
Chapter 4: Availability

Technology does not always rhyme with
perfection and reliability. Far from it in

reality!
—Jean-Michel Jarre

© Len Bass, Paul Clements, Rick Kazman,
distributed under Creative Commons

Attribution License

Chapter Outline

• What is Availability?
• Availability General Scenario
• Tactics for Availability
• Tactics-Based Questionnaire for Availability
• Patterns for Availability
• Summary

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

What is Availability?
• Availability refers to a property of software that it

is there and ready to carry out its task when you
need it to be.

• Availability encompasses the ability of a system
to mask or repair faults such that they do not
become failures.

• Availability builds on reliability by adding the
notion of recovery (repair). The goal is to
minimize service outage time by mitigating faults.

• The time to repair is the time until the failure is
no longer observable.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

What is Availability?

• A failure’s cause is a fault. A fault can be
internal or external to the system.

• Faults can be:
– prevented,
– tolerated,
– removed,
– forecast.

• Through these actions, a system becomes
“resilient” to faults.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

What is Availability?

• We are concerned with:
– how faults are detected,
– how frequently they occur,
– what happens when they occur,
– how long a system may be out of operation,
– how faults or failures can be prevented, and
– what notifications are required when a failure

occurs.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

What is Availability?

• We often measure availability properties such
as:
– MTBF: the mean time between failures
– MTTR: the mean time to repair

• Steady-state availability is calculated as:
MTBF/(MTBF + MTTR)

• This is how we calculate measures such as
"99.99% availability" (often seen in SLAs).

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Example Availability Measures

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Availability General Scenario

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Availability General Scenario

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Sample Concrete Availability
Scenario

• A server in a server farm fails during normal
operation, and the system informs the
operator and continues to operate with no
downtime.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Sample Concrete Availability
Scenario

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Goal of Availability Tactics
• A failure occurs when the system no longer

delivers a service consistent with its specification
– this failure is observable by the system’s actors.

• A fault (or combination of faults) has the
potential to cause a failure.

• Availability tactics enable a system to endure
faults so that services remain compliant with
their specifications.

• The tactics keep faults from becoming failures or
at least bound the effects of the fault and make
repair possible.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Goal of Availability Tactics

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Availability Tactics

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Detect Faults
• Ping/echo: asynchronous request/response

message pair exchanged between nodes, used to
determine reachability and the round-trip delay
through the associated network path.

• Monitor: a component used to monitor the state
of health of other parts of the system. A system
monitor can detect failure or congestion in the
network or other shared resources, such as from
a denial-of-service attack.

• Heartbeat: a periodic message exchange between
a system monitor and a process being monitored.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Detect Faults
• Timestamp: used to detect incorrect sequences

of events, primarily in distributed message-
passing systems.

• Sanity Checking: checks the validity or
reasonableness of a component’s operations or
outputs; typically based on a knowledge of the
internal design, the state of the system, or the
nature of the information under scrutiny.

• Condition Monitoring: checking conditions in a
process or device, or validating assumptions
made during the design.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Detect Faults
• Voting: to check that replicated components

are producing the same results. Comes in
various flavors: replication, functional
redundancy, analytic redundancy.

• Exception Detection: detection of a system
condition that alters the normal flow of
execution, e.g. system exception, parameter
fence, parameter typing, timeout.

• Self-test: procedure for a component to test
itself for correct operation.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Recover from Faults
(Preparation & Repair)

• Redundant spare. This tactic refers to a
configuration in which one or more duplicate
components can step in and take over the
work if the primary component fails.
– This tactic is at the heart of the hot spare, warm

spare, and cold spare patterns, which differ
primarily in how up-to-date the backup
component is at the time of its takeover.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Recover from Faults
(Preparation & Repair)

• Exception Handling: dealing with the
exception by reporting it or handling it,
potentially masking the fault by correcting the
cause of the exception and retrying.

• Rollback: revert to a previous known good
state, referred to as the “rollback line”.

• Software Upgrade: in-service upgrades to
executable code images in a non-service-
affecting manner.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Recover from Faults
(Preparation & Repair)

• Retry: where a failure is transient retrying the
operation may lead to success.

• Ignore Faulty Behavior: ignoring messages sent
from a source when it is determined that those
messages are spurious.

• Graceful Degradation: maintains the most critical
system functions in the presence of component
failures, dropping less critical functions.

• Reconfiguration: reassigning responsibilities to
the resources left functioning, while maintaining
as much functionality as possible.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Recover from Faults
(Reintroduction)

• Shadow: operating a previously failed or in-service upgraded
component in a “shadow mode” for a predefined time prior to
reverting the component back to an active role.

• State Resynchronization: partner to active redundancy and
passive redundancy where state information is sent from
active to standby components.

• Escalating Restart: recover from faults by varying the
granularity of the component(s) restarted and minimizing the
level of service affected.

• Non-stop Forwarding: functionality is split into supervisory
and data. If a supervisor fails, a router continues forwarding
packets along known routes while protocol information is
recovered and validated.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Prevent Faults
• Removal From Service: temporarily placing a system

component in an out-of-service state for the purpose
of mitigating potential system failures

• Transactions: bundling state updates so that
asynchronous messages exchanged between
distributed components are atomic, consistent,
isolated, and durable.

• Predictive Model: monitor the state of health of a
process to ensure that the system is operating within
nominal parameters; take corrective action when
conditions are detected that are predictive of likely
future faults.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Prevent Faults

• Exception Prevention: preventing system
exceptions from occurring by masking a fault,
or preventing it via smart pointers, abstract
data types, wrappers.

• Increase Competence Set: designing a
component to handle more cases—faults—as
part of its normal operation.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Tactics-Based Questionnaire for
Availability

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Tactics-Based Questionnaire for
Availability

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Tactics-Based Questionnaire for
Availability

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Patterns for Availability
• Active redundancy (hot spare). This refers to a

configuration in which all of the nodes in a
protection group receive and process identical
inputs in parallel, allowing the redundant
spare(s) to maintain a synchronous state with
the active node(s).

• Because the redundant spare possesses an
identical state to the active processor, it can
take over from a failed component in a matter
of milliseconds.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Redundant Spare Patterns for
Availability

• Passive redundancy (warm spare). Here only the
active members of the protection group process
input traffic. One of their duties is to provide the
redundant spare(s) with periodic state updates.

• Because this state is loosely coupled with the
active node(s), the redundant nodes are referred
to as warm spares.

• Passive redundancy achieves a balance between
the more highly available but more compute-
intensive (and expensive) active redundancy
pattern and the less available but significantly
less complex (and cheaper) cold spare pattern.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Redundant Spare Patterns for
Availability

• Spare (cold spare). Cold sparing refers to a
configuration in which redundant spares
remain out of service until a failover occurs, at
which point a power-on-reset procedure is
initiated on the redundant spare prior to its
being placed in service.

• Due to its poor recovery performance, and
hence its high mean time to repair, this
pattern is poorly suited to systems having
high-availability requirements

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Benefits of Redundant Spare
Patterns

• The benefit of a redundant spare is a system
that continues to function correctly after only
a brief delay in the presence of a failure.

• The alternative is a system that stops
functioning correctly (or altogether) until the
failed component is repaired.

• This could take hours or days.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Tradeoffs in Redundant Spare
Patterns

• The tradeoff with any of these patterns is the
additional cost and complexity incurred in
providing a spare.

• The tradeoff among the three alternatives is
the time to recover from a failure versus the
runtime cost incurred to keep a spare up-to-
date.

• A hot spare carries the highest cost but leads
to the fastest recovery time, for example.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

TMR Pattern for Availability
• This widely used implementation of the voting

tactic employs three components that do the
same thing. Each component receives identical
inputs and forwards its output to the voting logic,
which detects any inconsistency among the three
output states. Faced with an inconsistency, the
voter reports a fault.

• It must also decide which output to use, and
different instantiations of this pattern use
different decision rules. Typical choices are letting
the majority rule or choosing some computed
average of the disparate outputs.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

TMR Pattern Benefits/Tradeoffs
• Benefits:

– TMR is simple to understand and to implement. It is
blissfully independent of what might be causing
disparate results, and is only concerned about making
a reasonable choice so that the system can continue
to function.

• Tradeoffs:
– There is a tradeoff between increasing the level of

replication, which raises the cost, and the resulting
availability. In systems employing TMR, the statistical
likelihood of two or more components failing is
vanishingly small, and three components represents a
sweet spot between availability and cost.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Circuit Breaker Pattern for
Availability

• A commonly used availability tactic is retry. In the
event of a timeout or fault when invoking a service, the
invoker simply tries again—and again, and again. A
circuit breaker keeps the invoker from trying countless
times, waiting for a response that never comes.

• In this way, it breaks the endless retry cycle when it
deems that the system is dealing with a fault. That’s
the signal for the system to begin handling the fault.

• Until the circuit break is “reset,” subsequent
invocations will return immediately without passing
along the service request.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Circuit Breaker Pattern
Benefits/Tradeoffs

• Benefits:
– This pattern can remove from individual components the policy about

how many retries to allow before declaring a failure.
– At worst, endless fruitless retries would make the invoking component

as useless as the invoked component that has failed. This problem is
especially acute in distributed systems, where you could have many
callers calling an unresponsive component and effectively going out of
service themselves, causing the failure to cascade across the whole
system. The circuit breaker, in conjunction with software that listens to
it and begins recovery procedures, prevents that problem.

• Tradeoffs:
– Care must be taken in choosing timeout (or retry) values. If the

timeout is too long, then unnecessary latency is added. But if the
timeout is too short, then the circuit breaker will be tripping when it
does not need to—a kind of “false positive”—which can lower the
availability and performance of these services.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Other Common Availability Patterns

• Process pairs. This pattern employs checkpointing and
rollback. In case of failure, the backup has been
checkpointing and (if necessary) rolling back to a safe
state, so is ready to take over when a failure occurs.

• Forward error recovery. This pattern provides a way to
get out of an undesirable state by moving forward to a
desirable state. This often relies upon built-in error-
correction capabilities, such as data redundancy, so
that errors may be corrected without the need to fall
back to a previous state or to retry. Forward error
recovery finds a safe, possibly degraded, state from
which the operation can move forward.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Summary

• Availability refers to the ability of the system
to be available for use when a fault occurs.

• The fault must be recognized (or prevented)
and then the system must respond.

• The response will depend on the criticality of
the application and the type of fault
– can range from “ignore it” to “keep on going as if

it didn’t occur.”

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

Summary
• Tactics for availability are categorized into

detect faults, recover from faults and prevent
faults.

• Detection tactics depend on detecting signs of
life from various components.

• Recovery tactics are retrying an operation or
maintaining redundant data or computations.

• Prevention tactics depend on removing
elements from service or limiting the scope of
faults.

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

	Chapter 4: Availability
	Chapter Outline
	What is Availability?
	What is Availability?
	What is Availability?
	What is Availability?
	Example Availability Measures
	Availability General Scenario
	Availability General Scenario
	Sample Concrete Availability Scenario
	Sample Concrete Availability Scenario
	Goal of Availability Tactics
	Goal of Availability Tactics
	Availability Tactics
	Detect Faults
	Detect Faults
	Detect Faults
	Recover from Faults �(Preparation & Repair)
	Recover from Faults �(Preparation & Repair)
	Recover from Faults �(Preparation & Repair)
	Recover from Faults �(Reintroduction)
	Prevent Faults
	Prevent Faults
	Tactics-Based Questionnaire for Availability
	Tactics-Based Questionnaire for Availability
	Tactics-Based Questionnaire for Availability
	Patterns for Availability
	Redundant Spare Patterns for Availability
	Redundant Spare Patterns for Availability
	Benefits of Redundant Spare Patterns
	Tradeoffs in Redundant Spare Patterns
	TMR Pattern for Availability
	TMR Pattern Benefits/Tradeoffs
	Circuit Breaker Pattern for Availability
	Circuit Breaker Pattern Benefits/Tradeoffs
	Other Common Availability Patterns
	Summary
	Summary

