
 
Fig. 1 Different ways of accessing NEX components. 
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Abstract—NASA Earth Exchange (NEX) is a 

collaboration platform whose goal is to accelerate Earth 

science research, by leveraging NASA’s vast collections of 

global satellite data together with access to NASA’s High-

End Computing (HEC) facilities. NEX also aims to 

facilitate the sharing of experimental results as well as 

scientific processes (workflows) with the Earth science 

community through integration with VisTrails workflow 

management system. While VisTrails is used internally, it is 

not easily accessible from remote computers without 

directly logging into the NASA HEC systems through two-

factor authentication and a bastion host. This paper 

describes the initial design of an extensible architecture that 

facilitates easier workflow interaction on NEX, by enabling 

users to develop and execute workflows in a 

supercomputing environment directly from their local 

VisTrails installation. This architecture helps domain 

scientists seamlessly leverage distributed computing and 

storage resources and it is potentially applicable to other 

scientific workflow management software. We further 

describe the architecture of the VisTrails-HEC plugin (as 

well as the VisTrails-Amazon plugin) and the 

implementation of a working prototype to demonstrate the 

feasibility of our solution. 

 

I. INTRODUCTION 

 

The data volumes accumulated by NASA’s Earth 

observing satellites and climate models continues to grow 

rapidly. Analyzing such a vast amount of data requires 

significant computing power and data storage, which are 

usually not available to most research labs and individual 

researchers. In order to help scientists conduct research and 

analysis on large Earth science datasets, the NASA Earth 

Exchange (NEX) [1] project has been established. NEX 

combines state-of-the-art supercomputing, Earth system 

modeling, remote sensing data from NASA and other 

agencies, and a scientific social networking platform to 

deliver a complete work environment in which users can 

explore and analyze large Earth science data sets, run 

modeling codes, collaborate on new or existing projects, and 

share their results with the community. As NEX provides 

centralized access, not only does data not have to be moved 

back and forth to scientists’ local places, but also data 

analysis procedures can be operated remotely on the NEX 

by leveraging NEX’s computing power. As Fig. 1 

illustrates, NEX offers workflows as one way to access the 

super-computing resources. 

Apart from access to data and computing, as shown in 

Fig. 1, NEX accumulates a set of user-contributed Earth 

science models, analysis tools and software utilities in order 

to promote software re-use and accelerate scientific 

research. Workflow management tools, such as VisTrails 

[2], have been used to help researchers to create workflows 

[3, 4] that define the steps in the scientific process and 

provide a foundation for repeatability, transparency and 

software re-use. While NEX components are accessible 

through different ways to support better compatibility with 

legacy software as depicted in Fig. 1, the workflow 

components are most significant, because they are key in 

accelerating research through science re-use with easy 

extensibility. 

Because of the large volumes of data and complexity of 

the models involved in research and analysis on NEX, high 

computing power is typically required to conduct the 

experiments in a reasonable amount of time [5]. In order to 

leverage NASA’s computing capabilities, NEX has been 

part of the NASA High-End Computing Capability (HECC) 

project. HECC has constructed a world-class 

supercomputing and mass storage environment for 

conducting large-scale modeling, simulating, and analysis to 

answer NASA's complex science and engineering questions 

[6]. As of December 2012, over 11,776 nodes are running at 

the NASA Ames HEC center on the Pleiades 
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Fig. 2 HEC infrastructure. [5] 

Table I. Architectures of computing nodes on Pleiades. 

Node Type # of 

Nodes 

Processors 

per node 

Processor 

speed 

Memory 

per core 

Sandy Bridge 1,728 2 eight-core 

processors 

2.6 GHz 2 GB 

Westmere 4,608 2 six-core 

processors 

2.93 GHz or 

3.06 GHz 

2 GB 

Nehalem 1,280 2 quad-core 

processors 

2.93 GHz 3 GB 

Harpertown 4,096 2 quad-core 

processors 

3 GHz 1 GB 

 

supercomputer, interconnected with an InfiniBand (IB) 

network in a hypercube topology [7]. 

As Critchlow and Chin [8] indicated, however, there 

usually exists a gap between workflow design environment 

and workflow execution on supercomputers. Geoscientists 

access the HEC environment through a two-factor 

(SSH+RSA) authentication mechanism. They log into front-

end nodes and issue jobs through a scheduler to compute 

nodes [6]. On the other hand, scientific workflow tools like 

VisTrails require that all procedures run either locally or as 

remote services. Although it is possible to run VisTrails 

locally on the Pleiades system, it requires a number of 

additional steps. Additionally, Pleiades is part of a secure 

environment that does not allow access using web services. 

More critical, it is not well suited for interactive workflow 

design and execution. 

To bridge the gap between scientific workflow tools 

(e.g., VisTrails) and high-end computing, the motivation for 

our project is to allow scientists to access the HEC 

supercomputing environment with minimal knowledge of its 

operational aspects and minimal modification to their 

workflows. The direct impacts of this effort are multi-fold: 

(1) facilitating scientists in leveraging NASA 

supercomputing capabilities from the graphical interface of 

scientific workflow tools; (2) automating the process of 

migrating code and computation from development 

environment to supercomputing environment; (3) allowing 

scientists to focus on science; and (4) releasing NEX 

technical staff from a number of user support activities. 

In this paper, we present the architecture that enables 

bridging between local and remote workflow management 

systems and the implementation of a working prototype to 

demonstrate the feasibility of our solution. The remainder of 

the paper is organized as follows. In Section 2, we describe 

the current HEC infrastructure and VisTrails to explain the 

technical challenges. In Section 3, we present our 

architectural design. In Section 4, we present an intelligent 

scheduling algorithm. In Section 5, we present prototyping 

system implementation. In Section 6, we discuss related 

work. In Section 7, we draw conclusions. 

 

II. PROJECT CONTEXT 

In this section, we briefly describe the overview of the 

HEC infrastructure and the VisTrails. 

 

A. HEC Overview 

 

As illustrated in Fig. 2, HEC comprises four categories 

of nodes: Secure Front-End (SFE) nodes, Pleiades Front-

End (PFE) and Bridge Nodes, Portable Batch System (PBS) 

nodes, and four types of compute nodes. 

The front-end layer of the HEC infrastructure contains 14 

Pleiades Font-End (PFE) nodes and 4 Bridge Nodes. These 

nodes provide environments for users to perform file 

transfers, file manipulations, and job submissions. Users are 

required to first log onto Secure Front-End (SFE) nodes 

using SSH+RSA two-factor authentication in order to be 

able to log on to one of the Pleiades Font-End (PFE) nodes 

and Bridge Nodes. 

Pleiades deploys the Portable Batch System (PBS), 

developed by Altair Grid Technologies, LLC., for all 

compute job submissions, monitoring, and management. 

PBS adopts job queues to manage pending work and acts as 

a scheduler. It dispatches jobs to be run on one or more 

compute nodes, based on a combination of factors such as 

mission shares (a certain percentage of CPU’s on Pleiades 

are allocated to each NASA mission directorate), job 

priority, queue priority, and job size. After users log onto 

the front-end nodes, they are able to issue commands to 

interact with PBS to submit and manage their jobs. 

There are four architectures of computing nodes that are 

currently available on Pleiades as shown in Table I and 

users can specify the architecture type and the number of 

nodes when requesting compute time through a PBS script. 

 

B. Vistrails Extension 

 

VisTrails [2] is a scientific workflow and provenance 

management software package used in a number of different 

fields including computer graphics and Earth science 

research. As shown in Fig 3, VisTrails provides a collection 

of workflow widgets to allow users to visually design a 

multi-step executable experiment. In our project, value is 

gained by creating a solution to allow VisTrails to directly 

submit workflows as jobs to the Pleiades system from user’s 
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Fig. 3 Extension to VisTrails. 

 
Fig. 4 Workflow-HEC connection workflow. 

Table II. Quality attributes. 

 

local computer. Processing results are stored on the disk at 

Pleiades and users are notified when the job completes. 

Such asynchronous mode facilitates long-lasting VisTrails 

workflow processing. 

 

C. Technical Issues and Strategies 

 

In order to connect VisTrails to HEC, several challenges 

were identified. First, NASA Ames HEC facility only allows 

SSH access. Second, HEC compute nodes designated for 

large-scale analysis can only be accessed through a PBS 

scheduler. Third, HEC intends to support a large group of 

users and work items simultaneously, therefore 

asynchronous connections HEC are the only option. Fourth, 

there are four types of node architectures deployed on 

Pleiades, differing in CPU types, number of nodes, memory 

size/nodes, and speed. 

To address the aforementioned challenges, our strategy is 

to first identify relevant quality attributes, and then design 

an architecture around the identified attributes validated by 

the formal Architecture Tradeoff Analysis Method (ATAM) 

methodology [9]. The scope of our project is to establish a 

thin layer bridging between scientists using remote VisTrails 

installation and the high-performance computing Pleiades 

system. 

 

III. ARCHITECTURAL DESIGN 

 

Our solution is to extend VisTrails with a VisTrails-HEC 

plugin, in order to provide scientists with a built-in facility 

to submit workflow processing requests to be run on 

NASA’s Pleiades systems, and to receive updates on the 

status of their processes. We gather these processes in a 

middle-tier server, as shown in Fig. 4. More details will be 

discussed in a later section. 

 

A. Design Principles 

 

We adopted the Architecture Tradeoff Analysis Method 

(ATAM) methodology [9], a systematic architectural 

analysis method, to justify and evaluate the architecture 

designed for the project. Working with the NASA NEX 

group, we have identified the important driving quality 

attributes for the architecture as listed in the Table II: 

security, reliability, availability, usability, performance, 

scalability, extensibility, interoperability, and asynchrony. 

Three key principles in our architectural design are the 

blackboard, client/server, and publisher/subscriber models. 

The blackboard architecture model [10] is used to collect 

different scientists’ processing jobs to a central server, while 

decoupling the scientists from the HPC servers and handling 

workflow scheduling in a remote scheduling server. Such a 

remote server will contain a ‘blackboard’ of requests to be 

processed and a scheduler that employs an algorithm to 

launch scripts from a Pleiades Front-End (PFE) node. A thin 

client and fat server model is used to increase 

responsiveness on the client side. The scheduling will be 

moved to the aforementioned designated scheduler server. 

The publisher/subscriber model is also used to further 

increase responsiveness of the system. Scientists will 

subscribe to the scheduler server and receive notifications 

on the status and progress of their workflow processing 

requests. 
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Fig. 6 Deployment view. 

 
Fig. 5 Architectural design of VisTrails-HEC plugin. 

B. Workflow 

 

We studied the current interactions of a NEX user 

between VisTrails workflow design environment and 

workflow execution in the HEC system, and the process is 

summarized in Fig. 4. After designing a workflow using 

VisTrails, a scientist will need to switch to Unix prompt to 

log onto HEC using the two-phase procedure. After 

checking compute nodes availability using HEC commands, 

she can request a combination of four architecture types of 

nodes on Pleiades. The scientist can then submit the 

workflow (a job on Pleiades) to a corresponding job queue 

and later check the job status using PBS commands. After 

the job is finished, the scientist can review the job results, 

and go back to VisTrails to modify the workflow if needed 

and then repeat the process until she is satisfied with the 

results. 

Our design thus aims to bridge the gap between 

workflow design tools and the HEC environment, to provide 

system-level support to allow VisTrails users to conduct the 

aforementioned HEC-side activities without ever leaving 

their local VisTrails platform. 

 

C. Architectural Design 

 

Fig. 5 illustrates the architectural design of our VisTrails-

HEC plugin. The infrastructure consists of three tiers: front-

end, middle-tier, and backend tier. The backend tier is the 

actual HEC system hidden from NEX users. Three 

interfaces are leveraged by our system: front-end service is 

in charge of user log in access control, PBS service is in 

charge of job scheduling, and computing service is in charge 

of job execution. The front-end tier is embedded in an HEC 

plugin, which is implemented as a VisTrails extension 

module to seamlessly adapt a VisTrails workflow to the 

HEC computing environment. 

The middle tier receives compute requests from the 

front-end tier, distributes the requests to the Scheduler 

module, and schedules the requests to run in the backend 

tier. The Scheduler coordinates the usage of HEC 

computing resources, by connecting to HEC’s front-end and 

bridges servers via the SSH protocol and communicating 

with the Scheduler Agent to dispatch compute jobs 

requested by scientists. The Scheduler module gathers the 

backend tier’s status through the Job Status Monitor and the 

Compute Node Monitor, and schedules the requests 

according to the loading of the backend system. The Job 

Status Monitor is responsible for reporting the status of the 

requests to the HEC plugin. The Job Queue Monitor 

contributes to the Scheduler the availability of 

corresponding HEC job queues. 

Note that this infrastructure is not limited to VisTrails 

and NASA HEC. As shown in Fig. 5, the major component 

of the workflow-HPC connection is designed as an 

independent middle tier exposed as Web services. At the 

front end, it can interact with any workflow tool with a 

corresponding plugin. At the backend, it can interact with 

any HPC environment. 

As shown in the deployment view in Fig. 6, the middle 

tier interacts with the backend high performance computing 

HPC facility and data stores, to monitor job status and job 

queue information. The middle-tier will reside on a web 

server (e.g., Amazon EC2 server). VisTrails-HEC plugin 

interacts with the middle-tier server through two-phase 

authentication process. When a job is finished, notifications 

will be delivered to users in email. If the middle tier is 

independent outside of NASA HPC systems, for example on 

Amazon or Heroku (see Section V for details), users may 

then view the execution results through web interface online. 

 

IV. COMPUTING RESOURCE PLANNING 

 

As mentioned earlier, Pleiades system comprises four 

types of compute nodes, each with different architecture and 

in turn, with different cost of usage. As shown in Fig. 4, 

HEC interface allows a user to check the availability of the 

four types of compute nodes and select a combination of 

different types of nodes for a specific job. Up to now, users 

usually select one type of architecture to submit a single job. 

However, a job comprising components that can run in 
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parallel may assign them to different compute nodes based 

on corresponding usage costs. 

From the perspective of HEC, it is important to increase 

the overall node utilization through load balancing over all 

of its comprising computing resources. However, from a 

user’s perspective, both cost and performance (response 

time) may have to be taken into consideration to decide how 

to request compute nodes. The definitions of the key 

performance indicators (KPIs) are listed as below. 

Estimated response time (T) of a job refers to the time 

interval between when a job is submitted to a job queue and 

when the job is finished (i.e., a notification is sent to user). 

It includes the waiting time of a job in corresponding job 

queue and the execution time of the job. Since a job may be 

distributed to a combination of multiple types of compute 

nodes, its response time will take the maximum time period 

elapsed on different node types. 

 

Ω = {Sandy	Bridge,Westmere, Nehalem, Harpertown} 
� = max�∈Ω { !� + #�}	  

where tw denotes job waiting time, and te denotes job 

execution time. 

The waiting time of a job on a compute node type mainly 

depends on its load. The lighter load a compute node type 

has, the more likely the job will obtain a shorter response 

time. Note that all data, including raw data and execution 

results, are hosted at NEX, and a push-code-to-data strategy 

is adopted. Therefore, without losing generality, code 

transmission time will not be considered. In addition, job 

sections (workflow sections) distributed to different node 

types may need to communicate based on their relationships 

defined in the workflow. Transferring results among them 

may incur some overhead. In this paper, we do not consider 

such an overhead. 

Estimated cost (C) of a job refers to the sum of the cost 

over each type of the compute nodes, based on 

corresponding rate and estimated usage time. 

$ = %&� ∗ (� ∗  #�
�∈Ω

 

where r denotes the price rate of the type of compute 

node, n denotes the number of the type of node used, and te 

denotes the execution time of the job on the type of nodes. 

Since users intend to minimize their response time and 

minimize the cost they have to pay, we define a utility 

function as a weighted sum of these two KPIs: 

) = !* ∗ � − ,-.*
/ 0*

+ !1 ∗ $ − ,-.1
/ 01

 

where !*, !1 represent the weights of the response time 

and cost, respectively; ,-.* and ,-.1  represent the average 

response time and cost for the same scale of jobs, 

respectively; / 0* and / 01 represent the standard deviation 

of response time and cost for the same scale of jobs, 

respectively. 

Note that this utility function can be extended to include 

other attributes. Also note that our resource scheduling 

investigation here is from the perspective of HEC users; it 

does not conflict with the job scheduling facility embedded 

in the supercomputing center. For example, a user may 

choose to send parts of a job to Sandy Bridge nodes and the 

other parts to Harpertown nodes because the two types of 

compute nodes charge differently. 

The compute node selection problem can be thus 

modeled as a Linear Multiple-Choice Knapsack Problem 

(LMCK) [11]. Given a set of items in several classes and a 

knapsack, where each item has a weight and profit, and the 

knapsack has a capacity, LMCK aims to select a certain 

number of items in each class to be placed in the knapsack 

within the capacity yet has the highest total profit. 

The compute node selection problem can be formalized 

as a LMCK problem in the following way: 

• The compute nodes in HEC represent the items in 

LMCK; 

• The different types of Intel Xeon processors represent 

the classes in LMCK (each class comprises multiple 

items); 

• LMCK aims to select zero to many compute nodes in 

each class; 

• The objective is to minimize the response time as well 

as minimize the cost, under the constraint that the total 

response time is less than Tm and the total cost is less 

than Cm. 
 

The problem is thus formulated as: 

23(				% % !* ∗ � − ,-.*
/ 0*

+ !1 ∗ $ − ,-.1
/ 0145|78|�∈Ω

 

The LMCK problem is NP-hard. For large systems, it 

may be highly difficult to find the optimal solution. As the 

first step, we adopted Pisinger [12]’s solution to LMCK 

problem centered on a partitioning algorithm. The optimal 

solution 9∗  to LMCK is composed by the LP-optimal 

choices :� in each class, where 9�:�=1. 

 

 

V. PROTOTYPE IMPLEMENTATIONS 

 

A prototype of the proposed system has been 

implemented as a proof of concept. In spite of the fact that it 

is still a prototype, it implements the full set of usable 

features on the client side as a VisTrails plugin. These 

features include user login, job status monitoring, and job 

scheduling. A Scheduler Server has also been implemented 

to receive compute job requests and generate the PBS script. 

Along with the Scheduler Server, we also simulated the 

two-level logging process and the job execution to mimic 

the real situation since we now only have limited access to 

the NASA HEC environment. The middle tier was 

implemented as a web application deployed on the open 

Heroku platform using Ruby on Rails 

(http://rubyonrails.org/), providing RESTful web services. 
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Fig. 7 Prototyping system screen shots. 

Ruby on Rails is a popular technology known for helping 

develop web applications and services. 

As described in the previous sections, VisTrails is the 

tool currently used by NEX scientists that provides a 

graphical interface for designing and managing workflows. 

VisTrails provides a plugin infrastructure to support 

extensibility for new features. VisTrails plugins are 

implemented in Python. The GUI framework is built using 

Qt [13], a cross-platform application and UI framework 

providing tools to help streamline the creation of 

applications and user interfaces for desktop, embedded and 

mobile platforms. 

The prototype of the middle-tier is currently deployed on 

an Amazon EC2 Ubuntu instance. It monitors new 

workflow jobs sent from VisTrails users and generates PBS 

scripts according to user configurations. 

 

A. VisTrails-HEC Plugin 

 

One challenge of building the VisTrails-HEC plugin is 

the accessibility of PBS through the PFE nodes. Accounts 

must be granted to access these nodes. One prerequisite is to 

gain developer access to NASA’s computing resources. 

When prototyping the solution, we chose to simulate the 

different nodes in the Pleiades system and the servers 

involved in the plugin. However, access of NASA’s nodes 

is required to test the integration of the solution more 

comprehensively. 

The implemented VisTrails plugin adds a set of 

functionalities to VisTrails users, as shown in Fig. 7(a). 

After a workflow is designed in VisTrails, a user can sign 

onto HEC with the “Log on HECC” menu item. A dedicated 

“remoteLogin” plugin has been implemented. The included 

pexpect python package further facilitates the program to 

detect and react with RSA authentication process. 

Following HEC security settings, we have simulated a 

two-factor (SSH+RSA) logging mechanism to register a 

VisTrails session to HEC [6]. As shown in Fig. 7(b), when a 

user intends to “Send to HECC” a workflow, a phase-one 

window will pop up to allow a user enters user name and 

password. Afterwards, a phase-two window will pop up and 

prompt the user to enter the code that appears on her RSA 

token to connect to HEC. User name will be remembered by 

the VisTrails-HEC plugin through configuration. Such a 

design will allow scientists to leverage HEC resources 

without ever leaving the VisTrails environment. The second 

reason is the exploratory feature of scientific workflow 

development. When a scientist modifies a workflow and 

runs it many times, such an embedded feature will 

significantly simplify HEC connection efforts. 

NEX users can use “View CPU Usage,” “View PBS 

Status” and “View File System Status” to fetch the current 

status of HEC. Currently, we crawl the real-time Pleiades 

status pages (under 

http://www.nas.nasa.gov/monitoring/hud/realtime/) and 

render the corresponding information through the 

QWebView class in QT. Once again, we provide a single 

access point for NEX users. 

The item of “Send to HECC” will provide both 

automatic and manual ways to select computing nodes, as 

shown in Fig. 7(c). Currently, the decision vector comprises 

only performance and cost. Two automatic options are 
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provided based on user preference of which factor is more 

important. As an example shown in Fig. 7(c), performance 

is selected to be more important, and a recommendation of 

selecting a combination of computing node types and nodes 

is presented (Sandy Bridge: 4; Westmere: 2; Nehalem: 1; 

Harpertown: 1). If user agrees and clicks on the “Send to 

HECC” button, a job carrying the workflow will be sent to 

HEC system. The plugin makes this possible by uploading 

the current VisTrails project file and a generated 

configuration file to the server. A user may send multiple 

jobs to the Scheduler Server and afterwards, use the “View 

Job Status” option to retrieve job statuses. 

 

B. VisTrails-Amazon Plugin 

 

Due to the fact that not all research groups could obtain 

NASA HEC access, we have decided to build another 

plugin to connect VisTrails to an open accessible HPC 

environment. 

Rapidly advanced cloud computing technology has 

enabled Infrastructure as a Service (IaaS), which provides 

end users flexible and reliable access to resources that will 

meet dynamic computational needs. Particularly, Amazon 

EC2 offers Cluster Compute instance type optimized for 

high performance computing applications [14]. 

As a proof-of-concept example, we selected Amazon 

EC2 because it supports (limited access) free accounts. As 

another side effect, such a VisTrails-Amazon plugin opens 

up new vistas for VisTrails users without NASA HEC 

access to exploit high performance computing capability. 

As shown in Fig. 7(a), a VisTrails-Amazon plugin 

provides the same collection of facilities as those of the 

VisTrails-HEC plugin. Unlike NASA HEC using a two-

phase login process, Amazon EC2 requires a one-phase SSH 

login. A VisTrails running instance is installed on Amazon 

EC2 and workflow jobs can be thus sent to Amazon EC2 to 

be executed. After a compute job is done, the server 

automatically sends a notification email with the web link of 

results for users to view online. Fig. 7(d) shows when a user 

selects ‘View Job Status’ after a job has been submitted to 

Amazon EC2. The example shows one job is still running, 

while some jobs have been successfully executed and the 

links to their results viewable online are provided as well. 

 

C. Further Discussions 

 

The scalability of the middle-tier server holding all 

requests is a major concern, because it could be a potential 

architectural bottleneck. Because scientists submit processes 

and receive updates to and from the remote server through 

VisTrails, increased traffic to this remote server could 

impede or disrupt scientists from being able to submit their 

processes and receive updates. A potential solution could be 

to increase the number of remote servers and allow 

VisTrails to choose the remote server to use based on the 

number of current requests of each server. 

The availability of a parallel solution is another concern, 

because there are currently no openly-available ways to 

automatically parallelize a VisTrails program. Without such 

a capability, the program can only be run as a batch job and 

not in parallel. A solution to this concern could be to write 

an independent automatic parallelization component but it 

would be highly resource-intensive and still mostly 

applicable to a subset of possible programs. 

 

 

VI. RELATED WORK 

 

Scientific workflows are typically oriented to big data 

analysis thus require large computing power and mass 

storage capabilities [5]. However, Critchlow and Chin [8] 

have indicated that a gap exists between workflow design on 

workflow engines (tools) and workflow execution on 

supercomputers. 

Several scientific workflow management systems have 

been widely used nowadays. Script [15] provides a scripting 

language to allow scientists to define, execute, and manage 

large-scale scientific workflows. An execution engine is 

associated to dispatch parallel computations to Grid 

environment, based on user specifications and data flows 

defined in scripts. In Kepler [16], a workflow is comprised 

of interconnected actors (components). Such a setting 

allows actors to be executed concurrently and 

communicated with each other through interconnected ports. 

Wang et al. [17] introduce a MapReduce actor into Kepler 

supported by a Hadoop infrastructure. Kepler users can 

compose and execute MapReduce applications; and 

computations are moved to partitioned datasets and run in 

parallel. Pegasus [18] provides a pegasus-mpi-cluster tool to 

run High Throughput Computing (HTC) scientific 

workflows on systems designed for HPC. Microsoft Trident 

[19] also can run scientific workflows on Windows HPC 

clusters. Complementary to these efforts that focus on 

embedding functions in scientific workflow tools to support 

HPC capability, our project focuses on building a light-

weight plugin into scientific workflow tools to connect them 

to HPC backend. 

Juve et al. [20] studied data sharing options for 

enhancing scientific workflow performance and cost on 

Amazon EC2. Mehrotra et al. [21] explored running NASA 

HPC applications on the Cluster Compute instance of 

Amazon EC2 Services, and compared its performance with 

running NASA HPC applications on NASA Pleiades 

supercomputer (i.e., HEC). They concluded that due to 

communication overhead, the traditional supercomputer 

environments (e.g., NASA HEC) exceeds the cloud 

computing environment in running large-scale HPC 

applications requiring large core counts. However, their 

study confirms our motivation of allowing VisTrails users 

without NASA HEC access to exploit high performance 

computing capability of Amazon EC2, especially when 

single core is sufficient for running a workflow. 
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VII. CONCLUSIONS AND FUTURE WORK 

 

In order to leverage the supercomputing capabilities, 

domain scientists need to be able to quickly move code and 

computation between their development environments 

(sandbox) and the supercomputing environment at NASA 

HEC facilities. This paper describes our extension to the 

VisTrails scientific workflow tool that automates such a 

process. Regardless of the current HEC constraints, we have 

presented an “ideal” architecture that supports seamless 

migration of scientific workflows between a development 

environment and a supercomputing environment (NASA 

HEC and Amazon EC2). By providing a single access point, 

a NEX user can design workflows, send to execute on high-

end computing environment, and view execution results 

online. We believe that our work will help increase the 

number of scientists to adopt the NASA computing 

ecosystem. 

In future research we plan to construct a middle tier 

inside of NEX to host a VisTrails running environment, 

empowered by our VisTrails-HEC plugin. This layer will 

intend to provide a system-level support to handle all 

VisTrails-supported HEC access and data management. We 

also plan to accumulate practice data to create benchmarks 

for the presented workflow scheduling approach in this 

paper.  
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