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Abstract 
 
Nonfunctional requirements (NFRs) are critical to 
the successful implementation of almost every 
nontrivial software system.  This is evidenced by the 
fact that many documented system failures are 
directly attributed to the inadequate implementation 
and maintenance of NFRs.  Although tracing NFRs 
could alleviate this problem through supporting 
activities such as requirements validation, impact 
analysis, and regression testing, the task is 
complicated by their tendency to exhibit complex 
interactions and to have a global and far-reaching 
impact upon a software system.  This paper 
describes an approach for establishing traceability 
between certain types of NFRs and design and code 
artifacts, through the use of design patterns as 
intermediary objects.  By synergistically utilizing 
both static and dynamically generated links, EBTDP  
minimizes the cost and effort of establishing and 
maintaining traceability links.  
 
1 Introduction 
 
 Requirements traceability is a critical component 
in the long term maintenance of any medium or 
large scaled software application.  Traceability links 
define relationships between requirements and 
design artifacts, and support a number of crucial 
activities related to requirements validation, impact 
analysis, regression testing, and knowledge 
management [1,2].  Traditionally these techniques 
have focused upon the functional requirements of 
the system, however if non-functional requirements 
(NFRs) such as performance, reliability, scalability, 
and safety are not considered, then functional 
changes may introduce unexpected side effects 

resulting in both immediate and long-term 
degradation of the system quality.   
 NFRs come in many different shapes and sizes, 
and there is therefore no single traceability technique 
that can be applied in every case.  For example, 
certain types of requirements that are traditionally 
considered to be nonfunctional, tend to decompose 
into lower level requirements that are quite 
functional in nature, and can be traced using 
conventional methods.  Many security requirements 
fall into this category. However, other NFRs such as 
those related to reliability and scalability tend to 
have a more global impact upon a system and are 
therefore difficult to trace without creating and 
maintaining an excessive number of links.  Due to 
these difficulties, many developers entirely fail to 
trace NFRs, risking exposure to unpredicted side-
effects that may adversely impact critical qualities of 
the system.  
 This paper builds on our previous work on 
Event-based traceability (EBT) [3,4,5,6] by 
describing a new method, EBTDP,  for tracing NFRs 
through the use of design patterns [7].  Several 
researchers have recognized the fact that NFRs are 
often fulfilled through the implementation of design 
patterns [8,9], making this approach applicable to a 
significant number of requirements.  Its primary 
advantage is that user-defined and dynamic links can 
be used synergistically to establish finely-grained 
traceability links supportive of important software 
engineering tasks such as automated impact analysis 
and regression testing, without the overhead of 
maintaining an excessive number of static links.  For 
the purposes of this paper we therefore distinguish 
between a static user-defined link for which the user 
explicitly defines a relationship between two 
artifacts, and a dynamic link which is generated by 
the system at runtime. 
 



1.1. Current Practices 
 
 Typical traceability practices [10,2] utilize user-
defined approaches such as matrices, hyperlinks, or 
the traceability features embedded in requirements 
management tools such as DOORS and Requisite 
Pro.  Unfortunately, although it is easy to create 
links using these methods, it can be extremely hard 
to maintain them in an accurate state over time 
[2,11].  In practice, high-end traceability users 
attempt to reduce the number of links that need to be 
maintained by using a mixture of fine and coarse 
grained links [10], however this inhibits the possible 
trace automation of the parts of the system for which 
no fine-grained links exist. Establishing static 
traceability links for NFRs with global impact upon 
a system could quickly result in an excessive number 
of hard to maintain links and should therefore be 
avoided. 
 Several researchers have investigated the use of 
dynamic link generation in place of static links 
[12,13].  However these approaches are primarily 
suitable for linking requirements and artifacts that 
exhibit a high lexical correlation.  For example, 
information retrieval techniques can be used to 
dynamically link a requirement with artifacts that 
contain similar words and phrases.  However, in the 

case of NFRs this type of high lexical correlation 
between the requirement and its implemented 
artifacts often does not exist. 
 The use of design patterns as intermediary 
objects introduces the possibility of rule-based link 
generation in place of lexical-based generation.  
Although current techniques for detecting 
implemented design patterns at the system level, 
lack the precision required to support traceability, 
the new approach proposed in this paper describes 
how a small number of user-defined links can 
provide a context in which precision can be 
improved and useful links can be successfully 
generated.  These links can then support activities 
such as regression testing and impact analysis.  This 
new approach utilizes the functionality of the 
traceability event engine developed as part of our 
previous work on Event-Based traceability (EBT) 
and is therefore called EBTDP. Figure 1 provides an 
overview of the EBTDP process. 
 The following section discusses some of the 
issues surrounding the tracing of NFRs and provides 
an example that is used throughout the remainder of 
the paper.  Section 3 defines the EBTDP traceability 
mechanism and section 4 discusses the use of design 
pattern invariants to drive the dynamic generation of 
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Figure 1  The EBTDP process   



links.  Section 5 then concludes with a discussion of 
the findings and an outline for future work. 
 
2. Tracing Non-Functional Requirements 
 
Consider the following three NFRs taken from a 
critical application in which a Mission Command 
Center application is responsible for monitoring and 
controlling a set of instruments: 
 

• MCC_NFR1 (extensibility) 
 “The system shall support the dynamic addition 

of monitored sensors at runtime” 
 

• MCC_NFR2 (performance) 
 “The system shall respond in a timely manner to 

all emergency situations.” 
 

• MCC_NFR3 (reusability) 
 “The system shall be designed to support reuse 

of software components” 
 

NFRs are often initially stated in fuzzy or 
incomplete terms and then refined during the 
analysis and development process [14].   
 
2.1 Design Patterns as Operationalizations 
 
 A softgoal interdependency graph (SIG), as 
depicted in Figure 2, provides a useful modeling 
notation for reasoning about and analyzing NFRs, 
and for determining when an NFR might be fulfilled 
through the use of a design pattern. Within a SIG, 
NFRs are represented as ‘softgoals’, refined into 
lower level softgoals and ‘operationalizations’.  An 
operationalization represents a potential solution for 
fulfillment of a softgoal.  Interdependencies between 

softgoals and operationalizations are captured as 
links, and annotated according to whether they make 
(++), help (+), hurt (-), break(--), or have an 
unknown impact upon their parent node in the graph.   
 As illustrated in Figure 2, the two NFRs related 
to extensibility and reusability can be fulfilled 
through the implementation of the observer design 
pattern [7].   The observer pattern ‘defines a one-to-
many dependency between objects so that when one 
object changes state, all its dependents are notified 
and updated automatically’.  This pattern enables 
dependent observers to be dynamically added at 
runtime and supports interaction between multiple 
observers without requiring any direct 
communication between them. 
 The objective is to establish links between each 
NFR and the components of the implemented 
observer pattern in order to support ongoing 
compliance monitoring that the design pattern 
remains implemented in the design.  In other words, 
activities such as regression testing and impact 
analysis should ensure that the NFRs related to 
extensibility and reusability remain validated.  For 
the purposes of this paper we use the term 
‘implemented classes’ to refer to both UML classes 
and coded classes, as the EBTDP traceability 
techniques are equally applicable to both code and 
UML classes. 
 
2.2 Traditional User-Defined Links 
 
 Utilizing a user-defined traceability technique 
to establish fine-grained traceability between the 
extensibility and reusability NFRs and the 
components of this observer pattern would require 
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Figure 2  Tracing NFRs to design patterns through a Softgoal Interdependency Graph  



links to be established between each NFR and each 
of the critical observer pattern methods.  These are 
depicted in Figure 3 and would minimally include 
links to the Instrument:Update method in all 
subclasses of Instrument, MissionCommandCenter: 
Attach, Mission-CommandCenter:Detach, and 
Mission-CommandCenter:Notify.  In our example, if 
we assume an oversimplified command center with 
only ten different types of Instruments (ie ten 
subclasses of Instrument), simply linking both of the 
NFRs to their Observer Pattern implementations 
would require 80 traceability links (2 NFRs x 10 
Instruments x 4 Links)!   
 This creates a non-viable situation in terms of 
the cost and effort involved in establishing and 
maintaining these links.  Furthermore, although 
these static links can clearly identify many critical 

components of the pattern within the 
implementation, they are unable to monitor more 
sophisticated elements of the design such as the 
prohibition of direct links between classes of type 
Instrument.   
 A user-defined approach to linking NFRs 
through design patterns using matrices, hyperlinks, 
or existing requirements management tools is 
therefore prohibitively expensive to implement and 
limited in expressiveness. 
 
3. An overview of EBTDP  
 
 In EBT, traceability links are established as 
publish-subscribe relationships, and are attributed 
according to the type of link.  EBTDP requires only a 

 

 
 

Figure 4  User defined links established as EBT subscriptions 
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Figure 3  Observer Pattern applied within the MissionCommandCenter 



few user-defined links because the remaining fine-
grained links will be dynamically generated. In this 
example, we will assume that the observer pattern is 
implemented as depicted in the class diagram of 
Figure 3.  In this case the participating classes 
include MissionCommandCenter, Instrument, 
Temperature, Pressure, and Velocity.  These classes 
are packaged into a cluster labeled ‘ControlCluster’ 
through the use of EBT subscriptions.  The resulting 
cluster, which only exists as an abstract entity is then 
linked to each of the NFRs that are fulfilled by the 
Observer Pattern, again using EBT subscriptions.  
 These subscriptions are shown in Figure 4.   
 In comparison to our previous example of using 
fine-grained user-defined links, this approach 
requires one link for each instrument class in order 
to subscribe to the class cluster, and one link from 
the class cluster to each NFR that it fulfills.  
Therefore for the mission command center with 10 
instruments, the number of traceability links is 
reduced from 80 to 14!  In a similar situation with 20 
instruments the number of links would be reduced 
from 160 to 24.  Furthermore, all of these links are 
coarse-grained and therefore much simpler to 
maintain than the fine-grained links that would be 
required using a non-dynamic approach. 
 EBTDP consists of two distinct phases.  These 
are illustrated in Figure 1.  In the first phase, which 
occurs during inception, elaboration, and 
construction of the system, the initial user-defined 
traceability links are established.  In the second 
phase, which occurs during the ongoing maintenance 
and refinement of the system, fine-grained links are 
dynamically generated.   
 Early in the software development process, the 
NFRs are elicited and analyzed.  A SIG or other 
method can be used to identify relationships between 
NFRs and design patterns.  During design and 
construction, the design pattern is implemented into 
the UML model and related code.  The classes in 
which the elements of the design pattern are 
instantiated are identified and composed into a 
logical cluster.  A traceability link is established 
between the cluster and the NFR and assigned the 
link type of the implemented design pattern.  In this 
case, the link is assigned the type attribute of 
“DesignPattern:Observer”. 
 
 
 
 

3.1 Event Triggers in EBTDP  
 
 In any event driven system, event handlers are 
responsible for handling specific events as they 
occur. In EBT, events are published as generic event 
messages to the EBT event server, and then 
customized according to the type of subscription 
placed by the dependent artifact.  Customized event 
messages are then forwarded to the event handler for 
each impacted artifact and handled accordingly.  
EBT is an example of a process driven environment 
in which the logic of the enactment domain is 
distributed amongst the event handlers [15]. 
 In EBTDP the purpose is to trigger the dynamic 
generation of links when a critical event occurs.  For 
example, if a change is made to a class that 
implements a design pattern, it would be useful 
among other things, to trigger an event that 
ultimately results in the re-execution of regression 
tests to determine if the change adversely impacted 
the implementation of the design pattern.  In this 
way, the traceability links would support long-term 
compliance monitoring of the design to its stated 
NFRs. 
 The full EBT methodology is described in 
[3,4,5,6], however this section illustrates its support 
for dynamic link generation.  As an example, 
consider the situation that would occur if the class 
“Temperature” were modified.  In this situation the 
following event message is published:  
“ChangeEvent:Class:Temper-
ature|Modified” 
 This message is received by the EBT event 
server, which determines that the Temperature class 
is subscribed to the cluster “ControlCluster”.  As no 
event handler is attached to the class ‘Temperature’, 
the message is forwarded to ‘ControlCluster’ as: 
“ChangeEvent:Class-
Cluster:Temperature|Modified”.  
 The EBT event server then determines that 
ControlCluster is subscribed to MCC_NFR2, and 
MCC_NFR3, and that the link is attributed with the 
type ‘DesignPattern:Observer’.   
 The logic in the event server then causes the 
triggering of the mechanism to dynamically generate 
links between the NFR and the class 
implementations.  These traceability links can then 
be used to support a full impact analysis or 
regression testing.  The following section discusses 
the dynamic generation of these links. 
 



4. Dynamic Link Generation 
 
 In EBTDP links are generated dynamically 
according to the invariant rules of the relevant 
design pattern.  The objective is to use the invariants 
of the design pattern to identify critical components 
within the implemented classes that should be 
traceable, and to generate related links.  In this 
section we therefore examine related work in 
detecting and reverse engineering design patterns. 
  
4.1 Design Pattern Detection 
 
 Several researchers have examined the problem 
of detecting design patterns from design and code 
artifacts [16,17].  This problem is closely related to 
that of dynamically generating traceability links, 
because once a pattern and its implemented 
components can be identified, then traceability links 
can be established between the elements of the 
design pattern and those components.   Brown stated 
that a design pattern “is detectable if its template 
solution is both distinctive and unambiguous.”[16] 
He determined that some design patterns such as 
Interpreter [7] are difficult to detect because they 
rely upon general principles rather than specific 
design fragments, while others are quite easy to 
detect because they exhibit very specific and unique 
patterns of interaction.  In the general case, many 
design patterns fall somewhere in between these two 
extremes, with certain parts of the pattern being 
easily detectable, and others being more obscure.  In 
the general pattern detection problem, detecting 
individual parts of the pattern may not provide a 
reasonable level of confidence to clearly 
demonstrate the use of the whole pattern. 
 Heuzeroth also investigated the problem of 
design pattern detection [15].  He defined each 
design pattern to be detected in terms of its invariant 
features expressed as a tuple of program elements 
including classes, methods, and attributes, and 
representing the restrictions and rules of a design 
pattern.  For example, the invariants of the Observer 
pattern are represented by the tuple 
(Subject.addListener, Subject.removeListener, 
Subject.notify, Listener. update).  The expected 
behavior of each of these elements is then defined.   
 The Subject class must be capable of 
dynamically adding observers.  To accomplish this, 
it instantiates a Subject.addListener method capable 
of receiving an object as a parameter and either 

storing that object locally for future use or passing it 
to another method for storage.  Because this method 
may be called by any name it is necessary to search 
for a method that matches the required behavioral 
pattern of the add.Listener method.   
 Heuzeroth’s approach is implemented in two 
stages.  During the initial static analysis a set of 
candidate patterns are identified.  In practice, this 
stage tends to output many false positive patterns, 
and therefore a second stage dynamic analysis is 
performed to filter out false patterns.  During this 
stage the simulated runtime behavior of the classes 
and their interactions is observerd. Heuzeroth found 
that as long as the dynamic analysis actually caused 
the execution of the candidate pattern elements, it 
was generally possible to effectively distinguish 
between true and false pattern detections.   
 
4.2 Linking Pattern Elements to the NFR 
 
 The underlying concept of EBTDP is that if an 
NFR is implemented through a design pattern, and if 
that design pattern can be detected, then finely 
grained traceability links can be generated as needed 
to support important tasks such as regression testing 
and impact analysis. 
 Dynamic link generation utilizes the techniques 
described in the previous section with a couple of 
critical differences.  First, the precision of the 
approach is increased because the pattern detection 
analyzer no longer is searching for an unknown set 
of design patterns within a large system-wide search 
space.  The search space is constrained by the initial 
set of user-defined links that specify the class cluster 
in which the pattern resides.  Furthermore the 
objective changes from the broad task of finding any 
type of implemented pattern to answering the very 
specific question of  “Where in this class cluster is 
this specific pattern implemented?”  This reduction 
in scope allows for a much more precise result.
 Heuzeroth also pointed out that the dynamic 
analysis phase is only effective if the candidate 
pattern elements are actually executed.  In EBTDP a 
single additional traceability link to a specific test 
case can guarantee execution of the implemented 
pattern. 
 Following the dynamic analysis phase the 
pattern invariants are either linked to their 
implemented elements or marked as ‘missing’. 
Missing elements indicate a possible problem in 
ongoing compliance to the NFR because the loss of 



a critical part of the pattern suggests that it is no 
longer implemented as originally planned and can no 
longer serve to validate the NFR. These links are 
then used to conduct normal software engineering 
activities such as impact analysis. 
 
4.3  Support for Impact Analysis 
 
 The purpose of EBTDP traceability is to support 
activities such as impact analysis and regression 
testing. Consider for example a proposed functional 
change that will impact a class such as the 
Temperature class from the MissionCommand-
Center.  The developer issues an EBTDP query 
against the Temperature class to determine how 
changing it might impact the overall system.  As 
depicted in Figure 5, an event message is issued to 
the event server and as the Temperature class 
belongs to the ControlCluster, the event message is 
forwarded to all artifacts to which the 
ControlCluster subscribes.  Activating the 
DesignPattern:Observer link from the Control-
Cluster to the NFR triggers the EBTDP mechanism to 
dynamically generate links from the NFR to the 
implemented components of the observer pattern.  
These links clearly identify critical elements of the 
pattern implemented as classes and methods in the 
design and code. 

 The dynamically generated traceability links 
therefore provide the developer with information 
about the class that is about to be changed, by 
clearly identifying critical elements within the class 
that should remain implemented in order to maintain 
the integrity of the related NFR.  The developer is 
therefore equipped to make effective decisions 
concerning the proposed change and its general 
impact upon the system. Following the change,  the 
link generation process can be repeated as a form of 
automated regression testing to determine if the 
design pattern continutes to remain intact. Failure to 
identify the pattern invariants indicates that the NFR 
might no longer be adequately fulfilled in the design 
and code. 
 
5. Conclusions 
 
 Establishing traceability from NFRs to design 
components and code, certainly represents a non-
trivial problem for which no single solution is 
available.  The sheer diversity of NFRs and their 
related implementation techniques indicates that it is 
unlikely that a single traceability technique will be 
optimal for all types of NFRs. This paper describes 
one method applicable to NFRs that are fulfilled 
through the implementation of a design pattern.  
EBTDP provides a powerful alternate to establishing 
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traceability through the use of static links.  One of its 
primary advantages is that the known and predefined 
rules of the design pattern enable fine-grained links 
from the pattern to specific class implementations to 
be generated dynamically.  This reduces the need for 
establishing explicit traceability links, and increases 
both the maintainability and the expressiveness of 
the approach.   
 Although the various components have already 
been demonstrated to work, either within EBT, or 
through the work of other researchers, we are 
currently in the process of implementing the full 
EBTDP approach in a way that would be applicable 
to a broader spectrum of design patterns and NFRs.  
To accomplish this, it is necessary to analyze a more 
extensive set of design patterns to identify their 
invariants, to demonstrate the use of a generic static 
analyzer to support identification of design patterns 
within the EBT linked class clusters, and to 
investigate the further extension of the NFR catalog 
so that identifying the use of design patterns to fulfil 
NFRs is further facilitated.  Once this work is 
completed we will conduct further experiments with 
this approach utilizing our EBT framework. 
 As a broader contribution to the advancement of 
traceability practices, this approach suggests that 
hybrid approaches utilizing a combination of static 
and dynamically generated links can potentially 
provide effective solutions for implementing long-
term and maintainable traceability.  
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