minimum average information rate
of pairing MUs. The study in [30] introduces a multihop
UAV relaying network to maximize the network throughput.
It considers computation resources and UAVs’ trajectories
while considering constraints of transmission power, spectrum
bandwidth, information-causality of multihop relaying, and
collision avoidance. The study in [31] maximizes the through-
put in an UAV-assisted relaying system. It jointly optimizes
the communication strategies and UAVs’ trajectories while
considering their maneuverability. It leverages an iterative
approach that combines the block coordinate descent and
successive convex approximation methods.

Unlike these studies, this work explores incorporating a
ground cloud center into a multi-UAV-enabled MEC system.
In this system, UAVs can not only offer MEC services as
a supplement to ground BSs, particularly when the latter is
damaged or overloaded, but also serve as relays to transmit the
computation tasks to the cloud center and relay the executed
result to terrestrial MUs. By employing partial computation
offloading, MUs offload compute-intensive tasks to UAVs. In
cases where UAVs have limitations in computing capacity and
cannot handle all tasks, overloaded ones are transmitted to the
central cloud server. Therefore, UAVs act as a combination
of the MEC servers and relays. In addition, UAVs in our
system also provide cache services to MUs, which cache,
process, and deliver computation data. Furthermore, this work
also considers static and dynamic applications supporting task
offloading.

III. PROBLEM FORMULATION

Fig. 1 shows the framework of an UAV-assisted hybrid
cloud-edge network, which includes the cloud, the edge, and

Fig. 1. Framework of an UAV-assisted hybrid cloud–edge system.

the MUs. A linked UAV (LUAV) is deployed and physically
connected to the cloud. Between the LUAV and the cloud,
energy transmission and data transmission are consolidated in
the same cord. Because of the limited mobility of the cord,
LUAV is positioned directly over the cloud. The length of this
cord is in a range of [80 m, 150 m]. The cord sustains the long-
duration flight of LUAV and enables a high data transmission
rate and safe communication between the LUAV and the cloud.
This work neglects the latency between the LUAV and the
cloud due to their faster transmission rates. Table S1 in the
supplementary file summarizes the main notations used in this
work.

UAV networks can be operated in a distributed manner.
However, distributed algorithms cannot guarantee to yield the
globally optimal solution to our total system cost optimization
problem. Thus, the total system cost cannot be minimized
with the distributed algorithms. In addition, the distributed
algorithms often require complex information communication
protocols and large data transmission among MUs, edge UAVs
(EUAVs), LUAV, and the cloud. Different from the existing
studies [32], [33], our proposed AGSP is a typical central-
ized optimization algorithm, which is deployed in LUAV.
LUAV periodically collects real-time information about MUs,
EUAVs, and the cloud, and runs AGSP to yield the best task
offloading strategy.

In the edge layer, EUAVs with limited cache and computing
capabilities serve as the MEC servers around MUs. The
number of EUAVs is denoted by K and a set of EUAVs
is denoted by K and K = {1, 2, . . . ,K}. uk denotes a
vector of 2-D coordinates of EUAV k and uk = [αk, βk].
This work considers that all EUAVs are located in the
same horizontal plane. Thus, h̃ denotes the fixed height of
EUAVs. The deployment of EUAV k has to be in its limits,
i.e.,

α̌ ≤ αk ≤ α̂ (1)

β̌ ≤ βk ≤ β̂ (2)
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where α̂ and α̌ denote the upper and lower limits of αk. β̂ and
β̌ denote the upper and lower limits of βk.

Similarly, the number of MUs is denoted by M, and the
set of MUs is denoted by M and M = {1, 2, . . . ,M}. The
height of LUAV is denoted by h̄. The 2-D coordinates of MU
m and LUAV are denoted by um (um = [αm, βm]) and u0
(u0 = [α0, β0]), respectively. The computation offloading can
be realized only after files have been completely delivered.
As illustrated in Fig. 1, we divide the transmission process
into two distinct phases: 1) caching content delivery and 2)
computation offloading. MUs acquire the requested files from
the LUAV or EUAVs that act as the cache servers in the former.
MUs determine where to perform computation tasks in the
latter according to the files yielded in the former.

A. Communication Model

We assume that EUAVs establish communication with
both LUAVs and terrestrial MUs. However, due to their
considerable distances, terrestrial MUs are restricted from
communicating solely with EUAVs. MUs and UAVs utilize the
orthogonal bandwidth to communicate with others, reducing
interference and improving signal quality.

1) Communication Between EUAVs and MUs: When dis-
patching EUAVs to provide services to ground MUs in open
suburban scenarios, the likelihood of establishing LoS links
between EUAVs and MUs is relatively high. This work adopts
a LoS-dominant channel model, which encompasses two types
of channel fading: 1) the large-scale path-loss fading and 2)
the small-scale Rician fading. Both the downlink and uplink
channels are assumed to undergo large-scale path loss fading
and independent and identically distributed small-scale Rician
fading.

Thus, the channel link between MU m and EUAV k can be
mathematically modeled as

hm,k = �m,k
√
ξm,k (3)

where �m,k is employed to characterize the small-scale
fading, which is modeled by a Rician distribution following a
weighted noncentral χ2 distribution, which is modeled as

�m,k =
√

km,k

km,k + 1
�̄m,k +

√
1

km,k + 1
�̃m,k (4)

where �̄m,k and �̃m,k are the random scattering components.
�̄m,k denotes a circularly symmetric complex Gaussian ran-
dom variable with zero mean and unit variance, i.e., �̄m,k ∼
CN (0, 1).
�̄m,k owns the real part and the imaginary part indepen-

dently and identically distributed, i.e., following a normal
distribution. �̃m,k denotes a circularly symmetric complex
Gaussian random variable with zero mean and zero variance.
Additionally, the Rician factor of the air-to-ground (AtG)
channel km,k varies with different heights of EUAV k, which
is modeled by an exponential function, i.e.,

km,k
(
θm,k

) = k0 · ek̃θm,k . (5)

In (5), θm,k denotes an elevation angle of the AtG path,

i.e., θm,k = arcsin(h̃/dm,k). dm,k =
√

h̃2 + ‖um − uk‖2

is the Euclidean distance between MU m and EUAV k.
k0 and k̃ are the constants depending on the environ-
ment and frequency, respectively. k0 = km,k(0) and k̃ =
(2/π) ln (km,k(π/2)/km,k(0)), which are determined based
on the measurements. The LoS link is stronger when θm,k

increases and smaller θm,k incurs more multipath conditions.
In (3), ξm,k represents the large-scale average channel power

gain, which accounts for the signal attenuation caused by the
path loss, which is calculated as

ξm,k = Ad
−εm,k
m,k (6)

where A denotes the channel gain when the reference distance
d0 is 1 m, and it depends on the antenna characteristics and
the average channel attenuation. εm,k denotes the path loss
exponent, which is given as

εm,k = u3

1+ u1e−u2(θm,k−u1)
+ u4 (7)

where u1 and u2 denote the AtG parameters. u3 and u4 denote
the parameters in the path loss exponent. Equation (7) reveals
the LoS-dominant channel model in (3), and it comprehen-
sively captures both the LoS and non-LoS propagation effect
in the AtG channel.

Following the Shannon theorem, EUAV k transmits the
cache files and downlink data to MU m with the transmission
rate of r↓k,m, which is given as

r↓k,m = Bm,k log2

⎛

⎝1+ pk,m
∥∥hm,k

∥∥2

σ 2 +∑K
k′=1(k′ �=k) pk,m

∥∥hm,k
∥∥2

⎞

⎠ (8)

where pk,m is the transmission power from EUAV k to MU m.
Bm,k and σ 2 are the bandwidth and additive white Gaussian
noise power between EUAV k and MU m, respectively.

MU m transmits offloaded tasks to EUAV k with the
transmission rate of r↑m,k, which is given as

r↑m,k = Bm,k log2

⎛

⎝1+ qm,k
∥∥hm,k

∥∥2

σ 2 +∑M
m′=1(m′ �=m) qm,k

∥∥hm,k
∥∥2

⎞

⎠ (9)

where qm,k is transmission power from MU m to EUAV k.
p̂k and q̂m denote the upper limits of pk,m and qm,k,

respectively. Then

0 ≤ pk,m ≤ p̂k (10)

0 ≤ qm,k ≤ q̂m. (11)

2) Communication Between LUAV and EUAVs: The wire-
less communication path between EUAVs and LUAV is
modeled as

hk,0 =
√
ξk,0 (12)

where ξk,0 represents a quasistatic block fading LoS link,
which is calculated as

ξk,0 = Ad
−εk,0
k,0 (13)

where dk,0 (dk,0 =
√
(h̃− h̄)2 + ‖uk − u0‖2) and εk,0 are

the distance and the path loss exponent between LUAVs and
EUAV k, respectively.
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Similarly, LUAV transmits its cache files and the result of
computation tasks to EUAV k with the transmission rate of
r↓0,k, which is given as

r↓0,k = Bk,0 log2

(

1+ p0,k
∥∥hk,0

∥∥2

σk,0
2

)

(14)

where p0,k denotes the transmission power from LUAV to
EUAV k. Bk,0 and σk,0

2 (σk,0
2 = N0Bk,0) represent the

bandwidth and the noise power between LUAV and EUAV k,
respectively, and N0 denotes the noise power spectrum density.

Similarly, considering the interference of other EUAVs,
EUAV k transmits offloaded tasks of MUs to LUAV with the
transmission rate of r↑k,0, which is given as

r↑k,0 = Bk,0 log2

⎛

⎝1+ qk,0
∥∥hk,0

∥∥2

σ 2 +∑K
k′=1(k′ �=k) qk,0

∥∥hk,0
∥∥2

⎞

⎠ (15)

where qk,0 denotes the transmission power from EUAV k to
LUAV. This work assumes the transmission power between
EUAV and LUAV is constant.

B. Caching and Computing Models

In this work, each EUAV offers cached data to MUs. If
the requested file is not cached, the cloud must transmit it to
EUAVs and MUs. Let λm,k denote a binary caching variable,
which is 1 when the requested file of MU m is cached in
EUAV k and 0 otherwise, i.e.,

λm,k∈{0, 1}. (16)

Let μE
m,k and μL

m,k denote the two binary offloading vari-
ables. μE

m,k is 1 when the computation task of MU m is
offloaded to EUAV k and it is 0 otherwise. Similarly, μE

m,k is
1 when a computation task of MU m is offloaded to the cloud
through EUAV k, and it is 0 otherwise. Thus

μE
m,k, μ

L
m,k∈{0, 1}. (17)

For each MU, its task of choosing to be offloaded to
EUAVs or the cloud is mutually exclusive. Furthermore, we
assume that each MU can transmit through at most one EUAV,
regardless it is executed in EUAVs or the cloud, i.e.,

K∑

k=1

(
μE

m,k + μL
m,k

) ≤ 1. (18)

According to [34], there are two kinds of computation
offloading modes, i.e., static offloading and dynamic offload-
ing. As shown in Fig. 2, applications can be prepartitioned
into a local part in MUs and a remote one in EUAVs or the
cloud.

When a computation task requested to be offloaded is static,
it has to be executed in MUs or offloaded completely to
EUAVs or the cloud, as illustrated in Fig. 2(a). For example,
the FLUID application of Android is a typical example,
whose thin client side needs to run in MUs, and the server
side demanding high-performance GPU is always executed
remotely in MEC. As illustrated in Fig. 2(b), when a com-
putation task requested to be offloaded is dynamic, it can be

(a) (b)

Fig. 2. Illustration of static and dynamic offloading tasks. (a) Static
offloading. (b) Dynamic offloading.

executed in MUs or offloaded to MEC with an arbitrary split.
The Linpack of Android is a typical example, which can be
executed in MUs entirely or offloaded to MEC partially or
completely.

We also introduce another binary variable ωm, which is 1
when a static computation task of MU m requested to be
offloaded, and it is 0 otherwise, i.e.,

ωm −
K∑

k=1

(
μE

m,k + μL
m,k

) ≤ 0. (19)

Besides, am,k denotes an offloading ratio of MU m to
EUAV k. When ωm = 1, MU m offloads all the tasks to
EUAVs or the cloud, i.e., am,k = 1. When ωm = 0, MU m
decides the best amount of the offloaded task. Therefore, am,k

can take any value in [0,1], i.e.,

am,k = 1, ωm = 1

am,k∈[0, 1], ωm = 0. (20)

Additionally, Dm denotes the size of a task of MU m that
needs to be executed and ζm denotes the number of its needed
CPU cycles. This work assumes that the uplink data and the
number of the CPU cycles required by the offloaded tasks are
proportional to am,k.

C. Latency Model

MUs initiate a computation process only if they acquire the
requested cache files from the cloud or EUAVs. Cm denotes
the size of cache files requested by MU m. The cache capacity
Ck of EUAV k cannot be exceeded by its size of stored files
from MUs, i.e.,

M∑

m=1

λm,kCm ≤ Ck. (21)

Tc
m,k denotes the latency of transmission of cache files from

EUAV k to MU m, which is calculated as

Tc
m,k =

Cm

r↓k,m
+ (1− λm,k

)Cm

r↓0,k
. (22)
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Tl
m denotes the computation time of the local tasks in

MU m. Then

Tl
m =

(
1− am,k

)ζm

fm
(23)

where fm denotes the local computing ability of MU m.
TE

m,k denotes the computation time of the offloaded tasks in
EUAV k from MU m, which is given as

TE
m,k = μE

m,kam,k
ζm

f E
m,k

(24)

where f E
m,k denotes the computing ability of EUAV k.

EUAV k cannot handle tasks exceeding its computing
capacity Fk, i.e.,

M∑

m=1

μE
m,kf E

m,k ≤ Fk. (25)

TL
m,k denotes the computation time of the offloaded tasks

from MU m in the cloud, which is given as

TL
m,k = μL

m,kam,k
ζm

f L
m,k

(26)

where f L
m,k denotes the allocated computing ability of the cloud

during the offloading process.
The allocated computing resources of MUs, EUAVs, and

the cloud have their upper limits f̂m, f̂ E, and f̂ L, i.e.,

0 ≤ fm ≤ f̂m (27)

0 ≤ f E
m,k ≤ f̂ E (28)

0 ≤ f L
m,k ≤ f̂ L. (29)

Let Om denote the size of download data of MU m from
EUAVs after the offloaded task execution on MEC. Tt

m,k
denotes the transmission latency of the whole offloading
process of each task of MU m through the link of EUAV k,
which is given as

Tt
m,k = μE

m,k

(
am,kDm

r↑m,k
+ Om

r↓k,m

)

+ μL
m,k

(
am,kDm

r↑m,k
+ Om

r↓k,m
+ am,kDm

r↑k,0
+ Om

r↓0,k

)

. (30)

We consider the tasks computed locally in MU m, and ones
offloaded remotely to MEC can be executed in parallel. Thus,
the total latency T�m of executing MU m’s tasks is given as

T�m =
K∑

k=1

Tc
m,k +max

(

Tl
m,

K∑

k=1

(TE
m,k + TL

m,k + Tt
m,k)

)

. (31)

The latency of each task of MU m cannot surpass its limit
T̂m, i.e.,

T�m ≤ T̂m. (32)

D. Energy Consumption

The energy consumption of transmitting and executing tasks
is much larger than that of UAVs’ propelling and hovering.
Consequently, we neglect UAVs’ flying energy loss in this
work. Then, the energy consumption of the whole system
includes the caching file transmitting, the local computing,
the transmission of the uplink and downlink data of offloaded
tasks, and the computing of remotely offloaded tasks.
εc

m,k denotes the energy consumption of transmitting caching
files from EUAV k to MU m, i.e.,

εc
m,k =

Cm

r↓k,m
pk,m +

(
1− λm,k

)Cm

r↓0,k
p0,k. (33)

εl
m denotes the energy consumption of computing each task

locally in MU m, i.e.,

εl
m = κm(fm)

3Tl
m (34)

where κm denotes a capacitance coefficient of MU m, which
depends on its chip architecture [35].
εE

m,k and εL
m,k denote the energy consumption of computing

each offloaded task of MU m in EUAV k and in the cloud,
respectively, which is calculated as

εE
m,k = TE

m,kκk

(
s1 + s2

(
f E
m,k

)ē)
(35)

εL
m,k = TL

m,kκ0

(
s3 + s4

(
f L
m,k

)ē)
(36)

where κk and κ0 are both effective switched capacitance
coefficients similar to κm. ē denotes a capacitance coefficient
of EUAVs and ē ∈ (2.5, 3) following [36]. s1, s2, s3, and s4
are the four positive constants fitted by the offline power.
εt

m,k denotes the transmission energy consumption of the
whole offloading process of each task of MU m through the
link of EUAV k, i.e.,

εt
m,k = μE

m,k

(
am,kDm

r↑m,k
qm,k + Om

r↓k,m
pk,m

)

+ μL
m,k

(
am,kDm

r↑m,k
qm,k + Om

r↓k,m
pk,m + am,kDm

r↑k,0
qk,0 + Om

r↓0,k
p0,k

)

. (37)

ε�m denotes the total energy consumption of executing each
task of MU m, which is given as

ε�m =
K∑

k=1

εc
m,k + εl

m +
K∑

k=1

(
εE

m,k + εL
m,k + εt

m,k

)
. (38)

ε�m cannot exceed its limit ε̂m, i.e.,

ε�m ≤ ε̂m. (39)

E. Total Cost Optimization Problem

Application tasks of MUs with different services have vary-
ing preferences for energy consumption and latency, which
are two major conflict objectives for current users. This work
considers the Quality of Service (QoS) demands of MUs’
tasks. For example, mobile applications with high latency
requirements, such as online games, video calling, and voice
recognition, prioritize T�m . Similarly, those sensitive to energy
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consumption, such as video streaming and navigation appli-
cations, prioritize ε�m [37]. For example, if the transmission
power and computation speeds of MUs, EUAVs, and LUAV
increase, the total energy consumption increases, and the
latency of the tasks decreases, and vice versa.

To jointly optimize the total energy consumption of the
system and the total latency of tasks, this work defines the
total system cost as their weighted sum. Weight coefficients
ρm

1 and ρm
2 are introduced to express their relative significance.

They are determined based on the preferences of the MUs’
tasks. Here, ρm

1 + ρm
2 = 1(0 < ρm

1 , ρ
m
2 <1).

This work uses the QoS index i(i = 1, 2) as MU m’s
preference (i = 1 if MU m’s preference is T�m . Otherwise,
i = 2). Each QoS index can be subdivided into � preference
levels. A higher level indicates a stronger preference and a
more impact on MUs. Then, MU m’s preference level for QoS
index i is denoted as ψ i

m (ψ i
m ∈ {1, 2, . . . , �}, i = {1, 2}). To

show the preference of the QoS parameter i over j of MU m,
ι
i,j
m (ι

i,j
m = ιim/ιjm) is introduced. Thus, ρm

i can be given as

ρm
i =

1

2

(
ιi,1m

ι
1,1
m + ι1,2m

+ ιi,2m

ι
1,2
m + ι2,2m

)
. (40)

� denotes the total cost of the system, which is given as

� =
M∑

m=1

(
ρm

1 ε
�
m + ρm

2 T�m
)
. (41)

Then, the total cost minimization problem is formulated as

Min
P,F,D,U,A

{�} (42)

subject to (1), (2), (10), (11), (16)–(21), (25), (27)–(29), (32),
and (39). Here, we have four types of decision variables,
including transmission power allocation P = {pk,m, qm,k},
computation capacities F = {fm, f E

m,k, f L
m,k}, binary variables

D = {λm,k, μ
E
m,k, μ

L
m,k}, EUAV coordinates U = {uk}, and

offloading ratio A = {am,k}.
ε�m and T�m are both the nonlinear concerning integer

and continuous variables. Thus, the optimization problem
is a typical constrained MINLP with the NP-hard solution
complexity [38]. It suffers from an exponential explosion
issue, and no polynomial-time algorithms are available [39].
This work first adopts a penalty function method to convert
the constrained MINLP into an unconstrained problem, i.e.,

Min
P,F,D,U,A

{
�̃ = ∞N�+ �

}
. (43)

In (43), �̃ is a new objective function and
∞
N is a large

positive number. � is the total penalty of all the constraints,
i.e.,

� =
N
�=∑

�=1

(max{0,−ð�(x)})γ1 +
N
=∑

�=1

∣∣��(x)
∣∣γ2 (44)

where N
�= is the number of inequality constraints and N

= is
that of equality constraints. γ1 and γ2 are the two constants.
Each inequality constraint � (1 ≤ � ≤ N

�=) is converted into
ð�(x) ≥ 0 and its penalty is (max{0,−ð�(x)})γ1 . Likewise,
each equality constraint � (1 ≤ � ≤ N

=) is converted into
��(x) = 0 and its penalty is |��(x)|γ2 .

IV. NONLINEAR DYNAMIC ADAPTIVE GENETIC

SIMULATED ANNEALING-BASED PARTICLE

SWARM OPTIMIZATION

There are several deterministic algorithms, such as conju-
gate gradient descent and dynamic programming, to tackle the
unconstrained problems. Nevertheless, they often need specific
mathematical structures. For instance, some typically rely on
the first-order or second-order derivatives, and their solution
quality tends to be suboptimal for addressing such problems.
Many studies opt for the typical meta-heuristic optimization
algorithms due to their inherent strengths, including robust-
ness, ease of implementation, ability to handle discontinuities
and nonlinearities, and rapid convergence, avoiding short-
comings of the aforementioned deterministic approaches for
complex real-world issues. Nevertheless, each optimization
approach possesses its distinct set of strengths and weaknesses.

Traditional PSO algorithms typically rely on the individu-
ally best solutions and the globally best one to guide their
evolution. Nevertheless, complex multimodal functions often
lead the population to become ensnared in local optima. This
work proposes a nonlinear dynamic adaptive inertial weight
to help PSO yield a better balance between the linearity and
nonlinearity of the sigmoid function. It considers evolutionary
differences among the particles in the evolutionary process
and adaptively updates inertia weight for global exploration.
Moreover, this work integrates crossover and mutation oper-
ations of GA to enhance population diversity and coverage.
This work adjusts the update strategy based on the Metropolis
acceptance rule in SA to further mitigate the risk of converging
toward local optima. Above all, this work designs an AGSP.
AGSP adaptively assigns different inertia weights for global
exploration and local search in different evolutionary periods.
Fig. 3 shows a flowchart of AGSP. The details of its population
initialization, genetic operations, and selection in AGSP are
described next. Table S2 in the supplementary file summarizes
the main notations of AGSP.

A. Population Initialization

X denotes the size of particles in the swarm. There are N
elements in the position of each particle i (i = 1, 2, · · ·,X ).
P, F, D, U, and A are stored in sequence, and �̃ is kept
in the final element. xi and vi denote the position and the
velocity of the particle i, respectively, and their dimension
is N . �i denotes the locally best position of the particle i.
�∗ denotes the globally best position of the whole swarm.
Each particle modifies its velocity and position based on its
learning experiences and that of the entire swarm. vi and xi

are updated as

vi = wgvi + c1∂1(�i − xi)+ c2∂2
(
�∗ − xi

)
(45)

xi = xi + vi (46)

where ∂1 and ∂2 are the random numbers in (0, 1). The
inertia weight is denoted by wg, which decreases as iterations
with (49). c1 and c2 are the acceleration coefficients of each
particle and the swarm, showing the impact of �i and �∗,
respectively.
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Fig. 3. Flowchart of AGSP.

B. Nonlinear Dynamic Adaptive Inertial Weight

At the beginning of iterations, the population includes more
individuals with lower fitness values. The initial w is higher
and the population inclines to explore the whole space. In
the later evolution, the population includes more individuals
with higher fitness values and the velocities of particles
reduce rapidly. However, if w is always lower, premature
convergence occurs, and local optima cannot be jumped out.
Therefore, this work designs a dynamic adaptive inertia weight
to support high exploration in the early evolution, thereby
finding promising regions rapidly. Later evolution emphasizes
exploiting promising regions to further converge toward the
global optima quickly. The concept of evolutionary dispersion
(ϑg) is given to describe changes in the population evolution.
We define ϑg as the ratio of the standard deviation (Std)
StdFit(g) of the fitness values of the population at the iterations
g and g− 1, i.e.,

ϑg =
{

1, g = 1
StdFit(g)

StdFit(g−1) , g > 1.
(47)

The sigmoid function has a good balance between the
linearity and nonlinearity, and therefore, it is used as the
activation function, which is given as

S(x) = 1

1+ e−x
. (48)

Thus, combining ϑg and the sigmoid function, a nonlinear
dynamic and adaptive inertia weight, wg, is given as

wg = ŵ+ (w̌− ŵ
) 1

1+ exp
[
−10b

(
2g
ϑg·ĝ − 1

)] (49)

where ĝ denotes the number of total iterations and b is a
damping factor in [0, 1]. ŵ and w̌ denote the upper and lower
limits of w.

C. GA Operations

PSO’s optimization process oscillates and converges quickly
if the gap between the �i and �∗ is too large. Genetic
operations in the GA produce superior particles for the global
search ability of PSO. This work combines genetic operations
into PSO to generate superior particles yi(i = 1, 2, . . . ,X ). yi

is given as

yi = c1·∂1·�i + c2·∂2·�∗
c1·∂1 + c2·∂2

. (50)

This work also combines a mutation operation into PSO. �i

and �∗ are encoded as a string of binary bits. The mutation
possibility is denoted by � . �i and �∗ generate their offspring
zi through a single-point crossover. Next, each bit of zi is
mutated with a possibility of � , which avoids getting stuck
in local optima in early evolution.

Then, we adopt a greedy criterion to choose whether yi or
zi is chosen, i.e.,

xg
i =

{
yi, if �̃(yi) ≤ �̃(zi)

zi, else.
(51)

D. Adaptive Updating and SA-Based Selection

PSO adopts (45) and (46) to update the velocities and
positions. Unlike PSO, AGSP adopts an improved adaptive
velocity and position update strategy.
ji denotes a ratio of the particle i’s fitness value to the

average one of the population, which is given as

ji = exp
(
�̃
(
xg

i

))

exp
(

1
X
∑X

i=1 �̃
(
xg

i

)) (52)

When ji ≥ δ, �̃(xg
i ) is much higher than the average fitness

value of the population, showing the scattered distribution
of particles. This work utilizes (53) and (54) to update
the particles’ velocities and positions. The individually best
solutions and the globally best solution are combined linearly
in the velocity update, improving the possibility of finding
global optima. The position is updated with

vi = wg·vi + c1·∂1

(
�i + �∗

2
− xi

)
+ c2∂2

(
�i − �∗

2
− xi

)

(53)

xg+1
i = wgxg

i +
(
1− wg)vi. (54)

When ji<δ, �̃(x
g
i ) is not significantly different from the

average fitness value of the population, indicating that the
current particle distribution is concentrated. In such case, this
work utilizes (55) and (56) to update the velocity and position
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Algorithm 1 AGSP
1: Initialize xi and vi randomly
2: Initialize X , � , t1, t̂, c1, c2, b,ŵ, w̌ and ĝ
3: Update �̃ of particles with (43)
4: Update �i and �∗
5: g←1
6: while g ≤ ĝ do
7: Conduct single-point crossover of GA on �i and �∗ to

generate yi

8: Conduct mutation of GA on each bit of yi with � to
generate zi

9: Calculate the fitness values of yi and zi and adopt the
selection of GA to choose the better one

10: if ji ≥ δ then
11: Update vi with (53)
12: Update xi with (54)
13: else
14: Update vi with (55)
15: Update xi with (56)
16: end if
17: Update xg

i with the Metropolis acceptance rule of SA
18: Update �̃ of each particle by (43)
19: Update �i of each particle and �∗ of the swarm
20: tg←t̂·tg
21: Calculate ϑg

22: w← ŵ+ (w̌− ŵ
) 1

1+exp
[
−10b

(
2g
ϑg·ĝ−1

)]

23: g←g+ 1
24: end while
25: return �∗

of each particle. Equation (55) is employed to jump out of
local optima

vi = wgvi + c1∂1
(
�̄g − xi

)+ c2∂2
(
�∗ − xi

)
(55)

xi = xi + vi (56)

where the average position (�̄g) of particles in generation g is
introduced to improve the convergence speed, which is given
as

�̄g = 1

N
N∑

i=1

xg
i,n (57)

where xg
i,n denotes the value of xg

i in dimension n.
In addition, an SA-based selection is adopted to update all

the particles [40]. Particle i’s position in iteration g is denoted
by xg

i . Then, xg
i+1 is updated according to (54) or (56).

If �̃(xg+1
i ) ≤ �̃(xg

i ), xg+1
i is selected. Otherwise, it is

conditionally selected if

e

⎛

⎝
�̃(x

g
i )−�̃

(
x
g+1
i

)

tg

⎞

⎠

>∂3 (58)

where ∂3 is a random constant in (0,1) and tg is the temperature
in iteration g. t1 denotes the starting temperature and t̂ denotes
the cooling rate of the temperature.

Algorithm 1 shows the pseudocodes of AGSP. Line 1
randomly initializes the particles’ positions and velocities

TABLE I
PARAMETER SETTING OF SIMULATION

randomly. Line 2 initializes the parameters of AGSP, including
X , � , t1, t̂, c1, c2, b, ŵ, w̌, and ĝ. Line 3 updates the fitness
value (�̃) of each particle i with (43). Line 4 updates the
locally best position of the particle �i and the globally best
position (�∗) of the whole swarm. The loop stops while g > ĝ
in Line 6. Line 7 conducts the single-point crossover of GA on
�i and �∗ to generate the superior particle yi. Line 8 performs
the mutation of GA on yi’s each bit with the mutation ratio
� to generate zi. Line 9 calculates the fitness values of yi

and zi to select the better one. Lines 11 and 12 update vi and
�i with (53) and (54) if ji ≥ δ. Lines 13 and 14 update vi

and �i with (55) and (56) if ji > δ. Line 17 updates xg
i with

the Metropolis acceptance rule of SA. Line 18 updates �̃ of
the swarm with (43). Line 19 updates the locally best position
of each particle and the globally best position of the swarm.
Line 20 updates tg by t̂. Line 21 calculates ϑg. Line 22 reduces
w from ŵ to w̌ adaptively with (49). Line 25 returns �∗ and
yields the final decision variables, including P, F, D, U, and A.

The time complexity analysis of AGSP is given here. In each
iteration, its time complexity is O(XN ). The while loop is
the primary computation overhead. Thus, the time complexity
is O(ĝXN ). As mentioned above, N stores P, F, D, U, A,
and the fitness value. Thus, N = 11M + 1. Then, the time
complexity of AGSP is O(ĝXM).

V. PERFORMANCE EVALUATION

A. Parameter Setting

This section presents numerical results to evaluate AGSP.
Specifically, [0, 20] MUs are distributed randomly and uni-
formly within a square area of 1000 m×1000 m, i.e., αk and
βk ∈ [0,1000]. EUAVs are deployed in this area and h̃ =
100 m. LUAV is fixed at [0, 0] m with a height of 150 m, i.e.,
h̄ = 150 m. According to [41], km,k(0) = 5 dB, km,k(π/2) =
15 dB, A = −20 dB, u1 = 0.136 dB, u2 = 11.95 dB, u3 =
−1.5, and u4 = 3.5. Following [42], [43], [44], in the energy
consumption model, s1 = 0.4, s2 = 0.5, s3 = 0.6, s4 = 0.6,
κm = κk = κ0 = 10−28, and ē = 2.8. Besides, p0,k = 0.5 W,
qk,0 = 1 W, p̂k = 0.5 W, and q̂m = 0.2 W [45]. Furthermore,
f̂m = 109, f̂ E = 4×109, f̂ L = 1010 [46], and ρ1 = ρ2 = 0.5.
Table I gives the setting of other parameters. MUs run real-
world application tasks listed in Table II, including static and
dynamic offloading types [47].

According to [48] and [49], the AGSP’s parameters are
given as follows. Specifically, X = 100, c1 = 0.5, c2 = 0.5,
ŵ = 0.95, w̌ = 0.4, ĝ = 103, b = 0.5, � = 0.01,

δ = 0.8, t̂ = 0.95, and t1 = 108. In addition,
∞
N = 1010,

γ1 =1, and γ2 =1.5.

B. Results and Analysis

This work compares AGSP with its state-of-the-art peers,
including PSO [50], SA-based PSO (SAP) [51], and
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TABLE II
CHARACTERISTICS OF REAL-WORLD APPLICATIONS

TABLE III
STATISTICAL RESULTS OF DIFFERENT ALGORITHMS OVER 30

INDEPENDENT EXECUTIONS

genetic-learning-PSO (GLP) [52]. The vanilla GSP without
self-adaptive operations [53] for performing the ablation study,
which emphasizes the impact of individual components (GA
operations, Metropolis acceptance, and adaptive component)
in AGSP. We independently run all the algorithms 30 times.
PSO, SAP, GLP, and GSP have the same parameter setting
as AGSP. The reasons for choosing them for comparison are
given as follows.

1) PSO: It adopts a swarm of particles moving in the
search space according to their velocities and the best
positions. Yet, it often traps into local optima. PSO
removes the adaptive component, GA operations, and
Metropolis acceptance from AGSP.

2) GLP: It integrates PSO with GA to generate superior
PSO exemplars and yield higher performance. GLP
removes the adaptive component and Metropolis accep-
tance from AGSP.

3) SAP: SAP adaptively adjusts an inertia weight to
overcome PSO’s easy trapping into local optima by
introducing the SA’s global exploration. SAP removes
the adaptive component and GA operations from AGSP.

4) GSP: GSP integrates GA’s genetic operations and the
Metropolis acceptance rule of SA to guide particles [54].
GSP removes the adaptive component from AGSP.

Table III shows the best, worst, mean, and Std results of the
best fitness values for different algorithms over 30 independent
executions with 1000 iterations when K =2 and M =5, and
their execution times on average. It is shown that AGSP
outperforms other algorithms in terms of global optimization
ability and stability. Besides, the execution times of PSO and
SAP are similar, and those of GLP, GSP, and AGSP are
also close. We conduct the Wilcoxon sign-rank test on the
execution time data from 30 independent experiments. The
results have a significance level of 0.01, proving that PSO
and SAP have the same time complexity as GLP, GSP, and
AGSP. Thus, although the execution times of GLP, GSP, and
AGSP are longer than those of PSO and SAP, they significantly
improve their optimization capabilities. It is also shown that
despite sharing the same time complexity as GLP and GSP,
AGSP has a more robust global search ability.

Fig. 4. Evolutionary curves of objective function values (K = 2 and M = 5).

Fig. 4 illustrates the convergence curves of s single inde-
pendent execution. PSO and SAP obtain their best solutions
with fewer iterations. However, PSO’s final solution is poor,
which shows PSO is easily trapped in local optima. SAP’s final
solution is better than PSO because it integrates the Metropolis
acceptance rule to jump out of local optima and increase
the search capability in the early stage. Yet, SAP’s final
solution is worse than those of GLP, GSP, and AGSP, which
proves that GA’s mutation, crossover, and selection operations
improve the diversity of solutions in the high-dimensional
space. Compared with PSO, GLP, and SAP, it is shown that
GSP and AGSP which integrate genetic operations and the
Metropolis acceptance rule achieve excellent performance.
However, AGSP searches more quickly in the early stage than
GSP because of its improved search strategy and adaptive
update of weights. Consequently, AGSP’s final fitness value is
reduced by 136.5%, 88.99%, 57.76%, and 9.41%, respectively,
compared with PSO, SAP, GLP, and GSP. Thus, AGSP finds
the best solution with fewer iterations and a much shorter time.

Fig. 5(a) shows the total system cost concerning the number
of MUs (M) given K =3. AGSP always yields the lowest total
system cost among all the algorithms. As M increases, the total
system cost rises. When M ≤10, the problem dimension is low,
and the solutions of all the algorithms have no particular dif-
ferences. Yet, when M>10, the problem dimension increases
significantly and becomes more complicated. Specifically,
AGSP achieves lower total system cost than PSO, SAP, GLP,
and GSP by 50.99%, 50.13%, 58.51%, and 26.97% when
M =20, respectively. Fig. 5(b) shows the impact of Ck on the
total system cost. The total system cost of all the algorithms
decreases as Ck increases because EUAVs cache more files
and respond faster to the MUs’ tasks. It is observed that when
Ck =0, EUAVs do not possess caching capabilities, requiring
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(a) (b) (c)

Fig. 5. Total system cost of different algorithms with different M, Ck , and Fk . (a) Total system cost versus M. (b) Total system cost versus Ck . (c) Total
system cost versus Fk .

MUs to retrieve cached files from the cloud. This significantly
increases the transmission latency, leading to an increase
in the total system cost. In addition, it is proven that the
caching decision variable significantly impacts the total system
cost. When Ck is slight, many MU tasks cannot be cached,
significantly penalizing the total system cost. As Ck increases,
the gap between the AGSP and benchmark algorithms reduces
because all the tasks are cached, and further increases in the
cache capacity do not significantly affect the total system cost.
Therefore, it is not economical to increase caching capability
incessantly. Fig. 5(c) shows the impact of Fk on the total
system cost. Similar to Fig. 5(b), as Fk increases, the total
system cost decreases because higher edge capabilities lead
to faster task execution. Furthermore, different from that in
Fig. 5(b), the total system cost of all the algorithms (especially
GSP and AGSP) in Fig. 5(c) gradually approaches specific
values. This is because tasks can be executed only when their
required cache files are downloaded to their MUs. As Ck

increases, the transmission latency of cache files decreases.
Fk is still limited, thereby leading to considerable execution
latency. As Fk increases, the EUAV’s computation capacity
is improved significantly. Therefore, MUs prefer to offload
tasks to EUAVs, which leads to lower latency and less energy
consumption than the cloud.

To demonstrate the superiority of AGSP in the problem, this
work compares it with the state-of-the-art strategies.

1) A1: UAV-enabled local and edge collaboration without
the cloud. EUAVs serve as the edge servers with similar
configurations in AGSP.

2) A2: Uniformly distributed EUAVs. EUAVs are evenly
distributed in the area with the same height and remain
fixed. A2 is achieved with AGSP, excluding the optimiz-
ing trajectories of EUAVs.

Fig. 6 shows that AGSP achieves the best strategy compared
with A1 and A2 when M =12 and K =5. Specifically,
the system total energy consumption with AGSP is reduced
by 8.39% and 7.46%, respectively, and the average latency
of MUs is reduced by 8.46% and 10.11%, respectively.
This demonstrates that optimizing the trajectories of EUAVs
and incorporating the cloud into the MEC system positively
impacts saving energy consumption and reducing latency.

Fig. 6. Energy consumption and the average latency of MUs versus different
strategies.

Fig. 7. Ratios of tasks executed in MUs, EUAVs, or the cloud versus MUs’
density.

Fig. 7 illustrates the task allocation ratio under different
densities. It is observed that the ratio of MUs increases
as the density of MUs increases. This trend arises because
the number of EUAVs and their computation capacities are
limited. The computational capacities of EUAVs gradually
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(a) (b) (c)

Fig. 8. Total system cost of different K with different Cm, Dm, and ζm. (a) Total system cost versus Cm. (b) Total system cost versus Dm. (c) Total system
cost versus ζm.

become insufficient to meet MUs’ increasing demand. Even
though the cloud owns sufficient computation resources, it has
to rely on EUAVs that serve as relays to transmit offloaded
tasks. Thus, more MUs have to execute tasks by themselves.
Additionally, more tasks are offloaded to EUAVs than to the
cloud because EUAVs are closer to MUs.

Fig. 8 shows the impact of parameters, including the size of
cached files Cm, the size of computational tasks Dm, and the
workload ζm on the total system cost with M =10 and K =
{1, 3, 5}. Fig. 8(a) shows that the total system cost increases
with Cm because EUAVs easily handle tasks with smaller Cm.
In contrast, tasks with larger Cm require computing resources
in the cloud, resulting in increased total system cost. Fig. 8(b)
shows that with fixed M and K, as Dm increases due to the
increasing transmission latency between MUs and EUAVs,
and that between EUAVs and the cloud, the total system cost
also increases. Consequently, the computational capabilities of
EUAVs and the cloud significantly reduce processing latency,
which is much shorter than the transmission latency. Thus,
all MUs choose local computing modes, and the total system
cost gradually levels off at a stable value. Similarly, as
shown in Fig. 8(c), as ζm increases, the total system cost also
increases. When ζm is small, the local computation can meet
the QoS requirements of MUs, avoiding long transmission
latency among MUs, EUAVs, and the cloud. However, when
ζm is large, local computing cannot meet the MUs’ QoS
requirements, necessitating assistance from more powerful
EUAVs and the cloud. Furthermore, it is observed that with
fixed K, the total system cost increases approximately linearly
with ζm, consistent with the model in Section III. Furthermore,
as shown in Fig. 8(a)–(c), it is shown that increasing K
simultaneously improves the capabilities of data transmission,
caching, and computation, thereby reducing the total system
cost.

VI. CONCLUSION

This work proposes a layered UAV-assisted hybrid cloud-
edge system. EUAVs are used as the MEC servers to
collaborate with a remote cloud to provide resources to terres-
trial MUs. Based on the architecture, a task offloading method
among the MUs, EUAVs, and the cloud is investigated. This
work minimizes the total system cost by jointly optimizing

the associations between the MUs and EUAVs, transmission
power and computing speeds of MUs, and offloading ratios of
tasks of MUs. In addition, many real-life constraints, including
user-specific latency of tasks of MUs, transmission power,
computing speed limits of MUs, energy limits of MUs and
EUAVs, and caching and computing capacities of EUAVs, are
jointly considered. Then, a constrained MINLP is formulated,
which is solved with a novel hybrid metaheuristic algorithm
named AGSP. AGSP integrates the advantages of PSO, GA,
and SA. Numerical results prove that compared with its four
benchmark peers, AGSP reduces the total system energy
consumption by at least 7.46% and the total latency of tasks
by at least 8.46%, respectively.

The implicit and hidden features in yielded solutions in
iterations in AGSP are not well learned with deep learning
models in this work. In the future, we intend to improve AGSP
by integrating more deep learning mechanisms, e.g., stacked
autoencoders, to handle the higher-dimensional optimization
problems, thereby realizing a more scalable system with more
MUs and EUAVs in more complex scenarios.
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