
Use Cases – An Introduction

1

© Jason Gorman 2006

www.parlezuml.com

Use Cases -
An Introduction

Jason Gorman

www.parlezuml.com

Use Cases – An Introduction

2

© Jason Gorman 2006

www.parlezuml.com

Table of Contents

Introduction..3
What Is A Use Case? ...3
What Is A Use Case Scenario? ..4
Capturing Use Case Scenarios with Essential Use Case Descriptions5

M odeling Essential Use Case scenarios using Sequence Diagrams6
Visualising Scenarios using UI Storyboards..7
Use Cases & Rework...8
Use Cases & UM L...9
Relationships Between Use Cases ...10

Including Use Cases ...10
Extending Use Cases ..11

Applying Use Cases...13
Reusing Use Cases ...14

Planning & Estimating...14
System Testing...14
User Documentation ..14
User Stories ..15
Business Simulations ...15

Conclusion ...15
Further Reading..16

Use Cases – An Introduction

3

© Jason Gorman 2006

www.parlezuml.com

Introduction

Search on Amazon for books on use cases, and you’ll find hundreds upon hundreds of
them. Search on Google for web sites that mention use cases, and you’ll find millions. I
don’t think there’s any aspect of software development that’s received wider coverage in
the last ten years.

But for all that’s been written about them, most people still don’t really understand them.
This is partly because a lot that’s been written about use cases overcomplicates them and
confuses the reader.

In theory and in practice, use cases are much simpler than many authors make out. This
short tutorial is designed to introduce use cases in their simplest form, and to show you
how they can be effectively applied in the software development process.

It’s not intended to be a detailed or comprehensive guide to use cases and use case-driven
software development. Rather, this tutorial will show you the 20% of use case theory that
you will probably need to use 99% of the time.

What Is A Use Case?

In the mid-1980’s, Ivar Jacobson put forward the idea of usage cases and usage
scenarios. M ore recently these have become popularly known as use cases and use case
scenarios. There’s no rocket science to it at all: a usage case is simply a reason to use a
system. For example, a bank cardholder might need to use an ATM to get cash out of
their account. It’s as simple as that.

Actor System Goal Fig 1.0 – A use case describes how a type of user (called an “actor”) uses a system to
achieve a goal

Use Cases – An Introduction

4

© Jason Gorman 2006

www.parlezuml.com

There are three key things we need to know to describe a use case:

1. The actor or actors involved. An actor is a type of user (for example, cardholder)
that interacts with the system.

2. The system being used.
3. The functional goal that the actor achieves using the system – the reason for using

the system.

Believe it or not, if you can remember this, then you already know a third of what there is
to know about use cases (that’s worth knowing, of course.)

There’s a little more to it than that, and with practice you’ll soon get the hang of it. Some
things to bear in mind are:

• The actor describes a role that users play in relation to the system. Maybe the
cardholder is an advertising executive, but that doesn’t interest us. We only care
what his relationship to the system is.

• The actor is external to the system itself.
• Actors don’t have to be people. They can be other systems. For example, the

ATM may need to connect to the cardholder’s bank. External systems that interact
in a use case are also actors.

• The goal must be of value to the actor. We wouldn’t have a use case called
“Cardholder enters PIN” because that, by itself, has no value to the cardholder.
We don’t build ATM ’s just so people can enter their PINs!

When we are analysing functional requirements for a system, the key questions we need
to ask are; who will be using the system, and what will they be using it to do?

What Is A Use Case Scenario?

When a cardholder tries to withdraw cash from an ATM , it doesn’t always necessarily
turn out the same way. Sometimes he gets his money. Other times he might have
insufficient funds. Or the ATM may be out of cash. These are all examples of use case
scenarios. The outcome is different, depending on circumstances, but they all relate to
the same functional goal – that is, they’re all triggered by the same need - and all have the
same starting point.

Use Cases – An Introduction

5

© Jason Gorman 2006

www.parlezuml.com

Please take your cash…
Sorry. You have
insufficient funds.

Please specify a smaller
amount.

Sorry. We are unable to
process your request at

the moment.

Your card has been
retained. Please contact

your card issuer.

 Fig 1.1. Use case scenarios for withdrawing cash from an ATM

In practice, we describe use cases by describing the key scenarios. Use case scenarios
form the basis of interaction design, but also map directly onto other useful development
artefacts like system test scripts and user documentation.

Capturing Use Case Scenarios with Essential Use Case
Descriptions

Once we understand the actor and the goal for a use case, and have identified key use
case scenarios, we can begin some high-level interaction design. Actors interact with the
system – by pressing buttons, typing into text boxes, clicking on icons and so forth – to
achieve the goal of the use case.

A classic mistake made at this early stage of design is to go into technical detail and
commit to a specific user interface design or implementation technology. This is almost
always the wrong time to be making these kinds of low-level design decisions. We first
need to understand what the business logic of the interactions are, so we can focus on
satisfying the business goal of the use case.

Essential use cases are a great technique for describing interactions in a way that is
independent of the technical implementation of the system. Instead of saying “the user
presses the enter button”, we say “the user confirms their choice”, for example.

A good way to write essential use cases is to split the actions into columns, one for each
actor and one for the system. Then we can see at a glance not only the order of events in a
use case scenario, but also exactly who is doing what.

These essential use case descriptions, one for each key use case scenario, will form the
basis of our high-level object oriented design, the UI design, and are also the foundation
for system test design, user documentation and other useful things we might need later in
the development process.

Use Cases – An Introduction

6

© Jason Gorman 2006

www.parlezuml.com

•select “withdrawal” option

•display withdrawal options
•specify amount

•check cardholder has
sufficient funds

•dispense amount
•prompt cardholder to take cash

•eject card

•prompt cardholder to take card

•debit cardholder’s account
•thank cardholder
•display welcome and await
next cardholder

•take card

•take cash

Cardholder ATM

 Fig 1.2. An essential use case clearly shows the order of events and the responsibilities of
the actor(s) and system in a single use case scenario, without committing to technical
design decisions

WARNING!

99% of teams are unaware that use case descriptions like the one above are not system
requirements documents. These are high-level interaction designs. The danger is that if
we mix them up with real requirements – stuff the system really has to do – then we can
get bogged down in the design decisions we make early on. Changing the design of use
cases must always been seen as an option if it turns out there’s a better – or cheaper –
way of achieving the same functional goal. Be one of the smart 1% and always remember
that use case designs aren’t the same thing as requirements.

Modeling Essential Use Case scenarios using Sequence Diagrams

Use Cases – An Introduction

7

© Jason Gorman 2006

www.parlezuml.com

If you’re familiar with UM L sequence diagrams, then you can just as easily model a use
case scenario like the one above using a simple sequence diagram. This also shows the
order of events, the interactions and clearly shows who’s doing what.

cardholder ATM

select “withdrawal” option

display withdrawal options

specify amount
check cardholder has
sufficient funds

dispense amountprompt cardholder to take cash

eject card
prompt cardholder to take card

debit cardholder’s account

thank cardholder
display welcome and await
next cardholder

take card

take cash

 Fig 1.3. A use case scenario modelled using a sequence diagram

It has the added advantage – or disadvantage, depending on how you look at it - that you
can capture it in a modelling tool that supports UM L, and you can continue to flesh out
the implementation design behind the user-system interactions using the same model.

Visualising Scenarios using UI Storyboards

If we’re happy with the logical f low of a use case scenario, we can use a simple technique
called storyboarding to show how it might look with a real user interface
implementation. At each step in the scenario, we can draw a picture of what the user
interface would look like at that point in time, and a sequence of such pictures, one for
each interaction, neatly illustrates the flow of the scenario in a way even non-technical
folk can readily understand.

Again, it’s vitally important to remember that what we’re doing here is design. And that
means we have choices. Beware of committing to the first UI design you do without
exploring alternative options.

Use Cases – An Introduction

8

© Jason Gorman 2006

www.parlezuml.com

Please select a service:

• Withdrawal
• Withdrawal With Receipt
• Display Balance
• Order Cheque Book

Please select an amount to
withdraw:

• £10
• £20
• £50

• £100
• £200
• Other

Please remove your card… Please take your cash…

Thank you for using Natleys
Bank

Welcome to Natleys Bank.
Please insert your card.

select “withdrawal”
option

specify
amount

take card

take
cash

 Fig 1.4. Storyboards are a powerful tool for visualising and communicating use case
scenarios and UI designs

If you have identified your key use cases, and have essential use case descriptions for key
use case scenarios and storyboards too, then by this stage your users probably have a
pretty good idea of what it is they’re going to be getting. Importantly, you will have a
pretty good idea of what it is you’re going to build, too. This is a critical breakthrough for
development teams. You have passed the point of no surprise.

Use Cases & Rework

There are all sorts of reasons why we might need to change software, and some of them
are inescapable – hence the need for an iterative and evolutionary approach to
development. But there are two reasons that are largely avoidable and should be seen as
undesirable.

1. Building something the user was expecting to get, but building it wrong.
2. Building something the user wasn’t expecting to get.

If the user asks for feature X, and you deliver feature X working, and a month later the
user says “actually , what I really needed was X+1” then there’s not a lot we can do about
that. That sort of change is unavoidable, and we must embrace the need to accommodate
it.

Use Cases – An Introduction

9

© Jason Gorman 2006

www.parlezuml.com

But if the user asks for feature X, and we deliver X+1 – either because we did a bad job
of delivering X, or because we misunderstood and thought the user actually wanted X+1
in the first place - then we have failed.

Use cases don’t help us to avoid null pointer exceptions or un-initialised database
connections, so we still have to do “coding stuff” to make sure we avoid those kinds of
errors. But use cases can definitely help us to avoid misunderstandings between us and
the users. In fact, I see no other good reason for them. Do you?

This gives us a useful guideline as to how effectively we’re applying use cases. In theory,
rework due to requirements misunderstandings should drop to almost zero. That’s not to
say that we won’t need to do any rework: we just won’t need to do any unnecessary
rework.

Use Cases & UML

Given how closely associated they are, you probably won’t be surprised to learn that the
Unified Modeling Language has a specific notation for modelling use cases.

cardholder

ATM

withdraw cash

actor

use casesystem boundary

communicates

 Fig 1.5. UML Use Case diagram

In UM L use case diagrams, actors are drawn as stick men, with the name of the actor
written underneath. A use case is drawn as an oval containing the name of the use case.
To show that an actor participates in a use case, we draw a line between the actor and the
use case that shows that the actor communicates with the use case. Optionally we can
draw a box around the use cases to show where the system boundary is. The actor is
always outside the system boundary (by definition).

Use Cases – An Introduction

10

© Jason Gorman 2006

www.parlezuml.com

cardholder

ATM

withdraw cash

view balance

order cheque book

start session

cancel transaction

bank
employeedeactivate

ATM

print audit log

 Fig 1.6. A use case diagram for the ATM

Relationships Between Use Cases

Including Use Cases

When I make a cup of tea, I boil the kettle. I also boil the kettle when I make a cup of
cocoa. When two or more use cases include the flow of another use case, they are said to
include that use case’s flow.

We can illustrate this relationship in a use case diagram by simply drawing a dotted line
with an arrow pointing towards the included use case from all the use cases that include
it. (With me so far?) The arrow should have the UM L stereotype <<include>> to clearly
show what kind of relationship it is.

Use Cases – An Introduction

11

© Jason Gorman 2006

www.parlezuml.com

•select “book appointment” option
•Prompt use r to enter the t ime and date they
would prefer

•enter time and date
•Retrieve list of available tutors for
that date and time

•[tutor available] Ask student to
confirm assessment

student music school

• select “book lesson” option

student music school
book lesson

•Prompt user to enter the time and date they
would prefer

•enter time and date
•Retrieve list of available tutors for
that date and t ime

•Select tutor
 Fig 1.7. Two essential use cases share common steps

music school

book assessment

customercustomer
book lesson

check
availabili ty of

tutors

<<include>>

<<include>>

 Fig 1.8. UML Use Case diagram showing two use cases including another

Extending Use Cases

Use Cases – An Introduction

12

© Jason Gorman 2006

www.parlezuml.com

Sometimes, two or more use cases will include the flow of another use case, but only
under certain conditions. For example, when I make a cup of tea or make a cup of cocoa,
I might boil the kettle only if it hasn’t recently been boiled.

The <<include>> relationship means that the flow of that use case is always included.
But a <<extend>> relationship means that the flow of the extending use case is only
included under specific conditions, which must be specified as the extension point of the
use case being extended.

•select “checkout” option
•[not logged in] prompt customer for user name
& password

•enter user name & password

•authenticate user

•disp lay conten ts of shopping basket

customer web store

•select “review item” option
•[not logged in] prompt customer for user name
& password

•enter user name & password

•authentica te user

•prompt user for review text

customer web store
review a product

 Fig 1.9. The two use case share common steps that are only executed when the actor is
not logged in.

Use Cases – An Introduction

13

© Jason Gorman 2006

www.parlezuml.com

web store

checkout
extension points

not logged in

customer review a product
extension points

not logged in

log in

<<extend>>
(not logged in)

<<extend>>
(not logged in)

 Fig 1.10. A UML Use Case diagram showing two use cases being extended by another

Many people get tripped up by <<include>> and <<extend>> relationships between use
cases. Here are some tips for getting it right:

1. Make sure you’ve got the right kind of relationship: <<include>> means “always
included”, but <<extend>> means “conditionally included”.

2. Make sure you’ve got the arrows going the right way. <<include>> should point
towards the use case being included. <<extend>> should point towards the use
case(s) being extended (and not the extending use case).

Applying Use Cases

As I mentioned at the beginning, a heck of a lot has been written about use cases, and not
all of it is perhaps as straightforward and commonsense as it could be. Applying use
cases in the software development process is not the black art some authors make it out to
be.

There are a few simple steps to follow, and you can use your noodle to figure out the rest
of the details:

• Identify your actors: who will be using the system?
• Identify their goals: what will they be using the system to do?
• Identify key scenarios: in trying to achieve a specific goal, what distinct outcomes

or workflows might we need to consider?
• Describe in business terms the interactions between the actor(s) and the system

for a specific scenario

Use Cases – An Introduction

14

© Jason Gorman 2006

www.parlezuml.com

• Create a UI prototype that clearly communicates the scenario to technical and
non-technical stakeholders

• Do a high-level OO design for the scenario
• Implement the design in code
• Get feedback from your users – ideally through structured acceptance testing
• Move on to the next scenario or use case (“rinse and repeat”)

The most important thing to remember is to do analysis, design and implementation one
use case scenario at a time, and to get feedback from the users as soon as a new scenario
is ready for them to test. You can incorporate valuable lessons from this feedback and
evolve your design into something more useful.

WARNING! Do not, under any circumstances, attempt to design the entire system
before writing any code. Break the design down into use cases and scenarios, and
work one scenario at a time.

Reusing Use Cases

As I’ve alluded to already, use cases aren’t just useful for capturing functional
requirements or doing interaction design. In this final section, we’ll take a look at 5 other
ways we can exploit use cases in the development process.

Planning & Estimating

Use cases can be used as the basis for planning development projects, and for driving the
development process. Use cases can be sized according to their complexity and, working
from historical data, estimates can be calculated for how long each use case might take to
implement. A practical discussion about the ins and outs of project planning is well
beyond the scope of this guide, but if I can only get one point across, it will be this: use
iterative and adapti ve planning techniques

System Testing

Just as a storyboard adds implementation details to an essential use case scenario, so too
can system test scripts add test data to the same scenarios. That’s all a system test script
is, in essence; a use case scenario with specific test data.

User Documentation

Use Cases – An Introduction

15

© Jason Gorman 2006

www.parlezuml.com

Put real screen grabs in your storyboards and add a bit more descriptive text, then add the
words “How to…” to the title of each use case, and you have some pretty usable user
documentation.

User Stories

If you’re into Agile Software Development, and especially eXtreme Programming, you
can easily break down your essential use cases into smaller chunks and write them on
story cards. A word of advice, though, keeping user stories and use cases in synch is as
problematic as keeping models and code in step. My advice is to maintain high-level
traceability only: if you can map user stories on to use case names, then that’s usually
good enough for tracking purposes.

Business Simulations

Use case descriptions can be incorporated into higher-level business process descriptions
so that we can simulate the execution of those business processes and sanity check our
use cases in the context in which they will be used. This can be a very effective way of
avoiding the kind of requirements errors that are very difficult to spot “from the ground”.

Conclusion

Despite what you may have heard from some Agile developers, reports of the demise of
use cases have been greatly exaggerated. They’re by no means a silver bullet for
requirements and UI design, and they certainly have their pitfalls, but overall they can be
a powerful tool for most projects.

The secret is to keep it simple, and to involve the users right the way along in the
identification and design of use cases. Remember that our aim is to eliminate rework due
to requirements misunderstandings, and so we should be aiming to reach a point where
there are no surprises for the users. Use cases, in conjunction with techniques like
storyboarding, help to build an explicit shared understanding that everyone can take away
with them – users, developers, testers, technical authors, and others.

There’s absolutely no reason why use cases can’t be applied in Agile projects, provided
they’re applied in the Agile spirit. Tackle them in small chunks, involve the users closely
and seek feedback throughout the project.

Use Cases – An Introduction

16

© Jason Gorman 2006

www.parlezuml.com

Further Reading

Writing Effective Use Cases – Alistair Coburn
http://www.amazon.com/Writing-Effective-Cases-Alistair-Cockburn/dp/0201702258

Applying Use Case-driven Object M odeling with UML – Doug Rosenberg & Kendall
Scott
http://www.amazon.com/Applying-Case-Driven-Object-M odeling/dp/0201730391

Use Case Zone – Andy Pols
http://www.pols.co.uk/use-case-zone/index.html

Driving Development with Use Cases – Jason Gorman
http://parlezuml.com/tutorials/usecases/usecases.pdf

Training

Requirements Analysis using UM L – 2 days
http://parlezuml.com/training/umlrequirements.htm

