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A B S T R A C T

Accurate prediction of water quality indicators can effectively predict sudden water pollution events and reveal
them to water users for reducing the impact of water quality pollution. Neural networks, e.g., Long Short-Term
Memory (LSTM) and encoder–decoder, have been widely used to predict time series data. However, as the
water quality data increases, it becomes unstable and highly nonlinear, and therefore, its accurate prediction
becomes a big challenge. To solve it, this work proposes a hybrid prediction method called VBAED to predict
the water quality time series. VBAED combines Variational mode decomposition (VMD), a Bidirectional input
Attention mechanism, an Encoder with bidirectional LSTM (BiLSTM), and a Decoder with a bidirectional
temporal attention mechanism and BiLSTM. The definition of VBAED is an Encoder–Decoder model that
uses VMD as mode decomposition, combining BiLSTM with a bidirectional attention mechanism. Specifically,
VBAED first adopts VMD to decompose historical data of a predicted factor, and its decomposed results are
adopted as the input along with other features. Then, a bidirectional input attention mechanism is adopted
to add weights to input features from both directions. VBAED adopts BiLSTM as an encoder to extract hidden
features from input features. Finally, the predicted result is obtained by a BiLSTM decoder with a bidirectional
temporal attention mechanism. Real-life data-based experiments demonstrate that VBAED obtains the best
prediction results compared with other widely used methods.
1. Introduction

As a precious resource, water is closely related to human production
and lives. With the emergence of Internet of Things (IoTs) and big
data (Fortino et al., 2021; Imran et al., 2021), a large number of high-
frequency multivariate time series data have been accumulated in a
water environment through large-scale deployment of water quality
monitoring sensors in rivers and lakes (Bi et al., 2020). An accurate
and real-time water quality prediction method can help predicting
sudden water pollution, and provide decision support for water quality
detection and warning (Dong et al., 2019). Basically, water quality
prediction is a time series prediction problem. Traditional statistical
time series prediction methods extract linear relations of data by ex-
ponential smoothing, an auto-regressive moving average model, and
an Auto-Regressive Integrated Moving Average model (ARIMA) (Guo
et al., 2019). For example, Najah et al. (2011) propose a hybrid method
based on ARIMA that utilizes the advantages of linear and non-linear
machine learning models to predict the water level of Red River.
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However, due to the development of monitoring technologies, water
quality data has become non-linear and unstable, and it is affected by
many factors. Traditional statistical methods do not well perceive subtle
water quality changes and capture non-linear characteristics of large-
scale water quality series. Then, some researchers turn their attentions
to models suitable for handling non-linear data. Zhang et al. (2020)
adopt Support Vector Regression (SVR) to predict maximum rainfall
in annual and non-monsoon sessions. However, SVR consumes a lot of
resources when processing a large amount of data. In addition, most
ordinary neural networks cannot capture long-term dependence, and
they have problems of gradient disappearance or gradient explosion.

More and more data-driven models based on deep learning are used
to realize water quality time series prediction (Baigang et al., 2021; Gao
et al., 2023; Guo et al., 2022). As a typical example, LSTM (Principi
et al., 2019) can capture long-term dependence and effectively avoid
the gradient disappearance problem in traditional recurrent neural net-
works. Liu et al. (2019) adopt LSTM to establish a set of water quality
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monitoring systems based on IoT sensors to predict the water quality of
Guazhou water sources in Yangzhou, China. Although LSTM has been
widely used in time series prediction, it can only encode from front
to back and cannot capture the information from back to front. At the
same time, due to increasing features of time series, some noise features
may have negative impact. Qin et al. propose Dual-Stage Attention-
Based Recurrent Neural Network (DA-RNN) (Qin et al., 2017), which
adopts an attention mechanism to add attention weights to the input
features. However, it cannot capture the information from back to front.
In addition, water quality data may contain both important information
and noise, which cannot be separated by above methods.

To solve the above problems, this work proposes a hybrid method
called VBAED. VBAED integrates Variational mode decomposition
VMD), a Bidirectional input Attention mechanism, an Encoder with
idirectional LSTM (BiLSTM), and a Decoder with a bidirectional

temporal attention mechanism and BiLSTM. Main contributions of this
work are summarized as follows.

(1) BiLSTM is adopted as an encoder to capture features from two di-
rections. BiLSTM is improved with a bidirectional input attention
mechanism to add attention weights to the input independently
from two directions.

(2) BiLSTM is adopted as a decoder, and it is combined with a
bidirectional temporal attention mechanism to capture the long-
term dependence, thereby adaptively selecting important hidden
states of the encoder across all time steps, and decoding them
from two directions.

For clarity, we note major differences between the current work and
our prior one (Bi et al., 2022) as follows.

1. Different from Bi et al. (2022), this work adopts a bidirectional
LSTM as the decoder to better capture the information of the
hidden states.

2. Different from Bi et al. (2022), this work adopts a bidirec-
tional temporal attention mechanism in the decoder to capture
important hidden states and ignore ones with negative effects.

3. The work in Bi et al. (2022) adopts a single type of water quality
data collected from an automatic water quality station in a
river in the Beijing–Tianjin–Hebei (BTH) region from September
2018 to December 2021. Different from it, this work further
adopts another type of water quality data of a section of the
Alabama River from May 2017 to August 2019 to demonstrate
the robustness and prediction accuracy of our proposed VBAED.

The main structure of this work is as follows. First, we describe
the related work in Section 2. We introduce details of the proposed
method in Section 3, and present experimental results and discussion
in Section 4. Finally, Section 5 draws the conclusion.

2. Related work

Accurate and real-time water quality prediction helps water envi-
ronment practitioners to deal with unexpected water pollution events
in time and protect the river ecological environment. Advanced sensors
are widely deployed to detect, transmit and measure more complex and
nonlinear water quality data (Wu et al., 2020). The strong non-linearity
of the water quality data brings a challenge for accurate water quality
prediction (Chang et al., 2015). Currently, its prediction methods are
generally divided into classical prediction ones and deep learning-based
ones.

2.1. Classical prediction methods

Traditional linear prediction methods, such as models of Auto-
Regressive (AR) (Yule, 1927) and ARIMA (Box & Pierce, 1970), are
widely used in the time series prediction (Sharma et al., 2021). Moeeni
2

et al. (2017) adopt ARIMA to predict the temperature and the flow of
rivers with four river datasets, proving that ARIMA works well in the
water quality prediction. Guo et al. (2019) propose a prediction model
based on ARIMA, which predicts the future vehicle speed and road
slope with appropriate accuracy. Ding et al. (2019) propose a hybrid
model based on ARIMA and generalized autoregressive conditional
heteroskedasticity to predict the subway short-term ridership. How-
ever, these above methods all adopt the approximately linear fitting
of time series, and therefore, non-linear features in the data cannot be
effectively captured.

To capture non-linear characteristics in the time series data, re-
searchers have turned their attentions to advanced methods suitable
for non-linear data. Among them, the Support Vector Machine (SVM)
is a widely used typical method (Eseye & Lehtonen, 2020). Bae et al.
(2017) propose an hourly solar irradiance prediction scheme based on
SVM. Their experimental results show that SVM significantly improves
the prediction accuracy of solar irradiance. Yang et al. (2015) introduce
an SVM-enhanced Markov model to obtain better prediction accuracy
of short-term wind power. However, although above methods solve the
problems existing in traditional methods, they need a lot of memory
resources when processing large-scale data. Artificial Neural Networks
(ANNs) have been widely adopted in the time series prediction because
of its prediction and generalization abilities. Buhan and Çadırcı (2015)
propose a real-time wind-electric power generation forecasting method
based on the combination of ANN and SVM. Experimental results show
that the proposed model outperforms traditional methods in terms
of short-term prediction accuracy. However, because of its simplicity,
ANN still has lower accuracy than deep learning methods in the time
series prediction.

Different from these studies, this work proposes a hybrid deep
learning method named VBAED, which effectively captures complex
features and long-term correlations in the time series and improves the
prediction accuracy.

2.2. Deep learning-based methods

Deep learning, with its powerful ability to automatically extract
features and process large-scale data, has become a hot topic in current
studies (Bandara et al., 2021; Yang et al., 2022; Zhou et al., 2023).
Recurrent Neural Networks (RNNs) capture long-term dependencies in
the time series, and they are widely used in different areas, e.g., traffic
flow forecasting (Wang et al., 2021), renewable energy generation
forecasting (Xia et al., 2021), or wind power prediction (Zhou et al.,
2019). Among many variants of RNNs, LSTM is the most popular
method to solve the problems of gradient explosion and disappearance
in the training of RNNs (Hochreiter & Schmidhuber, 2019). Zhang
et al. (2019) propose a model based on LSTM that adopts multivariable
inputs to predict groundwater depth in agricultural areas. Considering
multivariable characteristics of electricity consumption, (Kong et al.,
2019) propose a short-term residential load forecasting method based
on LSTM. Hou et al. (2021) propose a hybrid deep neural network
including graph convolutional network and LSTM to investigate graph-
structured interactions among stocks and the fluctuation of stock prices.
Although LSTM captures long-term dependence, it cannot distinguish
the importance of different features for multi-feature prediction tasks.

To solve the above problems, recent studies combine the attention
mechanism with LSTM (Zheng et al., 2021) and obtain excellent per-
formance in some sequence modeling tasks. The attention mechanism
can be regarded as a feature contribution evaluation mechanism to
improve the efficiency of neural networks by selecting important fea-
tures. Recent studies have shown that the combination of the attention
mechanism and LSTM can be applied to realize the time series pre-
diction with good performance. Hsu et al. (2022) propose a temporal
convolution-based LSTM network with the attention mechanism to
predict the remaining useful life of the equipment. Experiments show
that it obtains lower prediction errors than temporal convolutional

networks and LSTM. Xie et al. (2022) propose a time-aware attention
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Fig. 1. The proposed VBAED model including VMD decomposition, a bidirectional input attention layer, a BiLSTM encoder, a bidirectional temporal attention layer, a BiLSTM
decoder, and a fully connected layer.
module to extract behavior information from consecutive historical
transactions with time intervals, which enables the proposed model to
capture periodicity and behaviors in historical transaction data.

Different from the above studies, we innovatively combine the
attention mechanism with BiLSTM in the input dimension and time
one, and adopt VMD to decompose the water quality data and separate
important modes from noise ones to further improve the prediction
accuracy. Specifically, the historical data of the predicted factor is
decomposed into multiple modes with VMD. The modes and other fea-
tures are then encoded by BiLSTM with the bidirectional input attention
mechanism, and they are decoded by BiLSTM with the bidirectional
temporal attention mechanism for yielding the final prediction.

3. Proposed methodology

This section introduces VBAED in detail. By decomposing the histor-
ical data of a predicted factor in the water quality time series through
VMD, VBAED reduces the nonlinearity and volatility of the input
data and improves the prediction accuracy. The proposed bidirectional
input attention mechanism can adaptively select important features
in the input. BiLSTM (Zou et al., 2022) can capture more long-term
dependencies. The bidirectional temporal attention mechanism extracts
important features in the time dimension, and obtains the predicted
value with BiLSTM as the decoder. We integrate these methods to
further improve the prediction accuracy. Fig. 1 illustrates the proposed
VBAED model.
3

3.1. Sequence problem statement

Sequence modeling is widely adopted in many fields, such as natural
language processing and time series prediction. Let 𝑋 = {𝑋1,… , 𝑋𝑡,… ,
𝑋𝑇 } ∈ R�́�×𝑇 denote a series with a time span of 𝑇 . �́� denotes the number
of original features. In this work, our features include Potential of
Hydrogen (pH) and Total Phosphorus (TP). �̄� = {�̄�1,… , �̄�𝑡,… , �̄�𝑇 } ∈
R𝑛×𝑇 denotes a series with a time span of 𝑇 processed by VMD. 𝑛
denotes the number of features after VMD. 𝑌 = {𝑦1,… , 𝑦𝑡,… , 𝑦𝑇 } ∈
R1×𝑇 is a series of ground truth values. �̂�𝑇+1 and 𝑦𝑇+1 denote the
predicted value and its ground truth one at time step 𝑇+1, respectively.
We adopt the data in past 𝑇 time steps to predict the ground truth value
at time step 𝑇+1 by finding nonlinear mapping from the input value to
the ground truth one, which minimizes the prediction error. In the BTH
dataset, we adopt values of pH, Total Nitrogen (TN) and TP in past 𝑇
time steps to predict the TN value at time step 𝑇+1. In the Alabama
dataset, we adopt the values of Dissolved Oxygen (DO) in past 𝑇 time
steps to predict the DO value at time step 𝑇+1. The nonlinear function
F(⋅) that we need to learn is expressed as:

�̂�𝑇+1 = F(𝑋, 𝑌 ) (1)

3.2. Variational mode decomposition

This work decomposes the historical data of the predicted factor
through VMD (Dragomiretskiy & Zosso, 2022), which is an adaptive
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signal processing method. It iteratively searches for the optimal solu-
tion of variational modes, constantly updates each modal function and
central frequency, and obtains several Intrinsic Mode Functions (IMFs)
(Wang & Li, 2018). The variational problem is defined as solving 𝑘
MFs to minimize the sum of estimated bandwidth of each mode. 𝑌
s decomposed into 𝑘 modes.

VMD decomposition can reduce the nonlinearity and volatility of
ime series and avoid the negative impact of mode mixing. Different
odal components have different effects on the prediction result. By

eparating them and combining them with the input attention mech-
nism, VBAED has the ability to adaptively select important modes,
ilter out the noisy modes from multiple modes, and focus on the
odes containing important information. The modal components can

e selectively removed according to the experimental results.
This work decomposes the target value series into three components

y VMD, which are used as features. This guides neural networks to
ore attentively learn more complex features and improve the predic-

ion accuracy. The new input after VMD is �̄� = {�̄�1,… , �̄�𝑡,… , �̄�𝑇 } ∈
R𝑛×𝑇 where 𝑛 = �́�+3.

3.3. Encoder with BiLSTM and bidirectional input attention

As a typical variant of RNNs, LSTM (Principi et al., 2019) can
avoid the gradient explosion and gradient disappearance existing in
conventional RNNs. It can effectively capture the long dependence, and
it is often used for encoding in natural language processing and time
series prediction. However, LSTM cannot encode information from back
to front. In the time series prediction, the information from back to
front is hidden, which cannot be obtained with LSTM as the encoder.

Therefore, this work adopts BiLSTM as the encoder, which solves
the disadvantage that LSTM cannot obtain the information from back to
front. BiLSTM consists of two independent LSTM units. The first LSTM
unit is called LSTMF, which encodes information from front to back.
The second LSTM unit is called LSTMB, which encodes information
from back to front. Then, the information from the two directions is
combined to obtain the hidden state ℎ𝑡 of the encoder at time step 𝑡.
Especially, at time step 𝑡, LSTMF computes its hidden state ℎ𝐹𝑡 based
on the previous hidden state ℎ𝐹𝑡−1 at time step 𝑡−1, the cell state 𝑐𝐹𝑡−1
t time step 𝑡−1, and the input �̄�𝑡. LSTMB computes its hidden state

ℎ𝐵𝑡 based on the hidden state ℎ𝐵𝑡+1, the cell state 𝑐𝐵𝑡+1 and the input �̄�𝑡.
hen, the forward hidden state ℎ𝐹𝑡 and the backward hidden state ℎ𝐵𝑡
re combined into the hidden state of BiLSTM. LSTMF and LSTMB are
wo independent LSTM units, and they do not share parameters. ℎ𝐹𝑡 , ℎ𝐵𝑡
nd ℎ𝑡 are given as:
𝐹
𝑡 = LF(ℎ𝐹𝑡−1, 𝑐

𝐹
𝑡−1, �̄�𝑡) (2)

𝐵
𝑡 = LB(ℎ𝐵𝑡+1, 𝑐

𝐵
𝑡+1, �̄�𝑡) (3)

𝑡 = [ℎ𝐹𝑡 ;ℎ
𝐵
𝑡 ] (4)

here LF is an LSTMF unit and LB is an LSTMB unit. 𝑚 denotes the
idden state size of each BiLSTM unit, and ℎ𝐹𝑡 ∈ R𝑚, ℎ𝐵𝑡 ∈ R𝑚, ℎ𝑡 ∈ R2𝑚.

To better capture important features, this work designs an input
ttention mechanism for BiLSTM. The attention mechanism can adap-
ively select important features from a large number of features and
ocus on them. An attention weight represents the importance of infor-
ation. Since LSTMF and LSTMB are two LSTM units with independent
arameters, we add an input attention mechanism layer to them,
espectively. The forward input attention layer is for LSTMF and the
ackward one is for LSTMB. LSTMF and LSTMB encode from different
irections, and the input attention mechanism focuses on different
eatures. The advantage of designing an individual input attention
echanism for each of them independently is that they can adaptively

xtract important features in two directions, which can improve the
4

obustness of the model and the prediction accuracy.
Then, the details of the input attention mechanism in BiLSTM are
iven here. For the 𝑙th feature �̄�𝑙 = (𝑥𝑙1, 𝑥

𝑙
2,… , 𝑥𝑙𝑇 ) ∈ R𝑇 in �̄�, we

refer to ℎ𝐹𝑡−1 and 𝑐𝐹𝑡−1 in the LSTMF unit to construct the forward input
attention mechanism. We adopt ℎ𝐵𝑡+1 and 𝑐𝐵𝑡+1 in the LSTMB unit to
construct the backward input attention mechanism.

𝛼𝐹𝑙𝑡 and 𝛼𝐵𝑙
𝑡 denote the forward attention weight and the backward

one of the 𝑙th input feature (𝑥𝑙𝑡) at time step 𝑡. They are obtained as:

𝛼𝐹𝑙𝑡 =
exp(𝑒𝐹𝑙𝑡 )

∑𝑛
𝑖=1 exp(𝑒

𝐹𝑖
𝑡 )

(5)

𝛼𝐵𝑙
𝑡 =

exp(𝑒𝐵𝑙
𝑡 )

∑𝑛
𝑖=1 exp(𝑒

𝐵𝑖
𝑡 )

(6)

In (5) and (6), energy scores 𝑒𝐹𝑙𝑡 and 𝑒𝐵𝑙
𝑡 are transformed by the

softmax function to ensure that 𝛼𝐹𝑙𝑡 and 𝛼𝐵𝑙
𝑡 are in the range of (0,1),

espectively.
𝐹𝑙
𝑡 = 𝐯𝐹𝑒

⊤ tanh(𝐖𝐹
𝑒 [ℎ

𝐹
𝑡−1; 𝑐

𝐹
𝑡−1]+𝐔

𝐹
𝑒 �̄�

𝑙) (7)

𝐵𝑙
𝑡 = 𝐯𝐵𝑒

⊤ tanh(𝐖𝐵
𝑒 [ℎ

𝐹
𝑡+1; 𝑐

𝐵
𝑡+1]+𝐔

𝐵
𝑒 �̄�

𝑙) (8)

here 𝐯𝐹𝑒 ∈ R𝑇 , 𝐖𝐹
𝑒 ∈ R𝑇×2𝑚, 𝐔𝐹

𝑒 ∈ R𝑇×𝑇 , 𝐯𝐵𝑒 ∈ R𝑇 , 𝐖𝐵
𝑒 ∈ R𝑇×2𝑚 and

𝐔𝐵
𝑒 ∈ R𝑇×𝑇 are the parameters that can be learned. The parameters with

superscript 𝐹 belong to LSTMF and those with superscript 𝐵 belong to
LSTMB.

Then, we obtain two new inputs at time step 𝑡 and input them into
LSTMF and LSTMB, respectively. Specifically, �̃�𝐹

𝑡 and �̃�𝐵
𝑡 denote the

inputs of LSTMF and LSTMB at time step 𝑡, respectively, which are
given as:

�̃�𝐹
𝑡 = (𝛼𝐹1𝑡 𝑥1𝑡 , 𝛼

𝐹2
𝑡 𝑥2𝑡 ,… , 𝛼𝐹𝑛𝑡 𝑥𝑛𝑡 ) (9)

�̃�𝐵
𝑡 = (𝛼𝐵1

𝑡 𝑥1𝑡 , 𝛼
𝐵2
𝑡 𝑥2𝑡 ,… , 𝛼𝐵𝑛

𝑡 𝑥𝑛𝑡 ) (10)

Then, (4) is given as:

ℎ𝑡 = [LF(ℎ𝐹𝑡−1, 𝑐
𝐹
𝑡−1, �̃�

𝐹
𝑡 ); LB(ℎ𝐵𝑡+1, 𝑐

𝐵
𝑡+1, �̃�

𝐵
𝑡 )] (11)

The forward and backward attention mechanisms are independent
and learnable. VBAED can learn the attention weights in two directions,
respectively and extract important features adaptively. This method
enhances the robustness of the model and improves the prediction
accuracy of the water quality.

3.4. Decoder with BiLSTM and bidirectional temporal attention

In the decoder, VBAED adopts BiLSTM with the bidirectional tem-
poral attention mechanism. The bidirectional temporal attention mech-
anism naturally and accurately captures the key information of hidden
states. Similar to the encoder, the BiLSTM decoder consists of two
independent LSTM units including LSTMDF and LSTMDB. The former
decodes information from front to back, and the latter decodes informa-
tion from back to front. 𝑚 denotes the hidden state size of each BiLSTM
unit. ℎ𝑖 denotes the 𝑖th hidden state of the encoder.

Details of the bidirectional temporal attention mechanism in BiL-
STM are given here. The forward attention weight and the backward
one of the 𝑖th hidden state (ℎ𝑖) at time step 𝑡 are denoted by 𝛽𝐹𝑖𝑡
(𝛽𝐹𝑖𝑡 ∈ (0, 1)) and 𝛽𝐵𝑖

𝑡 (𝛽𝑖𝐵𝑡
∈ (0, 1)), respectively. 𝛽𝐹𝑖𝑡 is calculated based

on the hidden state 𝑑𝐹𝑡−1 (𝑑𝐹𝑡−1 ∈ R𝑝), and the cell state 𝑠𝐹𝑡−1 (𝑠𝐹𝑡−1 ∈ R𝑝) of
LSTMDF at time step 𝑡−1. Besides, 𝛽𝐵𝑖

𝑡 is calculated based on the hidden
state 𝑑𝐵𝑡+1 (𝑑𝐵𝑡+1 ∈ R𝑝), and the cell state 𝑠𝐵𝑡+1 (𝑠𝐵𝑡+1 ∈ R𝑝) of LSTMDB at
time step 𝑡+1. 𝑜𝐹𝑖𝑡 and 𝑜𝐵𝑖

𝑡 denote the energy score of ℎ𝑖 at time step 𝑡,
which are obtained as:

𝑜𝐹𝑖𝑡 = 𝐯𝐹𝑜
⊤ tanh(𝐖𝐹

𝑜 [𝑑
𝐹
𝑡−1; 𝑠

𝐹
𝑡−1]+𝐔

𝐹
𝑜 ℎ𝑖), 1≤𝑖≤𝑇 (12)

𝐵𝑖 𝐵⊤ 𝐵 𝐵 𝐵 𝐵
𝑜𝑡 = 𝐯𝑜 tanh(𝐖𝑜 [𝑑𝑡+1; 𝑠𝑡+1]+𝐔𝑜 ℎ𝑖), 1≤𝑖≤𝑇 (13)
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𝛽𝐹𝑖𝑡 =
exp(𝑜𝐹𝑖𝑡 )

∑𝑇
𝑞=1 exp(𝑜

𝐹𝑞
𝑡 )

(14)

𝐵𝑖
𝑡 =

exp(𝑜𝐵𝑖
𝑡 )

∑𝑇
𝑞=1 exp(𝑜

𝐵𝑞
𝑡 )

(15)

here [𝑑𝐹𝑡−1; 𝑠
𝐹
𝑡−1] ∈ R2𝑝 is the concatenation of 𝑑𝐹𝑡−1 and 𝑠𝐹𝑡−1, and

𝑑𝐵𝑡+1; 𝑠
𝐵
𝑡+1] ∈ R2𝑝 is the concatenation of 𝑑𝐵𝑡+1 and 𝑠𝐵𝑡+1. 𝐯𝐹𝑜

⊤ ∈ R2𝑚,
𝐖𝐹

𝑜 ∈ R2𝑚×2𝑝, 𝐔𝐹
𝑜 ∈ R2𝑚×2𝑚, 𝐯𝐵𝑜

⊤ ∈ R2𝑚, 𝐖𝐵
𝑜 ∈ R2𝑚×2𝑝 and 𝐔𝐵

𝑜 ∈ R2𝑚×2𝑚

are learning parameters. The forward and backward context vectors at
time step 𝑡 are denoted by 𝑔𝐹𝑡 and 𝑔𝐵𝑡 , which are the weighted sums of
all hidden states of the encoder, respectively.

𝑔𝐹𝑡 =
𝑇
∑

𝑖=1
𝛽𝐹𝑖𝑡 ℎ𝑖 (16)

𝑔𝐵𝑡 =
𝑇
∑

𝑖=1
𝛽𝐵𝑖
𝑡 ℎ𝑖 (17)

We combine 𝑔𝐹𝑡 and 𝑔𝐵𝑡 with the historical ground truth value 𝑦𝑡 to
obtain new inputs �̃�𝐹𝑡 and �̃�𝐵𝑡 for LSTMDF and LSTMDB at time step 𝑡,
respectively.

�̃�𝐹𝑡 = 𝐰𝐹 ⊤[𝑦𝑡; 𝑔𝐹𝑡 ]+𝑏
𝐹 (18)

�̃�𝐵𝑡 = 𝐰𝐵⊤[𝑦𝑡; 𝑔𝐵𝑡 ]+𝑏
𝐵 (19)

where [𝑦𝑡; 𝑔𝐹𝑡 ] ∈ R2𝑚+1 is the concatenation of 𝑦𝑡 and 𝑔𝐹𝑡 , and [𝑦𝑡; 𝑔𝐵𝑡 ] ∈
R2𝑚+1 is the concatenation of 𝑦𝑡 and 𝑔𝐵𝑡 . 𝐰𝐹 ⊤ ∈ R2𝑚+1, 𝑏𝐹 ∈ R,
𝐰𝐵⊤ ∈ R2𝑚+1 and 𝑏𝐵 ∈ R are learning parameters. [𝑦𝑡; 𝑔𝐹𝑡 ] and [𝑦𝑡; 𝑔𝐵𝑡 ]
are mapped to �̃�𝐹𝑡 and �̃�𝐵𝑡 , and their dimension equals the input size of
the decoder.

�̃�𝐹𝑡 and �̃�𝐵𝑡 are used to update the hidden states 𝑑𝐹𝑡 and 𝑑𝐵𝑡 of
LSTMDF and LSTMDB at time step 𝑡, respectively, i.e.,

𝑑𝐹𝑡 = LDF(𝑑𝐹𝑡−1, 𝑠
𝐹
𝑡−1, �̃�

𝐹
𝑡 ), 1≤𝑡≤𝑇 (20)

𝑑𝐵𝑡 = LDB(𝑑𝐵𝑡+1, 𝑠
𝐵
𝑡+1, �̃�

𝐵
𝑡 ), 1≤𝑡≤𝑇 (21)

where LDF is an LSTMDF unit and LDB is an LSTMDB unit.
Finally, the predicted value �̂�𝑇+1 is obtained as:

̂𝑇+1 = 𝐯𝑦⊤(𝐖𝑦[𝑑𝐹𝑇 ; 𝑔
𝐹
𝑇 ; 𝑑

𝐵
1 ; 𝑔

𝐵
1 ]+𝑏𝑤)+𝑏𝑣 (22)

where 𝐖𝑦 ∈ R𝑝×(2𝑝+4𝑚) and 𝑏𝑤 ∈ R𝑝 map [𝑑𝐹𝑇 ; 𝑔
𝐹
𝑇 ; 𝑑

𝐵
1 ; 𝑔

𝐵
1 ] to a vector,

the dimension of which equals the hidden state size of the decoder, and
𝐯𝑦 ∈ R𝑝 and 𝑏𝑣 ∈ R are used to yield the final predicted result �̂�𝑇+1.

3.5. Training procedure

This work adopts the metric of Mean Squared Error (MSE) as a loss
function to minimize the difference between the ground truth value of
𝑦𝑇+1 and the predicted one of �̂�𝑇+1. The loss function, denoted by 𝛥, is
defined as:

𝛥 = 1
𝑁

𝑁
∑

𝑖=1
(�̂�𝑖𝑇+1−𝑦

𝑖
𝑇+1)

2 (23)

where 𝑁 denotes the number of training samples.
The reason is that VBAED is smooth and differentiable, and MSE

can be used as the loss function to learn the parameters.

4. Experimental evaluation

This section presents our experiments and discusses the results.
VBAED is implemented on a server with GTX1080 GPU, 16 GB memory
and an Intel (R) Xeon (R) CPU E5-2683. We adopt Adaptive Moment
Estimation (Adam) (Kingma & Ba, 2015) as the optimizer to optimize
our loss function. The learning rate starts from 0.001 and decreases by
10% every 20 iterations.
5
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Table 1
Statistics of two datasets.

Dataset Feature
dimension

Training set
size

Validation set
size

Test set size

BTH 3 5000 1000 1200
Alabama 1 15 889 1986 1987

Fig. 2. TN time series data of the BTH dataset.

Fig. 3. DO time series data of the Alabama dataset.

.1. Dataset

To evaluate the performance of different time series prediction
ethods, we adopt two different real-life datasets including multi-

eature and single-feature ones, which are shown in Table 1. The BTH
ataset is collected from an automatic water quality station in a river
n the Beijing–Tianjin–Hebei region from September 2018 to December
021. The collection interval is once every 4 h, involving pH, TN and
P. In the experiments, TN is used as the ground truth, and pH and
P are used as features. For a small number of missing values, we
dopt linear interpolation to complement it. In total, we have 7200 data
amples. We take the first 5000 data samples as the training set, the
ext 1000 data samples as the validation set, and the remaining 1200
ata samples as the test set. The TN time series is shown in Fig. 2.

The Alabama dataset is the water quality data of a section of
labama River in the United States from May 2017 to August 2019.
he data collection interval is one hour. Different from the BTH dataset,
he Alabama dataset has only one feature of DO, which is the target
alue in the Alabama dataset. For a small number of missing values
n the Alabama dataset, the linear interpolation method is adopted
o complement them. In total, we have 19,862 data samples in the
labama dataset. In this work, we take the first 15,889 data samples
s the training set, the following 1986 data samples as the validation
et, and the last 1987 data samples as the test set. The DO time series
n the Alabama dataset is shown in Fig. 3.
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Fig. 4. Filtered TN time series with the SG filter given different 𝑤.

Fig. 5. Filtered TN time series with the SG filter given different 𝑅.

.2. Data preprocessing

Fig. 2 shows that the target value of the BTH dataset has much noise
ith several peaks, which might be caused by machine failures. The
rediction results are severely affected if the model is trained without
ealing with noise. Here, the Savitzky Golay (SG) filter (Savitzky &
olay, 1964) is adopted to smooth the time series data of TN, TP,
nd pH in the BTH dataset to reduce the interference of noise and the
nfluence of local outliers on the overall trend. The SG filter can reduce
he interference of noise while maintaining the shape of the original
ata. Typically, the window size (𝑤) and the highest order term (𝑅) are
wo important parameters of the SG filter. We first compare different 𝑤
nder the fixed 𝑅. Fig. 4 shows the filtered TN time series with the SG
ilter given different 𝑤. It is shown that larger 𝑤 yields better smoothing
esult of the data, but too large 𝑤 changes the trend of the original data.

Then, Fig. 5 shows the filtered TN time series with the SG filter
iven different 𝑅. It is observed that as 𝑅 increases, the effect of data
moothing is worse, and too low 𝑅 also changes the trend of data.

Based on Figs. 4 and 5, this work selects the SG filter with 𝑤 = 11
nd 𝑅 = 5 to smooth the original data of the BTH dataset. Fig. 6 shows
he yielded time series smoothed by the SG filter, which is adopted as
ur experimental data of the BTH dataset. For the Alabama dataset,
ifferent from the BTH dataset, we directly predict the target DO value
ithout any preprocessing.

.3. Benchmark methods

We compare VBAED with widely used benchmark methods: ARIMA
Guo et al., 2019), SVR (Zhang et al., 2020), Extreme Gradient Boosting
XGBoost) (Liu et al., 2021), Back Propagation (BP) (Lu et al., 2016),
STM (Principi et al., 2019), BiLSTM (Zou et al., 2022) and DA-
NN (Qin et al., 2017). We also add VMD to each baseline method

o decompose data, thus resulting in VMD-LSTM (Sun et al., 2019),
6

MD-BiLSTM, and VMD-DA-RNN.
Fig. 6. Smoothed time series of the BTH dataset.

4.4. Evaluation metrics

To verify the performance of VBAED, we adopt three evaluation
metrics to compare the prediction accuracy, i.e., Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), and Coefficient of Determi-
nation (R2) (Bi et al., 2021).

4.5. Parameter tuning

There are a number of hyperparameters in VBAED that have sig-
nificant impacts on the performance of prediction. They include the
number of time steps in the window (𝑇 ), optimizer, the encoder hidden
state size (𝑚) and the decoder hidden state size (𝑝). 𝑇 is one of the most
mportant parameters of the model. Fig. 7 shows the change of RMSE
n the BTH dataset when 𝑇 increases. It is shown that when 𝑇 = 30,

RMSE reaches the lowest value. When 𝑇 increases from 60 to 90, RMSE
shows an increasing trend. Therefore, in the BTH dataset, 𝑇 = 30. Fig. 8
hows the trend of RMSE with the increase of 𝑇 in the Alabama dataset.
t is shown that RMSE achieves the lowest value when 𝑇 = 30. When

is higher than 30, RMSE shows an increasing trend with the increase
f 𝑇 . Therefore, in the Alabama dataset, the 𝑇 value of the model is set
o 30.

Regarding the choice of optimizer, we compare four kinds of candi-
ate optimizers including Stochastic Gradient Descent (SGD), Adaptive
elta (Adadelta), Adaptive gradient algorithm (Adagrad) and Adam.
or the BTH dataset, their comparison results are shown in Fig. 9. It
s observed that compared with other optimizers, Adam achieves the
astest convergence speed and the lowest loss. Therefore, in the BTH
ataset, we choose Adam as the optimizer. For the Alabama dataset,
he comparison result of different optimizers is shown in Fig. 10. It is
bserved that Adam also achieves the fastest convergence speed and the
owest loss in the Alabama dataset. Finally, in the Alabama dataset, we
hoose Adam as the optimizer of VBAED.

The appropriate hidden state size has significant influence on
BAED. According to Qin et al. (2017), we set 𝑚 = 𝑝, and vary 𝑚

from a set of {16, 32, 64, 128, 256, 512}. Then, the best 𝑚 is selected
by comparing the predicted results. Table 2 shows that in the BTH
dataset, RMSE and MAE reach their lowest values and R2 reaches its
highest value when 𝑚 =64. Table 3 shows that in the Alabama dataset,
RMSE and MAE reach their lowest values and R2 reaches its highest
value when 𝑚 = 64. The above experimental results show that the
final parameters obtained by two experiments are the same. The final
parameter setting of VBAED in both BTH and Alabama datasets is
summarized in Table 4.

To achieve the fair comparison with the benchmark methods, the
same tuning process is adopted for the benchmark methods. Table 5
shows the hyperparameter settings of the benchmark methods. For
ARIMA, 𝑝𝑎 denotes the number of autoregressive terms, 𝑑𝑎 denotes
that of nonseasonal differences needed for stationarity, and 𝑞 denotes
𝑎
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Fig. 7. RMSE of VBAED with varying 𝑇 in the BTH dataset.

Fig. 8. RMSE of VBAED with varying 𝑇 in the Alabama dataset.

Fig. 9. Loss values for different optimizers in the BTH dataset.

Fig. 10. Loss values for different optimizers in the Alabama dataset.
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Table 2
Predicted results with VBAED given different 𝑚 in the BTH dataset.
𝑚 (𝑝) RMSE MAE R2

16 0.1214 0.0789 0.9849
32 0.0637 0.0425 0.9959
64 0.0602 0.0404 0.9963
128 0.0608 0.0408 0.9962
256 0.0612 0.0409 0.9962
512 0.0623 0.0425 0.9960

Table 3
Predicted results with VBAED given different 𝑚 in the Alabama dataset.
𝑚 (𝑝) RMSE MAE R2

16 0.1302 0.0918 0.9850
32 0.1284 0.0914 0.9854
64 0.1268 0.0891 0.9858
128 0.1272 0.0901 0.9857
256 0.1744 0.1165 0.9856
512 0.1527 0.1104 0.9794

Table 4
Parameter setting of VBAED in both BTH and Alabama datasets.

Parameter Value Description

𝑇 30 Previous time steps
Optimizer Adam Optimizer
𝑚 64 Hidden size of the encoder
𝑝 64 Hidden size of the decoder
Batch size 128 Batch size
Number of epochs 300 Number of iterations

Table 5
Parameter settings of benchmark methods.

Methods Parameter setting for
the Alabama dataset

Parameter setting for
the BTH dataset

ARIMA 𝑝𝑎 = 5, 𝑑𝑎 = 1, 𝑞𝑎 = 2 𝑝𝑎 = 5, 𝑑𝑎 = 1, 𝑞𝑎 = 2
SVR 𝑇 = 30, 𝜖 = 0.01 𝑇 = 30, 𝜖 = 0.01

XGBoost 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 300,
𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ = 6

𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 300,
𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ = 6

BP 𝑚 = 64, 𝑇 = 30 𝑚 = 64, 𝑇 = 30
LSTM 𝑚 = 32, 𝑇 = 30 𝑚 = 32, 𝑇 = 30
BiLSTM 𝑚 = 32, 𝑇 = 30 𝑚 = 64, 𝑇 = 30
DA-RNN N/A 𝑚 = 𝑝 = 128, 𝑇 = 60
VMD-LSTM 𝑚 = 64, 𝑇 = 30 𝑚 = 32, 𝑇 = 30
VMD-BiLSTM 𝑚 = 64, 𝑇 = 30 𝑚 = 32, 𝑇 = 30
VMD-DA-RNN 𝑚 = 𝑝 = 64, 𝑇 = 30 𝑚 = 𝑝 = 128, 𝑇 = 60

that of lagged forecast errors. For SVR, 𝜖 denotes the acceptable error
margin. For XGBoost, 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 denotes the number of regression
tree base learners required by XGBoost, which controls the number of
iterations of the boosting process, and 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ denotes the maximum
depth of each tree.

4.6. Prediction results

VBAED is trained with the training set and the prediction results
are obtained. It is observed in Fig. 11 that for the BTH dataset, the
predicted curve and the ground truth one are almost identical, which
shows that VBAED is effective in the multi-feature dataset. Fig. 12
shows that for the Alabama dataset, VBAED also works well in the
single-feature dataset.

To further verify the robustness and effectiveness of VBAED, we
adopt RMSE, MAE, and R2 to compare it with its other 10 peers as
shown in Tables 6 and 7. Hyperparameter tuning and selection for all
models are realized by using Taguchi’s experimental design method
(Gao et al., 2019). It identifies a subset of possible parameter combi-
nations rather than all combinations, thereby reducing the number of
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Fig. 11. Prediction results of the water quality time series in the BTH dataset with
VBAED.

Fig. 12. Prediction results of the water quality time series in the Alabama dataset with
VBAED.

Table 6
Performance comparison of different methods in the BTH dataset.

Methods Evaluation metrics

RMSE MAE R2

ARIMA 0.2335 0.1621 0.9373
SVR 0.2293 0.1402 0.9464
XGBoost 0.2684 0.1803 0.9267
BP 0.2487 0.1578 0.9370
LSTM 0.2093 0.1552 0.9552
BiLSTM 0.1657 0.1202 0.9719
DA-RNN 0.1295 0.0868 0.9831
VMD-LSTM 0.1688 0.1363 0.9708
VMD-BiLSTM 0.1475 0.1132 0.9777
VMD-DA-RNN 0.1156 0.0853 0.9840
VBAED 0.0602 0.0404 0.9963

Table 7
Performance comparison of different methods in the Alabama dataset.

Methods Evaluation metrics

RMSE MAE R2

ARIMA 0.2301 0.1683 0.9311
SVR 0.2287 0.1579 0.9411
XGBoost 0.2216 0.1563 0.9491
BP 0.2140 0.1558 0.9512
LSTM 0.1957 0.1414 0.9662
BiLSTM 0.1866 0.1371 0.9692
VMD-LSTM 0.1902 0.1401 0.9671
VMD-BiLSTM 0.1724 0.1232 0.9721
VMD-DA-RNN 0.1555 0.1085 0.9786
VBAED 0.1268 0.0891 0.9858
8

Table 8
RMSE results of cross validation in the BTH dataset.

Methods Round

1st Round 2nd Round 3rd Round 4th Round Average

LSTM 0.2995 0.2054 0.1835 0.2093 0.2244
BiLSTM 0.2561 0.1691 0.1436 0.1657 0.1836
DA-RNN 0.2162 0.1211 0.1041 0.1295 0.1427
VMD-LSTM 0.2571 0.1654 0.1483 0.1688 0.1849
VMD-BiLSTM 0.2317 0.1401 0.1259 0.1475 0.1613
VMD-DA-RNN 0.2027 0.1037 0.0939 0.1156 0.1289
VBAED 0.1523 0.0546 0.0412 0.0602 0.0770

Table 9
RMSE results of cross validation in the Alabama dataset.

Methods Round

1st Round 2nd Round 3rd Round 4th Round Average

LSTM 0.2643 0.5324 0.2483 0.2316 0.3191
BiLSTM 0.2458 0.4255 0.2277 0.2056 0.27615
VMD-LSTM 0.2539 0.3458 0.2189 0.1983 0.2542
VMD-BiLSTM 0.2385 0.3231 0.2031 0.1734 0.2345
VMD-DA-RNN 0.2152 0.3015 0.1974 0.1519 0.2165
VBAED 0.1691 0.3004 0.1706 0.1366 0.1941

experiments during execution and providing the best parameter esti-
mation. In particular, DA-RNN can only be used for the multi-feature
dataset, and therefore, DA-RNN is removed from the comparison exper-
iment of the Alabama dataset. It is shown that VBAED obtains the best
results in both the BTH and Alabama datasets. In addition, in the BTH
dataset, when the VMD decomposition is not adopted, RMSEs of LSTM,
BiLSTM and DA-RNN are 0.2093, 0.1657 and 0.1259, respectively.
After adopting it, RMSEs of VMD-LSTM, VMD-BiLSTM and VDM-DA-
RNN are 0.1688, 0.1475, 0.1156, respectively. In the Alabama dataset,
when the VMD decomposition is not adopted, RMSEs of LSTM and
BiLSTM are 0.1957 and 0.1866, respectively. After adopting it, RMSEs
of VMD-LSTM and VMD-BiLSTM are 0.1724 and 0.1555, respectively.
It is shown that VMD effectively grasps the evolution trend of the
water quality data and decomposes it into key information modes
and noise ones, which is helpful to model training and improves the
prediction accuracy. It is also observed that RMSE of LSTM is worse
than that of BiLSTM on both the BTH and Alabama datasets, which
suggests that the bidirectional LSTM structure overcomes the limitation
of traditional LSTM, which tends to ignore the information from back
to front, resulting in the loss of correlation information.

To more reliably validate the performance of VBAED on the BTH
and Alabama datasets, this work further conducts cross-validation on
models that exhibit superior performance.

Since using the future data to predict the past data is meaningless
in the time series prediction, we adopt the rolling cross-validation. We
divide the dataset into six equal parts sequentially, labeled as 𝑃1, 𝑃2,
𝑃3, 𝑃4, 𝑃5, and 𝑃6. We conduct four rounds of cross-validation. In the
first round, the training set consists of {𝑃1, 𝑃2}, and the test set is P3. In
the second round, the training set includes {𝑃1, 𝑃2, 𝑃3}, and the test set
is P4. For the third round, the training set is {𝑃1, 𝑃2, 𝑃3, 𝑃4}, and the test
set is P5. In the fourth round, the training set is {𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5}, and
the test set is P6. In the end, we calculate the average RMSE across all
rounds of the model to further validate its performance. Tables 8 and
9 present the RMSE results of cross-validation for both the BTH and
Alabama datasets.

Tables 8 and 9 demonstrate that in all rounds, VMD consistently im-
proves the performance of the original model. This indicates that VMD
effectively decomposes the original data, assisting the model in more
effective feature extraction. VBAED achieves the best performance in
all rounds and in the average results, providing evidence of its strong
generalization capability across different test sets.

To further verify the effect of the bidirectional input attention
mechanism and the bidirectional temporal attention one, ablation ex-

periments are conducted on two datasets. Tables 10 and 11 show that
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Table 10
Ablation experiment given the BTH dataset.

Adopted component Evaluation metrics

RMSE MAE R2

Bidirectional input attention 0.0705 0.0480 0.9949
Bidirectional temporal attention 0.0768 0.0524 0.9940
Complete VBAED 0.0602 0.0404 0.9963

Table 11
Ablation experiment given the Alabama dataset.

Adopted component Evaluation metrics

RMSE MAE R2

Bidirectional input attention 0.1313 0.0936 0.9848
Bidirectional temporal attention 0.1386 0.0986 0.9830
Complete VBAED 0.1268 0.0891 0.9858

the only application of the bidirectional input attention mechanism or
the bidirectional time attention one results in significant decrease in the
prediction accuracy. It is observed that RMSEs of the model that adopts
the bidirectional input attention are 0.0705 and 0.1313, respectively,
while RMSEs of the model that adopts bidirectional temporal attention
are 0.0768 and 0.1368 given BTH and Alabama datasets, respectively.
This demonstrates that the bidirectional input attention mechanism
plays a more important role in VBAED than the bidirectional temporal
attention mechanism. For the original long-sequence data, it is diffi-
cult for the network to directly capture important information. The
bidirectional input attention mechanism enables VBAED to distinguish
the importance of original features, which strengthens important ones
and weakens unimportant ones. In addition, it enables the encoder in
VBAED to obtain more useful information.

VBAED adopts the bidirectional input attention mechanism to ex-
tract relevant features, and the bidirectional temporal one to select
relevant hidden states across all time steps. Thus, VBAED achieves the
highest prediction accuracy among all methods in both the BTH and
Alabama datasets.

5. Conclusions and future work

This work aims at implementing accurate water indicator prediction
for real-world water quality data. To achieve it, this work adopts
variational mode decomposition (VMD) to decompose the water quality
data and combines a bidirectional input attention mechanism with bidi-
rectional long short-term memory (BiLSTM) as an encoder to extract
the hidden information. The bidirectional temporal attention mech-
anism is combined with BiLSTM as a decoder to capture long-term
dependency. To demonstrate the effectiveness of the proposed VBEAD,
two experiments based on real-world water quality data are conducted.
The experimental results support the following conclusions: (1) VMD
effectively reduces the negative impact of mode mixing on prediction
and decreases the nonlinearity of time series; (2) The bidirectional
input attention mechanism adaptively selects relevant features; (3) The
bidirectional temporal attention mechanism adaptively selects impor-
tant hidden states in the time dimension; (4) and BiLSTM captures
long-term dependency and hidden information in two directions and
outperforms other baseline methods.

In the future work, VBAED can be further extended to solve other
different problems, such as wind speed prediction (Gao et al., 2021).
In addition, since missing values of water quality data occur fre-
quently and have negative impact on prediction, we plan to further
explore more effective data completion methods (Pan et al., 2021) to
complement missing values.
9

CRediT authorship contribution statement

Jing Bi: Conceptualization, Supervision, Funding acquisition, Writ-
ing – original draft. Zexian Chen: Formal analysis, Methodology, Val-
idation, Data curation, Software. Haitao Yuan: Resources, Project
administration, Visualization, Investigation. Jia Zhang: Investigation,
Writing – review & editing.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Haitao Yuan reports financial support was provided by National Natural
Science Foundation of China.

Data availability

Data will be made available on request.

References

Bae, K. Y., Jang, H. S., & Sung, D. K. (2017). Hourly solar irradiance prediction based on
support vector machine and its error analysis. IEEE Transactions on Power Systems,
32, 935–945.

Baigang, D., Qiliang, Z., & Jun, G. (2021). Deep learning with long short-term memory
neural networks combining wavelet transform and principal component analysis
for daily urban water demand forecasting. Expert Systems with Applications, 171,
Article 114571.

Bandara, K., Bergmeir, C., & Hewamalage, H. (2021). LSTM-MSNet: Leveraging forecasts
on sets of related time series with multiple seasonal patterns. IEEE Transactions on
Neural Networks and Learning Systems, 32, 1586–1599.

Bi, J., Chen, Z., Yuan, H., Lin, Y., & Qiao, J. (2022). Hybrid prediction for water quality
with bidirectional LSTM and temporal attention. In Proc. international conference on
systems, man, and cybernetics (pp. 1–6).

Bi, J., Lin, Y., Dong, Q., Yuan, H., & Zhou, M. (2020). An improved attention-based
LSTM for multi-step dissolved oxygen prediction in water environment. In Proc.
2020 IEEE int. conf. on networking, sensing and control (pp. 1–6).

Bi, J., Lin, Y., Dong, Q., Yuan, H., & Zhou, M. (2021). Large-scale water quality
prediction with integrated deep neural network. Information Sciences, 571, 191–205.

Box, G. E. P., & Pierce, D. A. (1970). Distribution of residual autocorrelations
in autoregressive-integrated moving average time series models. Journal of the
American Statistical Association, 65, 1509–1526.

Buhan, S., & Çadırcı, I. (2015). Multistage wind-electric power forecast by using
a combination of advanced statistical methods. IEEE Transactions on Industrial
Informatics, 11, 1231–1242.

Chang, F. J., Tsai, Y. H., Chen, P. A., Coynel, A., & Vachaud, G. (2015). Modeling
water quality in an urban river using hydrological factors data driven approaches.
Journal of Environmental Management, 151, 87–96.

Ding, C., Duan, J., Zhang, Y., Wu, X., & Yu, G. (2019). Using an ARIMA-GARCH
modeling approach to improve subway short-term ridership forecasting accounting
for dynamic volatility. IEEE Transactions on Intelligent Transportation Systems, 19,
1054–1064.

Dong, Q., Lin, Y., Bi, J., & Yuan, H. (2019). An integrated deep neural network
approach for large-scale water quality time series prediction. In Proc. IEEE int.
conf. on systems, man and cybernetics (pp. 3537–3542).

ragomiretskiy, K., & Zosso, D. (2022). Variational mode decomposition. IEEE
Transactions on Signal Processing, 62, 531–544.

seye, A. T., & Lehtonen, M. (2020). Short-term forecasting of heat demand of buildings
for efficient and optimal energy management based on integrated machine learning
models. IEEE Transactions on Industrial Informatics, 16, 7743–7755.

ortino, G., Savaglio, C., Spezzano, G., & Zhou, M. (2021). Internet of things as system
of systems: A review of methodologies, frameworks, platforms, and tools. IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 51, 223–236.

ao, C., Zhang, N., Li, Y., Lin, Y., Cheng, & Wan, H. (2023). Adversarial self-attentive
time-variant neural networks for multi-step time series forecasting. Expert Systems
with Applications, 231, Article 120722.

ao, S., Zhou, Y., Cheng, J., Yachi, H., & Wang, J. (2019). Dendritic neuron model
with effective learning algorithms for classification, approximation, and prediction.
IEEE Transactions on Neural Networks and Learning Systems, 30, 601–614.

ao, S., Zhou, M., Wang, Z., Sugiyama, D., Cheng, J., Wang, J., & Todo, Y. (2021).
Fully complex-valued dendritic neuron model. IEEE Transactions on Neural Networks
and Learning Systems, 1–14.

uo, J., He, H., & Sun, C. (2019). ARIMA-based road gradient and vehicle velocity
prediction for hybrid electric vehicle energy management. IEEE Transactions on
Vehicular Technology, 68, 5309–5320.

http://refhub.elsevier.com/S0957-4174(23)02309-6/sb1
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb1
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb1
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb1
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb1
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb2
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb2
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb2
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb2
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb2
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb2
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb2
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb3
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb3
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb3
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb3
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb3
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb4
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb4
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb4
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb4
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb4
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb5
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb5
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb5
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb5
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb5
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb6
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb6
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb6
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb7
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb7
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb7
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb7
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb7
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb8
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb8
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb8
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb8
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb8
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb9
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb9
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb9
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb9
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb9
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb10
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb10
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb10
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb10
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb10
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb10
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb10
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb11
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb11
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb11
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb11
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb11
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb12
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb12
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb12
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb13
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb13
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb13
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb13
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb13
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb14
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb14
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb14
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb14
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb14
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb15
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb15
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb15
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb15
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb15
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb16
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb16
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb16
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb16
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb16
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb17
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb17
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb17
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb17
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb17
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb18
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb18
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb18
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb18
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb18


Expert Systems With Applications 238 (2024) 121807J. Bi et al.

H

H

L

L

M

N

P

P

S

S

S

W

W

W

X

X

Y

Y

Y

Z

Z

Z

Z

Z

Z

J
S
h
i
l
A
C
A

Z
S
t
B
p

H
I
P
U
c
a
S
t

J
a
i
E
a
s
m
o

Guo, Y., Zhang, S., Yang, J., Yu, G., & Wang, Y. (2022). Dual memory scale network for
multi-step time series forecasting in thermal environment of aquaculture facility:
A case study of recirculating aquaculture water temperature. Expert Systems with
Applications, 208, Article 118218.

ochreiter, S., & Schmidhuber, J. (2019). Long short-term memory. Neural Computation,
9, 1735–1780.

Hou, X., Wang, K., Zhong, C., & Wei, Z. (2021). ST-trader: A spatial-temporal
deep neural network for modeling stock market movement. IEEE/CAA Journal of
Automatica Sinica, 8, 1015–1024.

su, C., Lu, Y., & Yan, J. (2022). Temporal convolution-based long-short term memory
network with attention mechanism for remaining useful life prediction. IEEE
Transactions on Semiconductor Manufacturing, 35, 220–228.

Imran, S., Mahmood, T., Morshed, A., & Sellis, T. (2021). Big data analytics in health-
care - a systematic literature review and roadmap for practical implementation.
IEEE/CAA Journal of Automatica Sinica, 8, 1–22.

Kingma, D. P., & Ba, J. L. (2015). Adam: A method for stochastic optimization. In Proc.
of the 3rd international conference for learning representations (pp. 1–15).

Kong, W., Dong, Z. Y., Jia, Y., Hill, D. J., Xu, Y., & Zhang, Y. (2019). Short-
term residential load forecasting based on LSTM recurrent neural network. IEEE
Transactions on Smart Grid, 10, 841–851.

Liu, P., Fu, B., Yang, S. X., Deng, L., Zhong, X., & Zheng, H. (2021). Optimizing survival
analysis of xgboost for ties to predict disease progression of breast cancer. IEEE
Transactions on Biomedical Engineering, 68, 148–160.

iu, P., Wang, J., Sangaiah, A. K., Xie, Y., & Yin, X. (2019). Analysis and prediction of
water quality using LSTM deep neural networks in IoT environment. Sustainability,
11, 1–14.

u, Y., Panneerselvam, J., Liu, L., & Wu, Y. (2016). RVLBPNN: A workload forecasting
model for smart cloud computing. Scientific Programming, 2016, 1–9.

oeeni, H., Bonakdari, H., & Fatemi, S. E. (2017). Stochastic model stationarization
by eliminating the periodic term and its effect on time series prediction. Journal
of Hydrology, 547, 348–364.

ajah, A., El-Shafie, A., Karim, O. A., Jaafar, O., & El-Shafie, Amr H. (2011).
An application of diferent artificial intelligences techniques for water quality
prediction. International Journal of Physical Sciences, 6, 5298–5308.

an, J., Li, C., Tang, Y., Li, W., & Li, X. (2021). Energy consumption prediction of
a CNC machining process with incomplete data. IEEE/CAA Journal of Automatica
Sinica, 8, 987–1000.

rincipi, E., Rossetti, D., Squartini, S., & Piazza, F. (2019). Unsupervised electric motor
fault detection by using deep autoencoders. IEEE/CAA Journal of Automatica Sinica,
6, 441–451.

Qin, Y., Song, D., Chen, H., Cheng, W., Jiang, G., & Cottrell, G. (2017). A dual-stage
attention-based recurrent neural network for time series prediction. In International
joint conference on artificial intelligence (pp. 1–7).

avitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by
simplified least squares procedures. Analytical Chemistry, 36, 1627–1639.

harma, R. R., Kumar, M., Maheshwari, S., & Ray, K. P. (2021). EVDHM-ARIMA-
based time series forecasting model and its application for COVID-19 cases. IEEE
Transactions on Instrumentation and Measurement, 70, 1–10.

un, Z., Zhao, S., & Zhang, J. (2019). Short-term wind power forecasting on mul-
tiple scales using VMD decomposition, K-means clustering and LSTM principal
computing. IEEE Access, 7, 166917–166929.

ang, J., & Li, Y. (2018). Multi-step ahead wind speed prediction based on optimal
feature extraction long short term memory neural network and error correction
strategy. Applied Energy, 230, 429–443.

ang, Z., Su, X., & Ding, Z. (2021). Long-term traffic prediction based on LSTM
encoder-decoder architecture. IEEE Transactions on Intelligent Transportation Systems,
22, 6561–6571.

u, D., Wang, H., Mohammed, H., & Seidu, R. (2020). Quality risk analysis for sus-
tainable smart water supply using data perception. IEEE Transactions on Sustainable
Computing, 5, 377–388.

ia, M., Shao, H., Ma, X., & de Silva, C. W. (2021). A stacked GRU-RNN-based approach
for predicting renewable energy and electricity load for smart grid operation. IEEE
Transactions on Industrial Informatics, 17, 7050–7059.

ie, Y., Liu, G., Yan, C., Jiang, C., & Zhou, M. (2022). Time-aware attention-based gated
network for credit card fraud detection by extracting transactional behaviors. IEEE
Transactions on Computational Social Systems, 1–13.
10
ang, L., He, M., Zhang, J., & Vittal, V. (2015). Support-vector-machine-enhanced
Markov model for short-term wind power forecast. IEEE Transactions on Sustainable
Energy, 6, 791–799.

ang, Z., Yan, W., Huang, X., & Mei, L. (2022). Adaptive temporal-frequency network
for time-series forecasting. IEEE Transactions on Knowledge and Data Engineering, 34,
1576–1587.

ule, G. U. (1927). On a method of investigating periodicities in disturbed series, with
special reference to wolfer’s sunspot numbers. Philosophical Transactions of the Royal
Society B Biological Sciences, 226, 267–298.

hang, X., Mohanty, S. N., Parida, A. K., Pani, S. K., Dong, B., & Cheng, X.
(2020). Annual and non-monsoon rainfall prediction modelling using SVR-MLP:
An empirical study from odisha. IEEE Access, 8, 30223–30233.

hang, J., Zhu, Y., Zhang, X., Ye, M., & Yang, J. (2019). Developing a long short-term
memory (LSTM) based model for predicting water table depth in agricultural areas.
Journal of Hydrology, 561, 918–929.

heng, H., Lin, F., Feng, X., & Chen, Y. (2021). A hybrid deep learning model with
attention-based conv-LSTM networks for short-term traffic flow prediction. IEEE
Transactions on Intelligent Transportation Systems, 22, 6910–6920.

hou, J., Ding, D., Wu, Z., & Xiu, Y. (2023). Spatial context-aware time-series forecast-
ing for QoS prediction. IEEE Transactions on Network and Service Management, 20,
918–931.

hou, B., Ma, X., Luo, Y., & Yang, D. (2019). Wind power prediction based on
LSTM networks and nonparametric kernel density estimation. IEEE Access, 7,
165279–165292.

ou, M., Holjevac, N., Daković, J., Kuzle, I., Langella, R., Giorgio, V. D., & Djokic, S.
Z. (2022). Bayesian CNN-BiLSTM and vine-GMCM based probabilistic forecasting
of hour-ahead wind farm power outputs. IEEE Transactions on Sustainable Energy,
13, 1169–1187.

ing Bi is currently an Associate Professor with the Faculty of Information Technology,
chool of Software Engineering, Beijing University of Technology, Beijing, China. She
as over 80 publications including journal and conference papers. Her research interests
nclude distributed computing, cloud computing, large-scale data analysis, machine
earning and performance optimization. Dr. Bi was the recipient of the IBM Fellowship
ward and the recipient of the Best Paper Award-Finalist in the 16th IEEE International
onference on Networking, Sensing and Control. She is now an Associate Editor of IEEE
CCESS. She is a senior member of the IEEE.

exian Chen is currently a Master student in the Faculty of Information Technology,
chool of Software Engineering, Beijing University of Technology, Beijing, China. Before
hat, he received his B.E. degree in Water Supply & Sewerage Science and Project from
eijing University of Technology in 2021. His research interests include time series
rediction, intelligent optimization algorithms and machine learning.

aitao Yuan received the Ph.D. degree in Computer Engineering from New Jersey
nstitute of Technology (NJIT), Newark, NJ, USA in 2020. He is currently an Associate
rofessor with the School of Automation Science and Electrical Engineering, Beihang
niversity, Beijing, China. His research interests include cloud computing, edge
omputing, data centers, big data, machine learning, deep learning and optimization
lgorithms. He received the Chinese Government Award for Outstanding Self-Financed
tudents Abroad, the 2021 Hashimoto Prize from NJIT, and the Best Paper Award in
he 17th ICNSC.

ia Zhang received the Ph.D. degree in computer science from the University of Illinois
t Chicago. She is currently the Cruse C. and Marjorie F. Calahan Centennial Chair
n Engineering, Professor of Department of Computer Science in the Lyle School of
ngineering at Southern Methodist University. Her research interests emphasize the
pplication of machine learning and information retrieval methods to tackle data
cience infrastructure problems, with a recent focus on scientific workflows, provenance
ining, software discovery, knowledge graph, and interdisciplinary applications of all

f these interests in earth science. She is a senior member of the IEEE.

http://refhub.elsevier.com/S0957-4174(23)02309-6/sb19
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb19
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb19
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb19
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb19
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb19
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb19
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb20
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb20
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb20
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb21
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb21
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb21
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb21
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb21
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb22
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb22
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb22
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb22
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb22
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb23
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb23
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb23
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb23
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb23
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb24
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb24
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb24
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb25
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb25
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb25
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb25
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb25
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb26
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb26
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb26
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb26
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb26
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb27
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb27
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb27
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb27
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb27
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb28
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb28
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb28
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb29
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb29
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb29
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb29
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb29
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb30
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb30
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb30
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb30
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb30
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb31
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb31
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb31
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb31
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb31
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb32
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb32
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb32
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb32
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb32
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb33
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb33
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb33
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb33
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb33
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb34
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb34
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb34
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb35
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb35
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb35
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb35
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb35
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb36
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb36
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb36
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb36
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb36
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb37
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb37
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb37
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb37
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb37
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb38
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb38
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb38
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb38
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb38
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb39
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb39
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb39
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb39
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb39
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb40
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb40
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb40
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb40
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb40
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb41
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb41
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb41
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb41
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb41
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb42
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb42
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb42
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb42
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb42
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb43
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb43
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb43
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb43
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb43
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb44
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb44
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb44
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb44
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb44
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb45
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb45
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb45
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb45
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb45
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb46
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb46
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb46
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb46
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb46
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb47
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb47
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb47
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb47
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb47
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb48
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb48
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb48
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb48
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb48
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb49
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb49
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb49
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb49
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb49
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb50
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb50
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb50
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb50
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb50
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb50
http://refhub.elsevier.com/S0957-4174(23)02309-6/sb50

	Accurate water quality prediction with attention-based bidirectional LSTM and encoder–decoder
	Introduction
	Related Work
	Classical Prediction Methods
	Deep Learning-based Methods

	Proposed Methodology
	Sequence Problem Statement
	Variational Mode Decomposition
	Encoder with BiLSTM and Bidirectional Input Attention
	Decoder with BiLSTM and Bidirectional Temporal Attention
	Training Procedure

	Experimental Evaluation
	Dataset
	Data preprocessing
	Benchmark methods
	Evaluation Metrics
	Parameter Tuning
	Prediction Results

	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


