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Abstract—Akey factor of win–win cloud economy is how to trade
off between the application performance from customers and the
profit of cloud providers. Current researches on cloud resource al-
location do not sufficiently address the issues of minimizing energy
cost and maximizing revenue for various applications running in
virtualized cloud data centers (VCDCs). This paper presents a new
approach to optimize the profit of VCDC based on the service-level
agreements (SLAs) between service providers and customers. A
precise model of the external and internal request arrival rates is
proposed for virtual machines at different service classes. An an-
alytic probabilistic model is then developed for non-steady VCDC
states. In addition, a smart controller is developed for fine-grained
resource provisioning and sharing among multiple applications.
Furthermore, a novel dynamic hybrid metaheuristic algorithm is
developed for the formulated profit maximization problem, based
on simulated annealing and particle swarm optimization. The pro-
posed algorithm can guarantee that differentiated service quali-
ties can be provided with higher overall performance and lower
energy cost. The advantage of the proposed approach is validated
with trace-driven simulations.

Note to Practitioners—Resource allocation plays an impor-
tant role in constructing scalable and green VCDC. This work
presents a novel and fundamental framework to achieve dy-
namic fine-grained resource allocation. It develops a dynamic
fine-grained resource allocation model with non-steady states
according to the external and internal workload of different re-
source-intensive applications in a VCDC. In order to meet the SLA
requirements of Gold and Silver services for various applications
while maximizing profit, this work proposes a dynamic hybrid
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optimization algorithm by combing particle swarm optimization
and simulated annealing. The experimental results show that the
proposed method has a great potential to maximize the VCDC
provider’s profit. The proposed framework can aid the design and
optimization of industrial cloud data centers and practitioners’
understanding of SLA aspects of various applications.

Index Terms—Data center, dynamic resource provisioning,
heuristic algorithm, optimization.

I. INTRODUCTION

W ITH THE wide deployment of cloud computing ser-
vices, virtualized cloud data centers (VCDCs) have be-

come increasinglymore important. Various applications concur-
rently running in VCDCs, are intensive on different resources,
such as CPU- and I/O-intensive ones (i.e., computing-inten-
sive and data-intensive applications), thus require various in-
frastructure resources [1]. Traditional resource allocation for a
single type of resource intensive application is inefficient, since
it can lead to much resource waste. For example, compute (or
CPU)-intensive applications may occupy CPU resources for a
long time, while wasting I/O resources in a physical machine
(PM) or virtual machine (VM). Note that in this work, I/O refers
to local disk I/O excluding network-based storage such as the
elastic block store and simple storage service. Moreover, due
to the increasing energy cost associated with data centers [2],
[3], it will be too costly to increase the number of servers in
VCDCs at its current pace. It is thus challenging for VCDC ad-
ministrators to meet a service level agreement (SLA) due to the
dynamic multiresource sharing among various types of appli-
cations including computing-intensive and data-intensive jobs.
A number of dynamic resource provisioning methods, such as
round-robin [4], control-theoretic [5], andmachine-learning [6],
have been proposed for effective allocation of such resources
as CPU, memory, storage, and network bandwidth to various
applications.
Unfortunately, most existingmethods fail to realize the objec-

tives to minimize service provider’s energy cost and maximize
revenue in complex cloud environments. They mainly focus
on a single type of resources even in multiresource environ-
ments where customers have heterogeneous resource require-
ments. For example, a Hadoop scheduler [7] always allocates
the fixed-size partition of PM resources to different requests
in these clusters. It ignores the fact that the requests may have
varying demands for CPU, memory, and I/O resources. In recent
years, the virtualization technology consolidates multiple on-
line application services into fewer physical resources. Based on
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virtualization, some resource provisioning strategies offer dy-
namic VM provisioning, workload consolidation, and efficient
operation of VMs and PMs. They are very helpful for VCDC to
achieve high utilization and energy efficiency, and can greatly
improve the traditional offline capacity planning process.
This study provides a way to allocate various heterogeneous

resources to requests from different applications in a virtualized
cloud data center (VCDC). It enables dynamic fine-grained re-
source provisioning, which turns on a minimum number of VMs
to meet the current demand and dispatches the workload among
running VMs to meet SLAs. In this regard, it is significant to
realize the high overall utilization of infrastructure resources,
minimization of energy cost, and maximization of the revenue
of a VCDC provider. Here, there is a tradeoff between a VCDC
provider’s energy cost and revenue. Our method focuses on the
profit maximization problem and provides dynamic fine-grained
resource provisioning while meeting the SLA demands of dif-
ferent resource-intensive applications in a VCDC.
To summarize, our contributions in this work are threefold.
1) We accurately compute request arrival rates based on the

external and internal workload for resource-intensive ap-
plications, and establish an analytic probabilistic system
model to deal with non-steady states in a VCDC.

2) We formulate the profit maximization problem as a mixed
integer nonlinear programming (MINLP) and propose a
dynamic hybrid provisioning algorithm to solve it.

3) We propose a novel Smart Controller (SC) to support a
dynamic fine-grained resource provisioning based on the
SLA demands of heterogenous applications, and evaluate
its effectiveness via trace-driven simulation.

The rest of this paper is organized as follows. Section II dis-
cusses the related work. Section III describes the motivation
and VCDC architecture. Section IV constructs a system
model. Section V formulates the profit maximization problem
of multiple resources, and proposes a solution algorithm.
Section VI presents the performance evaluation results.
Section VII concludes this paper.

II. RELATED WORK

A. Dynamic Resource Allocation
As a fundamental problem in VCDCs, resource allocation

aims to provision limited resources while guaranteeing the
arrival performances of customer requests. Recently, a number
of methods on resource allocation in VCDCs have been pro-
posed [8]–[12]. For example, Xiong et al. address the issue of
how to intelligently manage the resources in a shared cloud
database system and present SmartSLA, a cost-aware resource
management system. SmartSLA consists of the system mod-
eling module and the resource allocation decision module, and
adjusts the resource allocations to achieve the optimum profit
[10]. However, they only consider the action cost related to
database systems. Xia et al. propose a stochastic model and
quality evaluation approach for Infrastructure-as-a-Service
cloud by considering expected request completion time, re-
jection probability, and system overhead rate as key quality
metrics [11]. According to [12], compared with a dynamic
resource provisioning method, a static one cannot dynamically

serve varying workload demands while meeting contracted
SLA guarantees. However, they use static linear models that are
obtained by a system identification method where the parame-
ters are identified offline. In general, the above researches fail
to provide an appropriate provisioning approach for end-to-end
SLAs. Moreover, they cannot be directly applied to resource
allocation for various kinds of applications. In contrast, this
paper proposes a VM profit model for the fine-grained sharing
of physical infrastructure according to the request arrival rates
of computing-intensive and data-intensive applications.

B. Virtualized Resource Allocation
Virtualization technology is an efficient resource sharing ap-

proach to support various applications in VCDCs [13]–[20]. It
can allocate physical resources to separate VMs and realize ap-
plication isolation. However, the high variability of workload
poses a challenge to accurately predict the requirement of each
resource. For example, Menascé et al. consider the issue of au-
tonomically allocating CPU resources to various VMs as work-
load varies [15]. In order to do so dynamically, Kalyvianaki et
al. adopt Kalman filters to track and control CPU utilization in
virtualized environments [16]. Khazaei et al. propose models to
consider the important features of cloud centers such as batch
arrival of user requests, resource virtualization, and realistic ser-
vicing steps, to obtain important performance metrics including
task blocking probability and total waiting time incurred on user
requests [17]. In contrast to these researches, our work can sup-
port a fine-grained and heterogeneous resource allocation for a
virtualized cloud computing environment.
Garg et al. tackle the resource allocation problem within a

datacenter that runs different types of workloads, particularly
non-interactive and transactional applications. They propose ad-
mission control and schedulingmechanismwhich not onlymax-
imizes the resource utilization and profit, but also ensures the
SLA requirements of users [18]. Padala et al. present a resource
control system that achieves application performances by au-
tomatically adapting to dynamic workload changes [19]. They
provide an MIMO resource controller to manage multiple re-
sources. Zhu et al. propose a resource provisioning method with
budget constraints for a class of adaptive applications in cloud
environments [20]. Different from theirs, our method cannot
only provide differentiated service qualities but also reduce en-
ergy cost. Moreover, our method can accurately compute re-
quest arrival rates according to different resource-intensive ap-
plications in a VCDC.

C. SLA-Based Non-Steady State Allocation
Recently, a few studies focus on SLA resource allocation is-

sues for data centers. However, they cannot be readily adapted
to cloud computing environments because they usually assume
equilibrium states and adopt mean value analysis [21]–[23]. For
example, Urgaonkar et al. present an analytical model of dy-
namic resource provisioning for multitier clusters [21]. How-
ever, they assume that available resources are always sufficient,
and fail to consider total profit maximization based on different
performance demands. Lama et al. propose an efficient resource
allocation optimization model [22]. Its integration with an in-
dependent fuzzy controller provides superior performance in
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resource utilization and end-to-end response time guarantee.
However, the resource contention problem is not addressed in
their work. They fail to provide heterogeneous server configura-
tion in virtualized systems. Goudarzi et al. pose an SLA-based
resource allocation problem for cloud computing environments
[23]. They consider CPU, memory and network resource re-
quirement. However, their single and simple M/M/1 queueing
system cannot reflect real cases well.
Different from the prior work, based on the variability of

workload for various applications, this work provides dynamic
fine-grained allocation for each virtualized resource by a model
that considers non-steady state situations through the proba-
bilistic analysis of archived VCDC performance.

III. MOTIVATION AND SYSTEM ARCHITECTURE

While previous work on resource allocation focused on single
type of resources or some particular certain applications, the ad-
vent of cloud computing environment and multicore processors
enables one to meet heterogeneous application demands. In a
traditional data center, each PM can only serve one application
at a time. By contrast, in a VCDC, when a service request is
processed, a prebuilt image is used to create one or more VM
instances. When the VM instances are deployed, they are provi-
sioned with specific CPU, memory, and disk I/O capacity. VMs
are deployed on PMs, each of which may be shared by multiple
VMs.
Existing schedulers for data centers ignore the SLA demands

of heterogeneous applications. This leads to inefficient and
sometimes infeasible resource allocation to meet different
application demands. For example, the requests of com-
puting-intensive applications typically occupy CPU resources
for a long time. This may waste a large amount of I/O resources
allocated to them. Therefore, it is meaningful to satisfy the
SLAs of resource-intensive applications by allocating their
corresponding types of virtualized resources. In this way, we
can improve the overall resource utilization in a VCDC, and
reduce the unnecessarily occupied resources. Meanwhile, we
can ultimately maximize a VCDC provider’s profit.
One particular motivation of this work is due to the clear

need to pack together applications with complementary mul-
tiresource allocation requirements, such as placing a compute
(or CPU)-intensive VM and a data (or I/O)-intensive VM on
the same PM.We propose a Smart Controller (SC) architecture,
as shown in Fig. 1. In this work, to improve a VCDC perfor-
mance and maximize its profit, we use the SC to support a dy-
namic fine-grained resource provisioning according to the SLA
demands of heterogeneous applications.We accurately compute
request arrival rates based on the external and internal work-
load for resource-intensive applications, and establish an ana-
lytic probabilistic system model to deal with non-steady states
in SC. SC can also minimize the consumption of computing and
storage resources by specifying the number of PMs and VMs,
as well as CPU and local disk I/O shares per VM at each control
interval.
Moreover, we assume that PMs and VMs are categorized into

three states: hot (i.e., powered on with running), warm (powered
on, but not ready), and cold (powered off) [24]. Powered on PMs
and VMs are placed in hot and warm clusters, while powered off

Fig. 1. System architecture.

ones are placed in cold clusters to reduce energy consumption
during the periods of small workload. Due to different perfor-
mance levels of various applications, in our work, Gold services
pose higher performance requirement than silver ones. Besides,
the operating systems are encapsulated into each separated VM.
Thus, multiple VMs can be used for parallel processing of var-
ious applications.
Based on the proposed architecture, Section IV constructs

a system model. Section V formulates a dynamic multiple re-
source provisioning problem with the purposes of maximizing
the profit, and gives an optimization algorithm to solve it.

IV. SYSTEM MODEL

The arrival rates of service requests for a wide variety of
applications can vary from time to time at a VCDC. To im-
prove a VCDC performance and maximize its profit, we first
develop a system model. Our control objective is to maximize
the profit generated by Gold and Silver services for resource-in-
tensive applications under a time-varying workload by dynam-
ically tuning the following parameters at the beginning of each
control interval. Parameters are summarized in Table I.

A. System Dynamics
A VCDC is a group of VMs distributed across one or more

PMs, cooperating to host multiple applications. Its dynamics
for Gold and Silver service classes at multiple resources is de-
scribed by a discrete-time state-space equation

(1)

where is a system state at time .
denotes control variable, and is a system input at time .
Function captures the relationship among state, control vari-
able, and system input.
Its state of the th service class is denoted as

(2)
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TABLE I
SYMBOLS USED IN FORMULATION

where is its expected average response time.
is the expected number of queued requests into the th resource
type. and are the numbers of finished and re-
jected requests in SLA of the th intensive application for the
th service class, respectively.
Its control variable related to the th service class is denoted

as

(3)
where and are the number of powered on PMs and
VMs, respectively. and are system-wide control
variables indicating the number of hot PMs and VMs, respec-
tively. and are CPU and I/O allocations of the
th VM in the th intensive application for the th service class,
respectively. is workload fraction directed to the th
VM. Note that for the sake of simplicity, throughout the re-
mainder of this paper, we will simplify notations that contain
, and remove from these notations. For example, is
simplified as .

The system input is the workload arrival rate. We design
as a difference model for a VCDC. The average workload

arrival rate of the th intensive application for the th service
class into the th resource type in a VM is given by

(4)

where is an external workload arrival rate, and we adopt
the Gauss-Seidel iterative method [25] to approximate and

. denotes the probability that when a th intensive
application finishes at resource type , it next moves to resource
type for the th service class.
Then, the total average arrival rate from both the internal and

external of all intensive applications for the th service class
into the th resource type in a PM is denoted by , i.e.,

(5)

where and denote average and external arrival
rate of the request of the th intensive applications for the th
service class into resource type , respectively.
Thus, the total average arrival rate from both the internal and

external of all intensive applications for the th service class
into the th resource type is given by

(6)

The service rate of a VCDC is determined by the number
of powered on VMs, and CPU and disk I/O allocations given to
each VM at time . In this paper, we assume that hot PMs and
VMs equal to powered on PMs and VMs, respectively. Each
VM is assigned a share of the PM's CPU, memory, and local
disk I/O. In addition, each VM uses the function to map
CPU and disk I/O allocations of the VM in a VCDC
to a corresponding processing rate. Therefore, we can obtain the
following equations:

(7)

(8)

We assume that the sampling period is , time interval is ,
e.g., 30 s, and total interval times in sampling period, that is,

, to capture the system dynamics. The initially measured
queueing length is at this time period. When is
small, a VCDC is not fully utilized. At this time period, we first
measure the whole real service rate of a VCDC. We assume
that request arrival rate and service rate are fixed in
sampling period. The instantaneous queueing length
at any time in the next sampling period is obtained by using
the current queueing length , incoming workload
dispatched to a VCDC, and service rate . It can be obtained
by

(9)
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That is, the queueing length at any time in the next
sampling period equals to the current queueing length
plus new arrivals of service requests, and minus the number of
service requests that are handled by a VCDC within sampling
period .
Based on (9), the average length of the queue in the next sam-

pling period is

(10)

In order to calculate the average response time of requests in
the next sampling period, we consider the following two cases
based on arrival and service rates.
1) If , the system is underloaded,

i.e., the th type resource is enough to process all requests
of the th intensive application for the th service class in
a VCDC. Therefore, the system can stay at its steady state.
Here, the whole actual service rate is related to .
Besides, the queueing length in the next sampling period
decreases with time. Based on the initial value of current
queueing length , we further consider the two
subcases: a) if , we assume that the
queueing system has already entered a relatively steady
state, therefore, the response time is calculated via
a steady model [14]; b) if , the queue
length begins to decrease from the initial length .
Then, can be rewritten as

(11)

where denotes the average number of requests waiting
in the queue. Based on the preceding steady-state analytic
model, it is calculated as

where is the probability of the case that there are
requests in the queue. We adopt the birth and death state
equilibrium equations of Markov processes [26] to obtain

.
Then, the average response time is obtained as

(12)

where denotes the average number of requests that
are being processed in the queue. Based on the preceding
steady-state analytic model, we have

2) If , the system is at an over-
loaded state, i.e., it cannot stay steady. Therefore, the

whole actual service rate is . The queueing length in
the next sampling period increases, i.e.,

(13)

Then, given the average queueing length, based on the
Little’s Law [27], we have the average response time

(14)

Let denote the total expected average response time in
aVCDCof the th intensive application for the th service class.
We use subscript to show resource type , and superscript
the th intensive application

(15)

where denotes expected average response
time of resource type for the th service class. means
the probability that the th intensive application from type re-
source leaves VM . expresses the probability that it from
resource type returns to resource type to repeat the process.

shows the probability that it from resource type goes to re-
source type . denotes the probability that the th intensive
application from resource type returns to resource type to re-
peat the process. We assume that the time for deploying an ap-
plication and switching on VMs is ignorable. In addition, CPU
and local disk I/O resource overheads in VMmigration may fur-
ther degrade application performance on an already congested
node. Therefore, VMmigration is mainly effective for sustained
rather than transient overload. We also assume that the time for
VM migration is ignorable.

B. Energy Consumption
In order to reduce CDC’s machine-level energy consumption,

the number of hot servers should be dynamically adjusted ac-
cording to the rate of receiving service requests. Each server can
only serve one request at a time in CDC. However, a CDC typ-
ically runs multiple VMs on each PM. It is thus highly desired
to pack together requests with complementary resource require-
ments. This work focuses on critical machine-level energy con-
sumption, and therefore does not directly account for CDC-level
energy conversion loss and the energy used for cooling infra-
structure. We thus use CPU utilization as the main signal of ma-
chine-level activity. Therefore, we model energy consumption
for a VCDC such that it is proportional, roughly linear, to its
utilization. Multiple studies have shown that CPU utilization is
indeed a good estimator for power usage [28]. We use to
denote the maximal number of VMs in a VCDC. Let
denote that the number of hot VMs is not more than that of
power on VMs at time . We then have the machine-level
power usage of a VCDC

(16)
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where denotes its average CPU utilization of the
th intensive application for the th service class at time . ,
, and are the fixed power, variable power, and empirically

derived correction constant, respectively [29]. Note that in our
works, is set to zero

(17)
(18)

where denotes the average peak power when a VM is
handling a service request. is the average idle power draw
of a single VM of the th intensive application for the th ser-
vice class. is the power usage effectiveness of a VCDC. From
(16), the energy consumption at a VCDC increases as we power
on more VMs or hot VMs at higher utilization.

V. PROFIT MAXIMIZATION PROBLEM

A. Optimization Problem Formulation

In order to maximize profit, this work presents a profit func-
tion. We focus on the multiple resource allocation problem for
various intensive applications of different service classes in a
VCDC. If denotes the operating state and is control
variable, the profit generated at time is given by

(19)

where revenue is determined by whether SLA is met or not from
the corresponding function, if , “meeting SLA” is
of a reward type; otherwise, “violating SLA” is of a refund type
or loss one. Cost is the machine-level energy consumption as
incurred by hot PMs and VMs according to their operational
states.
1) Revenue Modeling: The total revenue function collected

by a VCDC at sampling period can be calculated as

if

otherwise

(20)
where and are the unit request revenue and refund of the
th intensive application for the th service class, respectively.

According to the predicted result of the system metrics, we can
conclude that if , ,
and . and denote the number of finished
and rejected requests within sampling period for the th in-
tensive application of the th service class, respectively. Oth-
erwise, if , to take advantage of the steady-state
queueing network model, we use a binary search method to de-
termine the threshold of the request arrival rates, denoted as

. Therefore, the number of finished and rejected requests
within sampling period for the th intensive application of
the th service class is
and , respectively.

denotes the total revenue received by a VCDC for the
requests of the th intensive application for the th service class
that are handled before an SLA-deadline. denotes the

total refund paid to customers for the requests of the th inten-
sive application for the th service class that are not handled
before an SLA-deadline.
2) Cost Modeling: The machine-level power-consumption

cost of a VCDC is usually determined by unit-time power usage
, that is, the total energy cost of hot and warm VMs. The

request arrival rate of a VCDC is or
service requests per second. A VCDC’s

average CPU utilization at time can be obtained as:
1) underloaded:

(21)

2) overloaded:

(22)

where since we consider the processing capacity of CPU
only, resource type refers to CPU. Then, the machine-
level energy consumption associated with a VCDC at time
can be given by

(23)

Let denote the instantaneous electricity price. Therefore,
the total machine-level energy consumption cost at the sampling
period can be calculated as

(24)

In Section IV, we will use the pricing information to obtain
VCDC's cost of electricity.
3) Profit Maximization: In this paper, we assume that a work-

load admission control policy to a VCDC is provided ahead of
time. The resource allocation problem in question is how to dy-
namically allocate CPU and I/O resources among VMs with the
goal of maximizing the global profit function, i.e., our work fo-
cuses on VCDC’s energy expenditure and its revenue for var-
ious resource-intensive applications. Our proposed SC’s goal is
to find optimal CPU and I/O resource allocations of PMs for
the set of VMs while maximizing the profit of a VCDC.
Therefore, based on the given profit function in (19), the final

profit maximization problem (PMP) can be summarized as fol-
lows:

s.t.

(25)
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(26)

(27)

(28)

(29)

(30)

(31)

(32)

where denotes control interval length. The control constraints
can be updated periodically at the beginning of each control
interval, , i.e., seconds,
and are unchanged in the control interval. Constraints (25) and
(26) ensure that the total number of hot PMs and VMs cannot
exceed their respective maximum number at sampling period .
Constraint (27) forces the controller to conservatively operate at
least VMs at all times to accommodate a sudden spike in
request arrivals. Here, we set . Constraint (28) shows
that is workload fraction directed to the th VM. The
control variable indicates whether the th
VM of the th intensive application for the th service class is
allocated to PM . Constraints (29) and (30)
ensure that the cumulative CPU and I/O given to VMs does not
exceed the maximum capacity available on PM . Constraint
(31) states that the expected average response time
cannot exceed the target response time of the th intensive
application for the th service class specified in SLA. Constraint
(32) shows that the situation of steady and non-steady states.

B. Solution Algorithm
We first apply the method of a penalty function to convert

constrained problem PMP into an unconstrained one (UPMP).
Each equality or inequality constraint introduces a penalty to
the objective function in PMP. For an optimization problem
with equality constraints and inequality constraints, each
equality constraint brings the penalty
of while each inequality constraint

brings the penalty of . Let and de-
note the total penalty brought by all constraints and the vector
of control variables, respectively. can be calculated as

(33)

Therefore, the unconstrained problem UPMP is shown as

(34)

where the parameter is a relatively big positive constant.
Based on the optimization problem formulated in the above

section, this subsection presents a solution algorithm for the
problem which is used by SC. Note that in the problem, objec-
tive functions and are nonlinear. Besides, and

are integer variables, while and are contin-
uous ones. The optimization problem contains both discrete and
continuous variables, and involves nonlinear objective function.
Therefore, the formulated problem is a mixed integer nonlinear
programming (MINLP) [30], which is NP-complete.
Several present algorithms have been proposed to tackle

MINLP, e.g., equality relaxation [31], and branch and bound
[32]. However, they usually rely on the problem specific
structure based on which the original problem is converted
into another particular problem that can be solved in an easier
way. They converge to the global optimum but at the expense
of sometimes unacceptably long execution time. Existing
metaheuristic methods can prevent drawbacks of the above
algorithms, and are robust to solve many optimization problems
with different types of mathematical structures. Though they do
not guarantee the globally optimal solution, they can be easily
implemented, and therefore they have been commonly applied
in solving complex MINLP problems. However, different
metaheuristic algorithms exhibit their respective strengths
and weaknesses. For example, particle swarm optimization
(PSO) can obtain solutions in a quicker way, but easily trap
into local optima when it is adopted to tackle MINLP ac-
cording to [9]. Simulated annealing (SA) can converge to
the global optima by accepting worse solutions according
to the Metropolis criterion [33]. However, its convergence
speed is relatively slow especiallyfor complex MINLP with a
large search space.
To ensure a timely solution with acceptable quality, which

is critical in a VCDC, we propose a hybrid metaheuristic algo-
rithm, HSPA, to solve the proposed problem. This work com-
bines the strengths of PSO and SA for solving MINLP while
keeping some speed advantage. In the proposed algorithm, each
particle dynamically updates its current position based on other
particles’ and its own positions. Different from PSO, the old
and new positions of each particle are compared in terms of an
objective function. In each iteration, better solutions are directly
accepted into the next generation while worse ones are accepted
to escape from local optima and finally obtain global optima.
Therefore, the proposed algorithm can increase the possibility
of finding the globally optimal solution that can maximize the
profit of a VCDC.
The profit maximization problem is solved by HSPA shown

in Algorithm 1. We first introduce the notations in HSPA.
denotes the inertia weight used to limit the variation of each
particle’s velocity. and denote the upper and lower
bound of inertia weight, respectively. denotes the local ac-
celeration coefficient that represents individual search ability of
each particle. denotes the social acceleration coefficient that
shows the global search ability of each swarm. To prevent un-
expected roaming positions of particles, the range of each par-
ticle's velocity is limited to . denotes the best
position of all particles in current swarm. In addition, de-
notes the best position of every particle in current swarm. Be-
sides, and denote the cooling rate of temperature and
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the initial temperature, respectively. and denote the total
number of iterations, and the size of the swarm, respectively.

Algorithm 1. HSPA

1: if then

2: Randomly initialize position and velocity of each
particle in of size

3: else

4:

5: end if

6: Update the fitness values of all particles in

7: Update and

8: Initialize , , , , , and

9:

10:

11:

12: while and do

13: Update positions and velocities of all particles
according to the acceptance criterion of Metropmolis

14: Calculate fitness values of all particles in

15: Update and

16:

17:

18:

19:

20: end while

21: Output

In Algorithm 1, Line 2 randomly initializes the first swarm if
. Otherwise, Line 4 shows that positions and velocities of

all particles in are initiated with . Line 6 updates the
fitness values of all particles in based on (34). Then, Line
7 updates and . Lines 9–10 initiate the inertia weight and
the temperature with , and , respectively. The while
loop is shown in Lines 12–20. Line 13 updates positions and
velocities of all particles in according to the acceptance
criterion of Metropolis. Lines 14–15 evaluate the fitness values
of all particles in , and update and , respectively.
Then, the next swarm in time , , is generated in Line 16.
Lines 17–18 update the temperature, , and inertia weight, ,
respectively. Let denote the percentage of particles with the
same fitness value in . The while loop terminates when the
number of executed iterations is more than (i.e., ), or
the percentage of particles with the same fitness value in
is more than 95% (i.e., ). Line 21 outputs that can
be transformed into control variables of the profit maximization
problem in time .

Fig. 2. Service-level agreements (SLAs) in a VCDC.

VI. PERFORMANCE EVALUATION

A. Simulation Setup
Similar to the work [34], this section adopts the trace-driven

simulation to evaluate our proposed application-aware dynamic
fine-grained resource provisioning in a VCDC. Here, according
to the trace analysis of actual network business website [15], the
workload arrival rates conform to Poisson distribution. There-
fore, we assume that requests arrive in a Poisson process. This
means that the interarrival time obeys a negative exponential
distribution, which has the Markov characteristics. Every in-
teraction of a customer with the system is a separate request
which is independent of others.We adopt two applications about
different web-based service classes in our experiments: one is
RUBiS [35] that is an online auction site benchmark; the other
one is TPC-W [10] that is a transactional web e-Commerce
benchmark. The resource requests of RUBiS are different from
those of TPC-W in the variations of workloads. For RUBiS, we
use a workload mix called the browsing mix that simulates a
customer browsing through an auction site. For TPC-W, we use
a shopping mix, which simulates a customer browsing through a
shopping site. The browsing mix stresses CPU resources, while
the shopping mix exerts more demand on I/O resources. Dif-
ferent types of VMs process the corresponding intensive ap-
plications across multiple PMs. VMs can share resources (e.g.,
CPU, memory, and disk I/O) on each PM. Similar to the work
[36], we assume that a VCDC offers two service classes, i.e.,
Gold and Silver services in the proposed SLA model for re-
source-intensive applications are shown in Fig. 2. Gold and
Silver resource-intensive applications contribute revenue based
on the nonlinear pricing model that relates the expected average
response time of each request to the money that customers are
willing to pay. If the response time is below the threshold, a re-
ward is brought to the service provider. Otherwise, a penalty is
brought to the service provider.
To simulate the total workload, we adopt two request traces

with different service classes for VMs: 1) the publicly avail-
able log files from the Soccer World Cup 1998 Web site from
June 14 to July 29, 1998 [37] as the service request trend for two
service classes of RUBiS, respectively, and 2) the web trans-
action workload traces from Google’s data center [34] for two
service classes of TPC-W. Note that RUBiS and TPC-W are
CPU-intensive and I/O-intensive applications, respectively, as
shown in Fig. 3.
Consider a VCDC with and

, respectively. The exact number of hot PMs and
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Fig. 3. The workloads of CPU-intensive RUBiS application and I/O-intensive
TPC-W application.

Fig. 4. Electricity price.

VMs are updated periodically at the beginning of each control
interval, 150 s, respectively. For each hot VM, with
power-management, the idle power consumption can be as low
as 50%–65% of the peak power consumption, which can range
from 100–250 Watts [28]. We assume that the energy model is
65% idle, 1.3 U. The electricity price information is based on
the real-time pricing tariffs in Illinois Zone I, on January 1, 2015
[38], as shown in Fig. 4.
In order to evaluate the applicability and effectiveness of the

proposed approach in complex cases, we set different values for
parameters, as shown in Tables II–V. Two types of resources,
i.e., CPU and disk I/O are chosen because they are two most
typical configurations in choosing a VM instance for applica-
tion in a cloud. We assume that the SLA requirements have been
specified between two application providers and customers, as
is shown in Table II. For example, in the setting of the SLA pa-
rameters of two applications, Gold class is the strictest in restric-
tion of the SLA deadline because the corresponding customers
pay the most. However, the corresponding refund to customers
is also maximum at the same time. VM instance type requested
by each application intensive on different resources is selected
from the four VM types. According to [39], we set the number
of vCPUs to be 10 and 5 for Gold and Silver VMs, respec-
tively. The other parameters of VM instance are set to realis-
tically simulate the situation of resource-intensive applications
in Table III. We use the energy model proposed in Section IV-B.
We simulate the running cost of the system using a number of
different values including the peak server power , idle
server power and the . According to [28], the energy
parameters that we use are shown in Table IV: Gold CPU-inten-
sive VM (250 Watts peak, 125 Watts idle, 1.7 U); Silver CPU-
intensive VM (240 Watts peak, 120 Watts idle, 1.5 U); Gold
I/O-intensive VM (130Watts peak, 85 Watts idle, 1.3 U); Silver

TABLE II
SLA PARAMETERS FOR RUBIS AND TPC-W

I/O-intensive VM (100 Watts peak, 50 Watts idle, 1.0 U). The
probabilities of resource-intensive applications are provided in
Table V where RP denotes request probability.

B. Analysis and Results
For comparison, we adopted two alternative resource provi-

sioning solutions including noncapped [40] and static [41] to
evaluate the proposed method in a VCDC using trace-driven
simulations. We followed the common practice to use the static
provisioning as a benchmark to evaluate our methods. Exper-
iments with the same parameter setting are repeated several
times. They are based on a discrete-event simulator and re-
sources are allocated periodically. The noncapped method per-
mits VMs to make the most of idle CPU and I/O resources
beyond their shares. In the static method, the CPU and I/O
shares are predefined before initiating the execution, and re-
main the same during the processing. Our method can provide
performance separation for multiple intensive applications in a
VCDC, where available CPU and I/O resources for a VM must
be part of its resident PM, while idle CPU and I/O resources are
not available in a control interval of SC.
In our experiments, we first accurately compute request

arrival rates based on external and internal workload for RUBiS
and TPC-W applications, respectively. We then establish an
analytic probabilistic system model to deal with non-steady
states in a VCDC. At the same time, we apply the proposed
SC to validate our fine-grained resource provisioning method.
Fig. 5 shows the throughputs of RUBiS and TPC-W appli-
cations in each control interval of 150 s, respectively. We
observed that the throughputs for both applications in our pro-
posed model are close to those in the noncapped method, i.e.,
the actual throughputs. Moreover, the results also demonstrate
that our proposed optimization method performs better than the
static method in terms of throughputs.
Then, we show the results of resource usages for two inten-

sive applications in Fig. 6. We observed that the percentages
of shared CPU and I/O generated from our proposed model
are higher than those of the other two methods. These results
demonstrate that the systemmodel we presented in Section IV is
effective to satisfy CPU and I/O resource requirements. As we
can see, the static method fixes CPU and I/O optimal assign-
ments to be 70% and 55% for two intensive applications, re-
spectively. However, such resource assignment results in under-
utilization or overutilization during the entire execution period.
Besides, the noncappedmethod is not suitable for I/O-intensive
applications that may share the same CPU and I/O resources.
Thus, the percentage of shared I/O of this method is less.
In comparison, our method first calculates accurate CPU and

I/O request arrival rates before actually changing the current
resources allocations for CPU and I/O intensive applications.
By doing this, we are able to improve the total utilization of a
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TABLE III
PARAMETERS OF CPU AND I/O-INTENSIVE VM INSTANCE TYPES [39]

TABLE IV
ENERGY MODEL PARAMETERS FOR GOLD AND SILVER VMS

TABLE V
THE REQUEST PROBABILITIES OF RESOURCE-INTENSIVE APPLICATIONS

Fig. 5. Application throughput. (a) RUBiS throughput. (b) TPC-W throughput.

VCDC and reduce the usage CPU and I/O resources. The total
utilization is an important factor in saving energy cost. Reducing
the frequency of resource reallocations is also important for sta-
bility of a VCDC. To avoid incidental instability of performance
when VCDC resources are occupied almost completely, we set
both the upper limits of CPU and I/O utilizations of each PM in
SC to 90%. If the whole VCDC is overloaded, our method re-
jects some service requests to maximize the profit. We set con-
trol interval length in SC to and each control interval to

Fig. 6. Resource allocations comparisons on a PM. (a) CPU allocations.
(b) Disk I/O allocations.

150 s. To reduce the frequency of resource reallocations,
the control constraints remain unchanged in the control interval.
Our proposed dynamic multiresource hybrid provisioning

algorithm is able to maximize the revenue and minimize the
energy cost, while meeting all the relevant control constraints.
The result illustrated in Fig. 7 shows the accumulated total
profit in a VCDC. It can be clearly shown that our method can
always perform better than the noncapped and static methods.
The noncapped method gives an ideal value for maximizing
revenue. Since each resource request is always satisfied, the
maximum revenue is achieved. We observed that although the
revenue achieved by the noncapped method is about 12.4%
higher than that achieved by our proposed method, its energy
cost is about 65% higher than that of our proposed one. The
reasons for the high-energy cost of the noncapped method in-
clude: First, reallocating CPU and I/O resources are expensive,
especially when it is done in each sampling period of parameter
adaptation. Second, the noncapped method ignores service
classes and requested execution time. Hence, high service class
requested with long execution time can occupy more resources
for processing. Compared with noncapped and static methods,
the number of occupied resources in our model is less. Hence,
our proposed method leads to much less energy cost in the
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Fig. 7. Accumulated profit.

Fig. 8. Evolutionary curves in the 225th minute.

control interval. Above experiments show that we can evaluate
the accuracy of our resource models in comparison to the non-
capped method and static baseline method. We can conclude
that our method can realize lower energy cost and achieve
higher application profit for various application services in a
VCDC.
Fig. 8 further shows the evolutionary curves of the proposed

HSPA and baselines including PSO and SA in the 225th minute.
The total number of iterations of each algorithm is set to 1000.
We can see that among the three algorithms, PSO converges
to the final solution after the smallest number of iterations.
However, the accuracy of PSO’s final solution is the worst
because it brings the least profit. The convergence speed of
SA is the slowest, and requires 945 iterations to find its final
solution. The profit of SA is 24.21 times larger than that of
PSO. HSPA only requires 68 iterations to converge to its final
solution that brings the profit of 276.06$. Compared with SA,
HSPA can bring 40.23$ more profit after much smaller number
of iterations.

VII. CONCLUSION AND FUTURE WORKS

This paper presents a novel analytical model to calculate
profit in a virtualized cloud data center. It takes into ac-
count several usually ignored factors including the practical
service-level agreements that currently exist between cloud
providers and their customers, the amount of finished requests,
the amount of rejected requests, and price of electricity. We
accurately compute request arrival rates based on the external
and internal workloads for virtualized cloud data centers, and
establish an analytic probabilistic system model to deal with
non-steady states in a VCDC for the first time. We then propose
a novel smart controller which can realize dynamic fine-grained

resource provisioning and manage multiple resource sharing for
resource-intensive applications with different service classes.
We show that the formulated optimization problem can be
formalized as a mixed integer nonlinear program. We propose a
particle swarm optimization and simulated annealing combined
method to solve it. Finally, the simulation results based on var-
ious realistic workload traces have demonstrated the accuracy
of the proposed model and effectiveness of the proposed profit
maximization method.
We plan to extend our work to investigate how the current

approach can be generalized to support resource-intensive ap-
plications running in multiple geographically distributed cloud
data centers, and apply other resource provisioning methods to
profit maximization. In addition, we would like to consider a
more general simulation optimization method when a system
cannot be accurately modeled by a Markov process. Moreover,
network resource is very important to connect servers within a
cloud data center [42], [43]. Therefore, we plan to consider the
impact of topological structure of networks connecting all nodes
in a VCDC.
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