
Dynamically Tracing Non-Functional Requirements
through Design Pattern Invariants

Jane Cleland-Huang and David Schmelzer
DePaul University, Chicago

{jhuang, dschmelzer}@cs.depaul.edu

Abstract

Nonfunctional requirements (NFRs) are critical to
the successful implementation of almost every
nontrivial software system. This is evidenced by the
fact that many documented system failures are
directly attributed to the inadequate implementation
and maintenance of NFRs. Although tracing NFRs
could alleviate this problem through supporting
activities such as requirements validation, impact
analysis, and regression testing, the task is
complicated by their tendency to exhibit complex
interactions and to have a global and far-reaching
impact upon a software system. This paper
describes an approach for establishing traceability
between certain types of NFRs and design and code
artifacts, through the use of design patterns as
intermediary objects. By synergistically utilizing
both static and dynamically generated links, EBTDP
minimizes the cost and effort of establishing and
maintaining traceability links.

1 Introduction

 Requirements traceability is a critical component
in the long term maintenance of any medium or
large scaled software application. Traceability links
define relationships between requirements and
design artifacts, and support a number of crucial
activities related to requirements validation, impact
analysis, regression testing, and knowledge
management [1,2]. Traditionally these techniques
have focused upon the functional requirements of
the system, however if non-functional requirements
(NFRs) such as performance, reliability, scalability,
and safety are not considered, then functional
changes may introduce unexpected side effects

resulting in both immediate and long-term
degradation of the system quality.
 NFRs come in many different shapes and sizes,
and there is therefore no single traceability technique
that can be applied in every case. For example,
certain types of requirements that are traditionally
considered to be nonfunctional, tend to decompose
into lower level requirements that are quite
functional in nature, and can be traced using
conventional methods. Many security requirements
fall into this category. However, other NFRs such as
those related to reliability and scalability tend to
have a more global impact upon a system and are
therefore difficult to trace without creating and
maintaining an excessive number of links. Due to
these difficulties, many developers entirely fail to
trace NFRs, risking exposure to unpredicted side-
effects that may adversely impact critical qualities of
the system.
 This paper builds on our previous work on
Event-based traceability (EBT) [3,4,5,6] by
describing a new method, EBTDP, for tracing NFRs
through the use of design patterns [7]. Several
researchers have recognized the fact that NFRs are
often fulfilled through the implementation of design
patterns [8,9], making this approach applicable to a
significant number of requirements. Its primary
advantage is that user-defined and dynamic links can
be used synergistically to establish finely-grained
traceability links supportive of important software
engineering tasks such as automated impact analysis
and regression testing, without the overhead of
maintaining an excessive number of static links. For
the purposes of this paper we therefore distinguish
between a static user-defined link for which the user
explicitly defines a relationship between two
artifacts, and a dynamic link which is generated by
the system at runtime.

1.1. Current Practices

 Typical traceability practices [10,2] utilize user-
defined approaches such as matrices, hyperlinks, or
the traceability features embedded in requirements
management tools such as DOORS and Requisite
Pro. Unfortunately, although it is easy to create
links using these methods, it can be extremely hard
to maintain them in an accurate state over time
[2,11]. In practice, high-end traceability users
attempt to reduce the number of links that need to be
maintained by using a mixture of fine and coarse
grained links [10], however this inhibits the possible
trace automation of the parts of the system for which
no fine-grained links exist. Establishing static
traceability links for NFRs with global impact upon
a system could quickly result in an excessive number
of hard to maintain links and should therefore be
avoided.
 Several researchers have investigated the use of
dynamic link generation in place of static links
[12,13]. However these approaches are primarily
suitable for linking requirements and artifacts that
exhibit a high lexical correlation. For example,
information retrieval techniques can be used to
dynamically link a requirement with artifacts that
contain similar words and phrases. However, in the

case of NFRs this type of high lexical correlation
between the requirement and its implemented
artifacts often does not exist.
 The use of design patterns as intermediary
objects introduces the possibility of rule-based link
generation in place of lexical-based generation.
Although current techniques for detecting
implemented design patterns at the system level,
lack the precision required to support traceability,
the new approach proposed in this paper describes
how a small number of user-defined links can
provide a context in which precision can be
improved and useful links can be successfully
generated. These links can then support activities
such as regression testing and impact analysis. This
new approach utilizes the functionality of the
traceability event engine developed as part of our
previous work on Event-Based traceability (EBT)
and is therefore called EBTDP. Figure 1 provides an
overview of the EBTDP process.
 The following section discusses some of the
issues surrounding the tracing of NFRs and provides
an example that is used throughout the remainder of
the paper. Section 3 defines the EBTDP traceability
mechanism and section 4 discusses the use of design
pattern invariants to drive the dynamic generation of

Specify
NFR

Identify
appropriate

Design
Pattern(s)

Implement
Design Pattern

into system

Create logical
‘class cluster’ of
all participating

classesNFR Catalog
SIG

EBT
links

A ‘change event’
triggers need

for Impact analysis
or regression testing

Dynamic
generation

of fine-grained
traceability links

User-defined links provide
context for generating

fine-grained links.

Fine-grained
links support

regression testing
and/or impact analysis

Create EBT
subscription
from class-

cluster to NFR
Link type =
DesignPattern:
[PatternName]

Link type = “Belong To”

Initial
Phase

Establish
coarse
user-
defined
links

Runtime
Phase

Establish
fine-grained
links
dynamically

Figure 1 The EBTDP process

links. Section 5 then concludes with a discussion of
the findings and an outline for future work.

2. Tracing Non-Functional Requirements

Consider the following three NFRs taken from a
critical application in which a Mission Command
Center application is responsible for monitoring and
controlling a set of instruments:

• MCC_NFR1 (extensibility)
 “The system shall support the dynamic addition

of monitored sensors at runtime”

• MCC_NFR2 (performance)
 “The system shall respond in a timely manner to

all emergency situations.”

• MCC_NFR3 (reusability)
 “The system shall be designed to support reuse

of software components”

NFRs are often initially stated in fuzzy or
incomplete terms and then refined during the
analysis and development process [14].

2.1 Design Patterns as Operationalizations

 A softgoal interdependency graph (SIG), as
depicted in Figure 2, provides a useful modeling
notation for reasoning about and analyzing NFRs,
and for determining when an NFR might be fulfilled
through the use of a design pattern. Within a SIG,
NFRs are represented as ‘softgoals’, refined into
lower level softgoals and ‘operationalizations’. An
operationalization represents a potential solution for
fulfillment of a softgoal. Interdependencies between

softgoals and operationalizations are captured as
links, and annotated according to whether they make
(++), help (+), hurt (-), break(--), or have an
unknown impact upon their parent node in the graph.
 As illustrated in Figure 2, the two NFRs related
to extensibility and reusability can be fulfilled
through the implementation of the observer design
pattern [7]. The observer pattern ‘defines a one-to-
many dependency between objects so that when one
object changes state, all its dependents are notified
and updated automatically’. This pattern enables
dependent observers to be dynamically added at
runtime and supports interaction between multiple
observers without requiring any direct
communication between them.
 The objective is to establish links between each
NFR and the components of the implemented
observer pattern in order to support ongoing
compliance monitoring that the design pattern
remains implemented in the design. In other words,
activities such as regression testing and impact
analysis should ensure that the NFRs related to
extensibility and reusability remain validated. For
the purposes of this paper we use the term
‘implemented classes’ to refer to both UML classes
and coded classes, as the EBTDP traceability
techniques are equally applicable to both code and
UML classes.

2.2 Traditional User-Defined Links

 Utilizing a user-defined traceability technique
to establish fine-grained traceability between the
extensibility and reusability NFRs and the
components of this observer pattern would require

indirect communication
Sensors/actuators

extensibility
Sensors/actuators

Observer
pattern

reusability
components

performance
command center

direct collaboration
Sensors/actuators

+
+

+
- - -

++

Figure 2 Tracing NFRs to design patterns through a Softgoal Interdependency Graph

links to be established between each NFR and each
of the critical observer pattern methods. These are
depicted in Figure 3 and would minimally include
links to the Instrument:Update method in all
subclasses of Instrument, MissionCommandCenter:
Attach, Mission-CommandCenter:Detach, and
Mission-CommandCenter:Notify. In our example, if
we assume an oversimplified command center with
only ten different types of Instruments (ie ten
subclasses of Instrument), simply linking both of the
NFRs to their Observer Pattern implementations
would require 80 traceability links (2 NFRs x 10
Instruments x 4 Links)!
 This creates a non-viable situation in terms of
the cost and effort involved in establishing and
maintaining these links. Furthermore, although
these static links can clearly identify many critical

components of the pattern within the
implementation, they are unable to monitor more
sophisticated elements of the design such as the
prohibition of direct links between classes of type
Instrument.
 A user-defined approach to linking NFRs
through design patterns using matrices, hyperlinks,
or existing requirements management tools is
therefore prohibitively expensive to implement and
limited in expressiveness.

3. An overview of EBTDP

 In EBT, traceability links are established as
publish-subscribe relationships, and are attributed
according to the type of link. EBTDP requires only a

Figure 4 User defined links established as EBT subscriptions

CommandCenter

Attach (Instrument)
Detach(Instrument)
Notify()

Instrument

Update()

Temperature

Update()

Pressure

Update()

Velocity

Update()

MissionCommandCenter

GetState()
SetState()

For all Instruments
i Update()

Figure 3 Observer Pattern applied within the MissionCommandCenter

few user-defined links because the remaining fine-
grained links will be dynamically generated. In this
example, we will assume that the observer pattern is
implemented as depicted in the class diagram of
Figure 3. In this case the participating classes
include MissionCommandCenter, Instrument,
Temperature, Pressure, and Velocity. These classes
are packaged into a cluster labeled ‘ControlCluster’
through the use of EBT subscriptions. The resulting
cluster, which only exists as an abstract entity is then
linked to each of the NFRs that are fulfilled by the
Observer Pattern, again using EBT subscriptions.
 These subscriptions are shown in Figure 4.
 In comparison to our previous example of using
fine-grained user-defined links, this approach
requires one link for each instrument class in order
to subscribe to the class cluster, and one link from
the class cluster to each NFR that it fulfills.
Therefore for the mission command center with 10
instruments, the number of traceability links is
reduced from 80 to 14! In a similar situation with 20
instruments the number of links would be reduced
from 160 to 24. Furthermore, all of these links are
coarse-grained and therefore much simpler to
maintain than the fine-grained links that would be
required using a non-dynamic approach.
 EBTDP consists of two distinct phases. These
are illustrated in Figure 1. In the first phase, which
occurs during inception, elaboration, and
construction of the system, the initial user-defined
traceability links are established. In the second
phase, which occurs during the ongoing maintenance
and refinement of the system, fine-grained links are
dynamically generated.
 Early in the software development process, the
NFRs are elicited and analyzed. A SIG or other
method can be used to identify relationships between
NFRs and design patterns. During design and
construction, the design pattern is implemented into
the UML model and related code. The classes in
which the elements of the design pattern are
instantiated are identified and composed into a
logical cluster. A traceability link is established
between the cluster and the NFR and assigned the
link type of the implemented design pattern. In this
case, the link is assigned the type attribute of
“DesignPattern:Observer”.

3.1 Event Triggers in EBTDP

 In any event driven system, event handlers are
responsible for handling specific events as they
occur. In EBT, events are published as generic event
messages to the EBT event server, and then
customized according to the type of subscription
placed by the dependent artifact. Customized event
messages are then forwarded to the event handler for
each impacted artifact and handled accordingly.
EBT is an example of a process driven environment
in which the logic of the enactment domain is
distributed amongst the event handlers [15].
 In EBTDP the purpose is to trigger the dynamic
generation of links when a critical event occurs. For
example, if a change is made to a class that
implements a design pattern, it would be useful
among other things, to trigger an event that
ultimately results in the re-execution of regression
tests to determine if the change adversely impacted
the implementation of the design pattern. In this
way, the traceability links would support long-term
compliance monitoring of the design to its stated
NFRs.
 The full EBT methodology is described in
[3,4,5,6], however this section illustrates its support
for dynamic link generation. As an example,
consider the situation that would occur if the class
“Temperature” were modified. In this situation the
following event message is published:
“ChangeEvent:Class:Temper-
ature|Modified”
 This message is received by the EBT event
server, which determines that the Temperature class
is subscribed to the cluster “ControlCluster”. As no
event handler is attached to the class ‘Temperature’,
the message is forwarded to ‘ControlCluster’ as:
“ChangeEvent:Class-
Cluster:Temperature|Modified”.
 The EBT event server then determines that
ControlCluster is subscribed to MCC_NFR2, and
MCC_NFR3, and that the link is attributed with the
type ‘DesignPattern:Observer’.
 The logic in the event server then causes the
triggering of the mechanism to dynamically generate
links between the NFR and the class
implementations. These traceability links can then
be used to support a full impact analysis or
regression testing. The following section discusses
the dynamic generation of these links.

4. Dynamic Link Generation

 In EBTDP links are generated dynamically
according to the invariant rules of the relevant
design pattern. The objective is to use the invariants
of the design pattern to identify critical components
within the implemented classes that should be
traceable, and to generate related links. In this
section we therefore examine related work in
detecting and reverse engineering design patterns.

4.1 Design Pattern Detection

 Several researchers have examined the problem
of detecting design patterns from design and code
artifacts [16,17]. This problem is closely related to
that of dynamically generating traceability links,
because once a pattern and its implemented
components can be identified, then traceability links
can be established between the elements of the
design pattern and those components. Brown stated
that a design pattern “is detectable if its template
solution is both distinctive and unambiguous.”[16]
He determined that some design patterns such as
Interpreter [7] are difficult to detect because they
rely upon general principles rather than specific
design fragments, while others are quite easy to
detect because they exhibit very specific and unique
patterns of interaction. In the general case, many
design patterns fall somewhere in between these two
extremes, with certain parts of the pattern being
easily detectable, and others being more obscure. In
the general pattern detection problem, detecting
individual parts of the pattern may not provide a
reasonable level of confidence to clearly
demonstrate the use of the whole pattern.
 Heuzeroth also investigated the problem of
design pattern detection [15]. He defined each
design pattern to be detected in terms of its invariant
features expressed as a tuple of program elements
including classes, methods, and attributes, and
representing the restrictions and rules of a design
pattern. For example, the invariants of the Observer
pattern are represented by the tuple
(Subject.addListener, Subject.removeListener,
Subject.notify, Listener. update). The expected
behavior of each of these elements is then defined.
 The Subject class must be capable of
dynamically adding observers. To accomplish this,
it instantiates a Subject.addListener method capable
of receiving an object as a parameter and either

storing that object locally for future use or passing it
to another method for storage. Because this method
may be called by any name it is necessary to search
for a method that matches the required behavioral
pattern of the add.Listener method.
 Heuzeroth’s approach is implemented in two
stages. During the initial static analysis a set of
candidate patterns are identified. In practice, this
stage tends to output many false positive patterns,
and therefore a second stage dynamic analysis is
performed to filter out false patterns. During this
stage the simulated runtime behavior of the classes
and their interactions is observerd. Heuzeroth found
that as long as the dynamic analysis actually caused
the execution of the candidate pattern elements, it
was generally possible to effectively distinguish
between true and false pattern detections.

4.2 Linking Pattern Elements to the NFR

 The underlying concept of EBTDP is that if an
NFR is implemented through a design pattern, and if
that design pattern can be detected, then finely
grained traceability links can be generated as needed
to support important tasks such as regression testing
and impact analysis.
 Dynamic link generation utilizes the techniques
described in the previous section with a couple of
critical differences. First, the precision of the
approach is increased because the pattern detection
analyzer no longer is searching for an unknown set
of design patterns within a large system-wide search
space. The search space is constrained by the initial
set of user-defined links that specify the class cluster
in which the pattern resides. Furthermore the
objective changes from the broad task of finding any
type of implemented pattern to answering the very
specific question of “Where in this class cluster is
this specific pattern implemented?” This reduction
in scope allows for a much more precise result.
 Heuzeroth also pointed out that the dynamic
analysis phase is only effective if the candidate
pattern elements are actually executed. In EBTDP a
single additional traceability link to a specific test
case can guarantee execution of the implemented
pattern.
 Following the dynamic analysis phase the
pattern invariants are either linked to their
implemented elements or marked as ‘missing’.
Missing elements indicate a possible problem in
ongoing compliance to the NFR because the loss of

a critical part of the pattern suggests that it is no
longer implemented as originally planned and can no
longer serve to validate the NFR. These links are
then used to conduct normal software engineering
activities such as impact analysis.

4.3 Support for Impact Analysis

 The purpose of EBTDP traceability is to support
activities such as impact analysis and regression
testing. Consider for example a proposed functional
change that will impact a class such as the
Temperature class from the MissionCommand-
Center. The developer issues an EBTDP query
against the Temperature class to determine how
changing it might impact the overall system. As
depicted in Figure 5, an event message is issued to
the event server and as the Temperature class
belongs to the ControlCluster, the event message is
forwarded to all artifacts to which the
ControlCluster subscribes. Activating the
DesignPattern:Observer link from the Control-
Cluster to the NFR triggers the EBTDP mechanism to
dynamically generate links from the NFR to the
implemented components of the observer pattern.
These links clearly identify critical elements of the
pattern implemented as classes and methods in the
design and code.

 The dynamically generated traceability links
therefore provide the developer with information
about the class that is about to be changed, by
clearly identifying critical elements within the class
that should remain implemented in order to maintain
the integrity of the related NFR. The developer is
therefore equipped to make effective decisions
concerning the proposed change and its general
impact upon the system. Following the change, the
link generation process can be repeated as a form of
automated regression testing to determine if the
design pattern continutes to remain intact. Failure to
identify the pattern invariants indicates that the NFR
might no longer be adequately fulfilled in the design
and code.

5. Conclusions

 Establishing traceability from NFRs to design
components and code, certainly represents a non-
trivial problem for which no single solution is
available. The sheer diversity of NFRs and their
related implementation techniques indicates that it is
unlikely that a single traceability technique will be
optimal for all types of NFRs. This paper describes
one method applicable to NFRs that are fulfilled
through the implementation of a design pattern.
EBTDP provides a powerful alternate to establishing

EBT Event
Server

EBT
Subscriptions

Subscriber
Manager for
Implemented

Classes

Design pattern
invariants

Subscribe to Class Cluster
(Type: BelongTo)

1. Class ‘C’ change event

Event results
GUI

Subscriber
Manager for

Design Patterns

Class
Diagrams Code

Abstract
Class Cluster

Subscribe to NFR
(Type: Observer Pattern)

2. Look-up Class
subscriptions for ‘C’.

3. Return
“ControlCluster”

4. Look-up subscriptions
for “Control Cluster”

5. Return NFR
Type: ObserverPattern

6. Trigger new event
Type:DP based static analysis

7. Customized event message
Type: DP Invariants

8. Execute static analyzer
using specific DP invariants

Figure 5. Supporting traceability of NFRs through EBTDP

traceability through the use of static links. One of its
primary advantages is that the known and predefined
rules of the design pattern enable fine-grained links
from the pattern to specific class implementations to
be generated dynamically. This reduces the need for
establishing explicit traceability links, and increases
both the maintainability and the expressiveness of
the approach.
 Although the various components have already
been demonstrated to work, either within EBT, or
through the work of other researchers, we are
currently in the process of implementing the full
EBTDP approach in a way that would be applicable
to a broader spectrum of design patterns and NFRs.
To accomplish this, it is necessary to analyze a more
extensive set of design patterns to identify their
invariants, to demonstrate the use of a generic static
analyzer to support identification of design patterns
within the EBT linked class clusters, and to
investigate the further extension of the NFR catalog
so that identifying the use of design patterns to fulfil
NFRs is further facilitated. Once this work is
completed we will conduct further experiments with
this approach utilizing our EBT framework.
 As a broader contribution to the advancement of
traceability practices, this approach suggests that
hybrid approaches utilizing a combination of static
and dynamically generated links can potentially
provide effective solutions for implementing long-
term and maintainable traceability.

Acknowledgments

 This work is partially funded by NSF grant
CCR-0306303.

References

1. M. Jarke, “Requirements Traceability”, Communications
of the ACM, Vol. 41, No. 12, Dec. 1998, pp. 32-36.
2. O. Gotel and A. Finkelstein, “An Analysis of the
Requirements Traceability Problem,” Proc. 1st Int’l Conf.
Requirements Engineering., 1994, pp. 94-101.
3. J. Cleland-Huang, C.K.Chang, and M. Christensen, ‘Event-
Based Traceability for Managing Evolutionary Change’, IEEE
Trans. on Software Eng., Vol. 29, No. 9, September, 2003. pp.
796-810.

4. J. Cleland-Huang, C. K. Chang, and J. Wise, “Automating
Performance Related Impact Analysis through Event Based
Traceability,” Requirements Engineering Journal, Springer
Verlag, Vol 8, No. 3, August, 2003. pp 171-182.
5. J. Cleland-Huang, C.K. Chang, K. Javvaji, H. Hu, G.Sethi,
J.Xia, set al., “Requirements Driven Impact Analysis of System
Performance,” IEEE Proc. of the Joint Conf. on Requirements
Engineering, Essen, Germany, Sept. 2002.
6. J. Cleland-Huang and C. K. Chang, “Supporting Event
Based Traceability through High-Level Recognition of Change
Events,” IEEE Proc. of COMPSAC, Oxford, England, Aug.
2002, pp. 595-600.
7. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, Mass., 1995.
8. Daniel Gross and Eric Yu, “From Non-Functional
Requirements to Design through Patterns”, Requirements
Engineering Journal, Vol 6, No. 1, 2001, pp. 18-36.
9. N. Leveson, Safeware: System Safety and Computers,
Addison-Wesley, 1995. Appendix available online at http://
sunnyday.mit.edu/ accidents/therac.pdf.
10. B. Ramesh, and M. Jarke, “Toward Reference Models for
Requirements Traceability”, IEEE Trans. on Software Eng., Vol.
27, No. 1, Jan 2001, pp. 58-92.
11. R. Domges and K. Pohl, “Adapting Traceability
Environments to Project Specific Needs”, Communications of
the ACM, Vol. 41, No. 12, 1998, pp. 55-62.
12. G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, E.
Merlo, “Recovering Traceability Links between Code and
Documentation”, IEEE Trans. On Software Engineering, Vol.
28, No. 10, pp. 970-983.
13. E.Tryggeseth and O. Nytrø, “Dynamic Traceability Links
Supported by a System Architecture Description”, Proc. of the
IEEE International Conference on Software Maintenance, Bari,
Italy, Oct. 1997.
14. L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, Non-
Functional Requirements in Software Engineering, Kluwer
Academic Publishers, 2000.
15. K. Pohl, K. Weidenhaupt, R. Domges, P. Haumer, M.
Jarke, and R. Klamma, “PRIME – Toward Process-Integrated
Modeling Environments”, ACM Transactions on Software
Engineering and Methodology, Vol. 8, No. 4, October 1999, pp.
343-410.
16. Dirk Heuzeroth, Thomas Holl, Gustav Högström, Welf
Löwe, Automatic Design Pattern Detection, 11th International
Workshop on Program Comprehension, co-located with 25th
International Conference on Software Engineering, Portland,
IEEE, May 2003.
17. K. Brown, “Design Reverse-Engineering and Automated
Design Pattern Detection in Smalltalk”, Master Thesis,
University of Illinois at Urbana-Champaign, 1997

