
ADDENDUM: An Overview of C2SADEL

This addendum introduces C2SADEL, a Software Architecture Description and Evolution Language for C2-
style architectures. The complete specification of C2SADEL’s syntax is given below. C2SADEL supports 
component evolution via heterogeneous subtyping and facilitates architectural descriptions that allow 
establishment of type-theoretic notions of architectural soundness. It also supports modeling of connectors 
with context-reflective interfaces and different data filtering capabilities, as well as configurations that 
adhere to the topological rules of the C2 style. 
We encountered a tension between formality and practicality in designing C2SADEL. Our goal was a lan-
guage that was simple enough to be usable in practice, yet formal enough to adequately support analysis 
and evolution. For this reason, we kept the syntax simple and reduced formalism to a minimum.
A C2SADEL specification consists of either a set of component types or of an architecture. An architecture 
contains a specification of component types, connector types, and topology. To properly specify an archi-
tecture’s topology, component and connector types are instantiated and connected.

Component Types
A component specification is a type that can be defined in-line or externally (using the keyword extern). 
The specification of an external component type is given in a file different from the file in which the rest of 
the architecture is specified. For example, 
component WellADT is extern {WellADT.c2;}

specifies that the WellADT component used in the KLAX 
architecture (Figure 1) is specified in the file WellADT.c2. 
This feature allows for components to be treated as reus-
able design elements, independent of an architecture. A 
component type consists of the following:
• state variables,
• component invariant,
• interface,
• behavior, and
• the map from interface elements to the operations of the 

behavior. This map is a surjective function.
A component type may be a subtype of another type. The 
exact subtyping relationship must be specified. Keywords 
nam, int, beh, and imp are used to denote name, interface, 
behavior, and implementation conformance, respectively. 
Different combinations of these relationships are specified 
using the keywords and and not. For example,
component WellADT is subtype Matrix (beh)

specifies that the KLAX component WellADT preserves 
(and possibly extends) the behavior of a component Matrix, but may change its interface. This relationship 
can be made stricter by specifying that WellADT must alter Matrix’s interface as follows:
component WellADT is subtype Matrix (beh \and \not int)

As in a programming language, variables are specified as <name, type> pairs, as in
capacity : Integer;

Additionally, a component’s state variable may also be specified as a function:
well_at : Integer -> Color;

The well_at function maps a set of Integer locations in the well to a set of Color tiles at each location.
Variable types in C2SADEL, such as Integer or Color, are basic types and are distinguished from compo-
nents, which are architectural types. We do not explicitly model the semantics of basic types; however, 
C2SADEL does allow the architect to specify that one basic type is a subtype of another:

Clock
Logic

Status
Logic

Tile
Artist

Graphics
Binding

Palette
Artist

Chute
ADT

Well
ADT

Palette
ADT

Relative Pos
Logic

Status
Artist

Well
Artist

Chute
Artist

Layout
Manager

Tile Match
Logic

Next Tile
Placing Logic

Status
ADT

Figure 1. KLAX architecture.



Natural is basic_subtype Integer;

A component’s invariant is a conjunction of predicates 
specified in first-order logic. The invariant defines a set of 
conditions that must be satisfied throughout the compo-
nent’s execution. It is specified with component state vari-
ables as operands and logical operators (\and, \or, \not, 
\implies, and \equivalent), comparison operators (\greater, 
\less, \eqgreater, \eqless, =, and <>), set operators (\union, 
\intersection, \in, \not_in, and #), and arithmetic operators 
(+, -, *, /, and ^).1 Operator precedence in C2SADEL is 
defined as shown in Table 1.
For example, the invariant for the WellADT component can 
be specified as follows.
invariant { 
(num_tiles \eqgreater 0) \and (num_tiles \eqless capacity); 

}

A component’s interface consists of a set of interface elements. An interface element is declared with a 
direction indicator (prov or req), name, set of parameters, and possibly a result type. The parameter speci-
fication syntax is identical to that used in variable specification. Since interface elements may have identi-
cal names, a unique label may be assigned to each as a notational convenience. For example, in
prov gt1: GetTile (location : Integer) : Color;
prov gt2: GetTile (i : Natural) : GSColor;

both interface elements are intended to be used with operations that remove and return a tile at the given 
location in the KLAX well. The first interface element accesses a color tile at the Integer location location; 
the second accesses a gray-scale tile at the Natural location i. The labels, gt1 and gt2, uniquely identify the 
two.
A component’s behavior consists of a set of operations. Each operation is declared as either provided or 
required and with a unique label, used to refer to the operation. Additionally, each operation may define a 
set of preconditions that must be true prior to the operation’s execution, and a set of postconditions that 
must be true after its execution. Since operations are separated from the interface elements through which 
they are accessed, operations also define local variables, which, along with component state variables, are 
used in specifying the pre- and postcondition predicates. The pre- and postconditions are specified in the 
same manner as component invariants. An operation’s postcondition may contain the keyword \result, to 
denote the operation’s return value. Additionally, a postcondition may specify the value of a variable after 
the operation has executed, denoted with a ~, followed by the variable name.
An example operation can be specified as follows.
prov tileget: {
let pos : Integer;
pre (pos \greater 0) \and (pos \eqless num_tiles;)
post \result = well_at(pos) \and ~num_tiles = num_tiles - 1;

}

The local variable pos denotes the position in the well. num_tiles and well_at are component state vari-
ables. Recall that well_at is a function that returns the color value of the well at the given position. The 
postcondition specifies that the number of tiles in the well decreases after the tile is removed.
The tileget operation can export multiple interfaces. For example, both GetTile interface elements can be 
mapped to the operation, provided that GSColor is a basic subtype of Color:
map {
gt1 -> tileget (location -> pos);
gt2 -> tileget (i -> pos);

}

1. <> denotes inequality; \in and \not_in denote set membership; # denotes set cardinality; ^ denotes exponentiation.

Table 1: C2SADEL operator precedence
(in descending order)

#, \not

^

*, /

+, -

\union, \intersection

\greater, \eqgreater, \less, \eqless, =, <>, \in, \not_in

\and, \or

\implies, \equivalent



These elements are composed into a complete component specification as follows:1
component WellADT is subtype Matrix (beh) {
state {
capacity : Integer;
num_tiles : Integer;
well_at : Integer -> GSColor;

}
invariant {
(num_tiles \eqgreater 0) \and (num_tiles \eqless capacity);

}
interface {
prov gt1: GetTile (location : Integer) : Color;
prov gt2: GetTile (i : Natural) : GSColor;

}
operations {
prov tileget: {
let pos : Integer;
pre (pos \greater 0) \and (pos \eqless num_tiles);
post \result = well_at(pos) \and ~num_tiles = num_tiles - 1;

}
}
map {
gt1 -> tileget (location -> pos);
gt2 -> tileget (i -> pos);

}
}

Finally, a component type may be specified as a virtual type: it can be used in the definition of the topol-
ogy, but it does not have a specification and does not affect type checking of the architecture; furthermore, 
a virtual type cannot be evolved via subtyping. The concept of virtual types is useful in the case of compo-
nents for which implementations are known to already exist, but which are not specified in C2SADEL.

Connector Types
Since the connectors in this dissertation do not export a particular interface, but are context-reflective, the 
only aspect of connector types modeled in C2SADEL is their filtering mechanism, denoted with the 
message_filter keyword. The different filtering mechanisms are no_filtering, notification_filtering, 
message_filtering, prioritized, or message_sink. An example broadcast connector is specified as follows.
connector BroadcastConn is {
message_filter no_filtering;

}

Topology
To model the topology of an architecture, component and connector types are instantiated and intercon-
nected. Each type may be instantiated multiple times. C2SADEL requires that a component be attached to at 
most one connector on its top and one on its bottom; it allows multiple components and connectors to be 
attached to the top and bottom sides of a connector. The part of the KLAX topology that concerns the well 
is specified as follows.
architectural_topology {
component_instances {
Well : WellADT;
WellArt : WellArtist;
MatchLogic : TileMatchLogic;

}
connector_instances {
ADTConn : BroadcastConn;
ArtConn : BroadcastConn;

}
connections {
connector ADTConn {
top Well;
bottom MatchLogic, ArtConn;

}
connector ArtConn {
top ADTConn;
bottom WellArt;

}
}

}

1. For illustration, the specification of WellADT only includes the aspects of this component previously discussed.



C2SADEL Syntax Summary

This section contains the complete BNF specification of C2SADEL. For simplicity, all literals, including sin-
gle-character literals (e.g., ‘}’ or ‘;’) are displayed in bold type. Single-character literals are displayed 
without quotation marks. Unless bolded, curly braces (‘{’ and ‘}’) represent repetition of the enclosed 
expression. “{...}*” represents zero or more occurrences, while “{...}+” denotes one or more occurrences. 

arch_component_set ::=
(arch_component_type)*

arch_component_type ::=
component identifier is arch_component_type_decl

arch_component_type_decl ::=
component_type_decl | virtual_comp_type

arch_component_types ::=
component_types { arch_component_set }

arch_connector_type ::=
connector identifier is
{

message_filter filtering_policy ;
}

arch_connector_types ::=
connector_types { (arch_connector_type)* }

arch_topology ::=
architectural_topology
{

component_inst
connector_inst
attachments

}

attachments ::=
connections { (connection_decl)* }

basic_subtype ::=
identifier is basic_subtype identifier ;

basic_subtype_decl ::=
basic_types { (basic_subtype)* }

behavior_decl ::=
operations { (operation_decl)* }

binary_operator ::=
= | <> | + | - | * | / | ^ | \implies | \equivalent | \and | \or |
\union | \intersection | \in | \not_in \greater | \less | \eqgreater | \eqless

C2_architecture ::=
architecture identifier is
{ 

[basic_subtype_decl]
arch_component_types
arch_connector_types
arch_topology

}

C2_component_set ::=
[basic_subtype_decl]
(component_type)+

C2_SADEL_spec ::=
C2_architecture | C2_component_set

component_inst ::=
component_instances { (instance_decl)* }

component_type ::=
component identifier is component_type_decl

component_type_decl ::=
extern_comp_type | local_comp_type



connection_decl ::=
[ component | connector ] identifier
{

top [ connection_list ] ;
bottom [ connection_list ] ;

}

connection_list ::=
identifier , connection_list | identifier

connector_inst ::=
connector_instances { (instance_decl)* }

digit ::=
0 | 1 | ... | 9

dir_indicator ::=
prov | req

extern_comp_type ::=
extern { filename ; }

filtering_policy ::=
no_filtering | notification_filtering | message_filtering |
prioritized | message_sink

function_decl ::=
identifier : identifier -> identifier ;

identifier ::=
letter {  | letter | digit}*

instance_decl ::=
identifier : identifier ;

integer ::=
(digit)+

interface_decl ::=
interface { (interface_element_decl)* }

interface_element_decl ::=
dir_indicator identifier :

identifier ( param_decl ) [: [\set] identifier] ;

invariant_decl ::=
invariant { [logic_expr ;] }

let_decl ::=
let {var_decl ;}* [pre_decl | post_decl]

letter ::=
A | B | ... | Z | a | b | ... | z 

local_comp_type ::=
[subtype_decl]
{

state_decl
invariant_decl
interface_decl
behavior_decl
map_decl

}

logic_expr ::=
subexpr [\and subexpr]

map_decl ::=
map { (single_map)* }

numeric_literal ::=
[-] integer [. integer] [^ integer]

operand ::=
[\not | #] identifier | numeric_literal | subexpr | ( subexpr )

operation_decl ::=
dir_indicator identifier :
{ let_decl | pre_decl | post_decl }



param_decl ::=
var_decl ; param_decl | var_decl

param_to_var ::=
identifier -> identifier , param_to_var |
identifier -> identifier

post_decl ::=
post [post_logic_expr] ;

post_logic_expr ::=
post_subexpr [\and post_subexpr]

post_operand ::=
[\not | #] [~] identifier | numeric_literal | post_subexpr | ( post_subexpr )

post_subexpr ::=
post_operand binary_operator post_operand | \result = post_operand

pre_decl ::=
pre [logic_expr] ; [post_decl]

single_map ::=
identifier -> identifier ( param_to_var ) ;

state_decl ::=
state { (var_decl ; | function_decl ;)* }

subexpr ::=
operand binary_operator operand

subtype_decl ::=
subtype identifier ( subtype_rel_expr )

subtype_rel ::=
nam | int | beh | imp

subtype_rel_expr ::=
[\not] subtype_rel {\and [\not] subtype_rel}*

var_decl ::=
identifier : [\set] identifier

virtual_comp_type ::=
virtual { }


