
ECE 128 – Verilog Tutorial: Practical Coding Style for Writing Testbenches 
Created at GWU by William Gibb, SP 2010 
Modified by Thomas Farmer, SP 2011 
 
Objectives: 

● Become familiar with elements which go into Verilog testbenches. 

● Write a self-checking testbench 
 
Assumptions: 

● Student has a coded a full adder module. 
 
Introduction: 
 
The ASIC design flow is as follows: 

 
Specification 

▼  
RTL Coding and Simulation 

 ▼  
Logic Synthesis 

▼  
Optimization 

▼  
Gate Level Simulation 

▼  
Static Timing Analysis 

▼  
Place and Route 

▼  
Static Timing Analysis 

▼  
Preliminary Netlist Handoff 

 
In this lab, we are at the “RTL Coding and Simulation” stage in the ASIC Flow. 
 
In the previous tutorial we saw how to perform simulations of our verilog models with NCVerilog, using the sim-
nc/sim-ncg commands, and viewing waveforms with Simvision. This is a very useful approach to testing digital 
models, but can become very cumbersome if the amount of signals that you are looking at is more than a 
dozen, or you are running very long simulations.  
 
Instead of relying solely on visual inspection of waveforms with simvision, your Verilog test benchs can actually 
do inspection for you - this is called a selfchecking testbench. In order to build a self checking test bench, you 
need to know what goes into a good testbench. So far examples provided in ECE126 and ECE128 were 
relatively simple test benches. 



The Basic Testbench 
 
The most basic test bench is comprised of the following set of items: 
_______________________________________ 
|       | 
| Verilog Test Bench     | 
|   ____________________ | 
|  |    | | 
|  |  _______  |  | 
|     DUT  |------>  | |------->  |DUT  | 
| Stimulus  |------>  | Verilog|------> |Monitor| 
|   |------>  | DUT  |  |  | 
|_____________|  |______| |_______| 

    ^^^ Inputs        ^^^^ Outputs 
 

1. A device under test, called a DUT. This is what your testbench is testing. 
2. A set of stimulus for your DUT. This can be simple, or complex. 
3. A monitor, which captures or analyzes the output of your DUT. 
4. You need to connect the inputs of the DUT to the testbench. 
5. You need to connect the outputs of the DUT to the testbench. 

 
You can see in the below example, from lab #1, mux_tb.v, the basic requirements for a testbench have been 
satisfied. 
 
 
// Example Testbench from 128 lab #1: mux_tb.v 

// 

module mux_tb(); 

 

wire c; 

reg a,b,s; 

 

mux m1(c, a, b, s) ; 

 

initial begin 

#0 a=1'b0; 

b=1'b0; 

s=1'b0; 

#5 a=1'b1; 

#5 s=1'b1; 

#5 $finish; // The $finish call ends simulation. 

end 

 

initial begin 

// Open a db file for saving simulation data 

$shm_open ("mux_tb.db"); 

// Collect all signals (hierarchically) from the module "mux_tb" 

$shm_probe (mux_tb,"AS"); 

end 

 

endmodule 

 
There is a DUT, set of stimulus and a waveform capture. However, this testbench doesn't have much structure 
to it, therefore it is difficult to expand upon. In this lab we will improve this testbench and give it more structure.  
Then you can use this modified testbench as a model for all future testbenches you create in verilog.. 
 



Structured Verilog Test Benches 
 
A more complex, self checking test bench may contain some, or all, of the following items: 
 

1. Parameter definitions 
2. Preprocessor Directives 
3. The timescale directive 
4. Include Statements 
5. DUT Input regs 
6. DUT Output wires 
7. DUT Instantiation 
8. Initial Conditions 
9. Generating Test Vectors 
10. Debug output 
11. Using Memory in a testbench 
12. Events in Verilog 

 
Some explanations for all of these items: 
 
1) Parameter definitions 
Parameterize items in your test bench - this makes it much easier for you and others to read and understand 
your testbench. You can also put parameters in your modules (not just test benches). It allows you to customize 
or tweak your testbench as needed. We recommend that you put these near the top of your testbench for easy 
manipulation. Commonly parameterized items are as follows. 

● Clock period 

● finish time 

● control words 

● data widths 
 
Let‟s modify the MUX test bench to have parameters: 
 

module mux_tb(); 

 

parameter finishtime= 5 ; 

 

wire c; 

reg a,b,s; 

 

mux m1(c, a, b, s) ; 

 

initial begin 

#0 a=1'b0; 

b=1'b0; 

s=1'b0; 

#5 a=1'b1; 

#5 s=1'b1; 

#finishtime $finish;   // The $finish call ends simulation. 

end 

 

initial begin 

// Open a db file for saving simulation data 

$shm_open ("mux_tb.db"); 

// Collect all signals (hierarchically) from the module "mux_tb" 

$shm_probe (mux_tb,"AS"); 

end 

 

endmodule 

Note, wherever the word: “finishtime” is encountered, it is replaced with the number 5. 



2) Preprocessor Directives 
 
A preprocessor directive works in a very similar fashion to a parameter.  It is essentially a variable that gets 
replaced when encountered.  Below, we have included `define DELAY at the top of the test bench.  This is a 
preprocessor directive.  Whenever the word “`DELAY” is encountered in the code, it is replaced by the number 5.  
Read the following example: 
 
`define DELAY 5 

module mux_tb(); 

 

parameter finishtime= 5 ; 

 

wire c; 

reg a,b,s; 

 

mux m1(c, a, b, s) ; 

 

initial begin 

#0 a=1'b0; 

b=1'b0; 

s=1'b0; 

#`DELAY a=1'b1; 

#`DELAY s=1'b1; 

#finishtime $finish; // The $finish call ends simulation. 

end 

 

initial begin 

// Open a db file for saving simulation data 

$shm_open ("mux_tb.db"); 

// Collect all signals (hierarchically) from the module "mux_tb" 

$shm_probe (mux_tb,"AS"); 

end 

 

endmodule 

 
 
 
 
 
So, what is the difference between a parameter and a preprocessor directive? 
 
A preprocessor directive: 

-comes before the „module‟ statement 
-is typically used for variables you want GLOBAL to all your modules 
-we typically use UPPERCASE for a preprocessor directive 
-a preprocessor directive can be SET at runtime, from the compile line like this: 
 
sim-nc mux_tb.v +define+DELAY=10 

 
By running the command above, the value of DELAY will now be worth 10 instead of 5 

 
A parameter: 

-can come after the „module‟ statement 
-is typically used for variables LOCAL to just the module you are working on 

-for instance, in our test bench, FINISHTIME is only important for a our TB, not any other 
modules 

-we typically use LOWERCASE for a parameter‟s name 
-a parameter cannot be changed or set at runtime on the compiler line 

 



3) The timescale directive 
 
 
If a timescale statement is included at the top of a module, as follows: 
 
`timescale 1ns/10ps 

`define DELAY 5 

module mux_tb(); 

 

parameter finishtime= 5 ; 

 

wire c; 

reg a,b,s; 

 

mux m1(c, a, b, s) ; 

 

initial begin 

#0 a=1'b0; 

b=1'b0; 

s=1'b0; 

#`DELAY a=1'b1; 

#`DELAY s=1'b1; 

#finishtime $finish; // The $finish call ends simulation. 

end 

 

initial begin 

// Open a db file for saving simulation data 

$shm_open ("mux_tb.db"); 

// Collect all signals (hierarchically) from the module "mux_tb" 

$shm_probe (mux_tb,"AS"); 

end 

 

endmodule 

 
 
The value of “time” in the simulator is given a unit.  So for `timescale 10ns/10ps, the first number represents the 
value of one time unit.  The second number represents the precision that is kept by the simulator.  Now when a # 
statement is encountered, it has a unit of time: 
 
`timescale 10ns/10ps 

... 

#5 a=1’b; 

 
Now the #5 means the simulator will wait “5 nanoseconds” before preceding to the next line 
 
For this example: 
 
#5.01 a=1’b; 

 
the simulator will wait “5 nanoseconds” and “10 picoseconds” before preceding to the next line.  However no 
further precision can be indicated: 5.001 will just be considered a wait of 5 nanoseconds. 
 
 
 



4) Include Statements 
 
Include statements are similar to C style include statements. They allow a another file to be a part of the current 
file. They are commonly used to include a file with the timescale directive. They can also be used outside 
of testbenches, often for global constants. 
 
Let‟s separate our testbench into two files: 
 

 
// filename: globals.vh 

// 

`timescale 1ns/10ps 

`define DELAY 5 

 

 
// filename: mux.v 

// 

`include "globals.vh" 

module mux_tb(); 

 

parameter finishtime= 5 ; 

 

wire c; 

reg a,b,s; 

 

mux m1(c, a, b, s) ; 

 

initial begin 

#0 a=1'b0; 

b=1'b0; 

s=1'b0; 

#`DELAY a=1'b1; 

#`DELAY s=1'b1; 

#finishtime $finish; // The $finish call ends simulation. 

end 

 

initial begin 

// Open a db file for saving simulation data 

$shm_open ("mux_tb.db"); 

// Collect all signals (hierarchically) from the module "mux_tb" 

$shm_probe (mux_tb,"AS"); 

end 

 

endmodule 

 

 
 
 
We can use the „globals.vh‟ later when it is needed and we do not need to include when we compile it: 
 
sim-nc mux.v 

 
(it will find globals.vh if it is in the same directory) 
 
 



5) DUT Input regs 
 
Because you are typically using procedural style verilog to create your testbench, any variable you „assign‟ data 
to, you must use a REG type to do so.  This is why the inputs to your DUT, will be REGs.  In part #1 of this lab, 
notice variables a,b, and s are regs.   
 
6) DUT Output wires 
 
The output from the DUT needs to be connected to something, for this you'll want to use wires. Instance your 
output wires together.  Since you are not assigning the data to the outputs inside the procedural block, (your 
module is), the outputs can be assigned to wires and not registers (REGs). 
 
7) DUT Instantiation 
 
You'll have to instance your device under test. Be sure that you get in the practice of using named ports when 
you instantiate modules. Named ports do not depend on the port order, only on port name. It's a more portable 
way of instantiating modules. 
 
Never use this style to instantiate a module: 
 

mux m1(c, a, b, s); 

 
Use this style: 
 

mux m1(.c(c), .a(a), .b(b), .select(s)); 

 

Now the local variable s, is connected to the port „select‟ inside the module.  But notice, thie named port style 

allows you to change the order of the instance: 

 

mux m1(.c(c), .a(a), .select(s), .b(b) ); 

 

Even with the order switched this code will work just fine.   

 



8) Initial Conditions 
Your first initial block should start setting the initial conditions for your test bench. You should set all of your TB 
registers to an initial value, including your clock(s). Reset signals may be set to a normal, non-reset state. 
This is so that you can perform any device specific resets as the beginning of your device stimulus. 
 
It is a good idea to have a block for ending the simulation at a specified time included here. You could add a 
#FINISHTIME $finish; line in your initial block, or add a separate initial block, just for causing the simulation to 
end. This is to prevent your TB from running forever, and should be longer than your expected time of test, 
unless your purposely running only a portion of the testbench. 
 
View the portions of the testbench in bold print to see the changes: 
 
`include "globals.vh" 

module mux_tb(); 

 

parameter finishtime= 5 ; 

 

wire c; 

reg a,b,s; 

 

mux m1(.c(c), .a(a), .b(b), .select(s)); 

 

initial begin // initialize all variable in a separate initial block 

a=1'b0; 

b=1'b0; 

s=1'b0; 

end 

 

initial begin 

#`DELAY a=1'b1; 

#`DELAY s=1'b1; 

#finishtime  // everything below will printout after “finishtime”       

  // expires 

$display ("Finishing simulation due to simulation constraint."); 

$display ("Time is - %d",$time); 

$finish;  

end 

 

initial begin 

// Open a db file for saving simulation data 

$shm_open ("mux_tb.db"); 

// Collect all signals (hierarchically) from the module "mux_tb" 

$shm_probe (mux_tb,"AS"); 

end 

 

endmodule 

 
 



9) Generating Test Vectors 
 
Instead of using separate variables for our inputs to the MUX, (a,b,s), we could use a single 3-bit register to hold 
the data.  Then we can use it to create all 2^3=8 combinations possible as follows: 
 
`include "globals.vh" 

module mux_tb(); 

 

parameter finishtime= 5 ; 

 

integer N; 

wire c; 

reg [2:0] test_vectors; // 3-bit wide test vector 

 

mux m1(.c(c), .a(test_vectors[2]), .b(test_vectors[1]), .select(test_vectors[0])); 

 

initial begin // initialize all variables 

test_vectors = 3’b000; 

 end 

 

initial begin 

for(N=0; N<7; N=N+1) 

    #`DELAY test_vectors = test_vectors + 1; 

 

#finishtime  // everything below will printout after “finishtime” 

expires 

$display ("Finishing simulation due to simulation constraint."); 

$display ("Time is - %d",$time); 

$finish;  

end 

 

initial begin 

// Open a db file for saving simulation data 

$shm_open ("mux_tb.db"); 

// Collect all signals (hierarchically) from the module "mux_tb" 

$shm_probe (mux_tb,"AS"); 

end 

 

endmodule 

 
 
Now, all the data is stored in “test_vectors.”  The most significant bit, is assigned to “A”, the next to “B” and the 
last to “S” or the select.   
 
In the first initial block, the register is initialized to all 0‟s.  
 
In the second initial block, we generate all the test vectors, 000 through 111, in a for loop.  Notice that the 
#`DELAY waits 5 time units before going to the next test vector. 
 



10) Debug output 
 
Often times, we have complicated waveforms for the modules we are testing.  We do not always want to open 
simvision to verify the waveforms are correct.  We can add some TEXT output to our test bench using two 
verilog commands: $display and $monitor.  Look at the updated test bench:  
 
`include "globals.vh" 

module mux_tb(); 

 

parameter finishtime= 5 ; 

 

integer N; 

wire c; 

reg [2:0] test_vectors; // 3-bit wide test vector 

 

mux m1(.c(c), .a(test_vectors[2]), .b(test_vectors[1]), .select(test_vectors[0])); 

 

initial begin // initialize all variables 

    $display ("-----------------------------------------------------"); 

$display ("                                           ABS"); 

    $display ("-----------------------------------------------------"); 

    $monitor ("TIME = %d, test_vectors= %b, c= %b", $time, test_vectors, c); 

test_vectors = 3’b000; 

 end 

 

initial begin 

for(N=0; N<7; N=N+1) 

    #`DELAY test_vectors = test_vectors + 1; 

 

#finishtime  // everything below will printout after “finishtime” 

expires 

$display ("Finishing simulation due to simulation constraint."); 

$display ("Time is - %d",$time); 

$finish;  

end 

 

initial begin 

// Open a db file for saving simulation data 

$shm_open ("mux_tb.db"); 

// Collect all signals (hierarchically) from the module "mux_tb" 

$shm_probe (mux_tb,"AS"); 

end 

 

endmodule 

 

 

The $display statement will print only 1 time.  The $monitor statement will printout every time any of the 

variables listed in its list are changed.  The output of this testbench will be: 
 
----------------------------------------------------- 

                                           ABS 

----------------------------------------------------- 

TIME =                    0, test_vectors= 000, c= 0 

TIME =                    5, test_vectors= 001, c= 0 

TIME =                   10, test_vectors= 010, c= 1 

TIME =                   15, test_vectors= 011, c= 0 

TIME =                   20, test_vectors= 100, c= 0 

TIME =                   25, test_vectors= 101, c= 1 

TIME =                   30, test_vectors= 110, c= 1 

TIME =                   35, test_vectors= 111, c= 1



10) Self-Checking 
 
The above test bench (from step 9) is better, we can view the output on the screen, but it would be better if the 
test-bench could check itself and let us know if any test case has failed.  At the top level testbench this is always 
preferred so that the waveforms do not have to be viewed.  This can be done many different ways, but for our 
MUX example, view the following code: 
 
`include "globals.vh" 

module mux_tb(); 

 

parameter finishtime= 5 ; 

 

integer N; 

wire c; 

reg [2:0] test_vectors; // 3-bit wide test vector 

 

mux m1(.c(c), .a(test_vectors[2]), .b(test_vectors[1]), .select(test_vectors[0])); 

 

initial begin // initialize all variables 

    $display ("-----------------------------------------------------"); 

$display ("                                           ABS"); 

    $display ("-----------------------------------------------------"); 

    $monitor ("TIME = %d, test_vectors= %b, c= %b", $time, test_vectors, c); 

test_vectors = 3’b000; 

 end 

 

initial begin 

for(N=0; N<7; N=N+1)begin 

#`DELAY test_vectors = test_vectors + 1; 

#(`DELAY/5) 

if      (c==test_vectors[2] && test_vectors[0]==1) $display ("PASS"); 

else if (c==test_vectors[1] && test_vectors[0]==0) $display ("PASS"); 

else $display ("FAIL"); 

end 

 

#finishtime  // everything below will printout after “finishtime” 

expires 

$display ("Finishing simulation due to simulation constraint."); 

$display ("Time is - %d",$time); 

$finish;  

end 

 

initial begin 

// Open a db file for saving simulation data 

$shm_open ("mux_tb.db"); 

// Collect all signals (hierarchically) from the module "mux_tb" 

$shm_probe (mux_tb,"AS"); 

end 

 

endmodule 

 
 
 
Now the testbench will test the output of the MUX as it runs through each test vector.  Notice the testbench waits 
for 1ns after setting the input to account for any propagation delay in the MUX.  It is very important to wait for the 
outputs to stabilize before checking their values.   
 

 



11) Using Memory in a testbench 
 
The next two sections will make more sense to you when you encounter the CPU project.  You will need to 
create RAM for your CPU.  This example covers how to instantiate RAM and then load it with data.   
 
To fill arrays with data use a loop to generate the data or use the $readmemh or $readmemb directives to load 
data from a file. 
 
parameter WIDTH=8; //multiple of two 

parameter DEPTH=16; 

parameter PATTERN = {WIDTH/2{2'b10}}; 

 

reg [WIDTH-1:0] test_memory [DEPTH-1:0]; 

 

initial 

for(N=0; N<DEPTH; N=N+1) 

test_memory[N] = PATTERN + N; 

 

end example 

 

example: 

 

// This memory model is an ram block meant for simulation. It can be used with a  

// microprocessor to provide a memory file. It would be instantiated in a test  

// bench and connected to the microprocessor.  It contains an example of using the  

// $readmem directives. These can be used in top level test benches to load arrays  

// with test vectors. 

 

module exmem #(parameter WIDTH = 8, RAM_ADDR_BITS = 8) 

( input clk, en, memwrite, input [7:0] adr,  input [7:0] writedata,  output reg 

[7:0] memdata  ); 

 

integer i; 

integer k; 

reg [7:0] mips_ram [0:256]; 

 

// The following $readmemh statement initializes the RAM contents via an external 

file (use $readmemb for binary data). The fib.dat file is a list of bytes, one per 

line, starting at address 0. 

 

initial begin 

for(i=0; i<256; i=i+1) 

mips_ram[i]=8'b0; 

$display("memory scrubbed"); 

 

$readmemh("fib.dat", mips_ram);   //or $readmemb("fib.dat", mips_ram); 

 

$display ("File loaded."); 

$display("Contents of Mem after reading data file:"); 

for (k=0; k<256; k=k+1) 

$display("%d:%h",k,mips_ram[k]); 

end 

 

// The behavioral description of the RAM - note clocked behavior 

always @(negedge clk) 

if (en) begin 

if (memwrite) 

mips_ram[adr] <= writedata; 

memdata <= mips_ram[adr]; 

end endmodule 



 
12) Events in Verilog 
 
One can setup an event or something similar to a “jump/GOTO” in verilog.  This can be very handy in a self-
checking test bench that needs to have a more detailed set of cases when tests pass or fail.  View the following 
example: 
 
Events are triggers for always@ blocks of the following form: 
 
always @(event_name) begin....end blocks 
 
These blocks enter when the event event_name is triggered. These always blocks can have procedural code in 
them, so they can easily be used to define a sequence of actions. These events can be both stimuli and DUT 
checking. 
 
// 

// do stuff 

// 

-> event_name; 

always@(event_name) 

begin 

// 

// do stuff 

// 

end 

 
Their use can lead to very robust test benches. See the example below 
 
example: 
 
//initialize test pattern and start simulation 

initial 

begin 

for(N=0; N<DEPTH; N=N+1) 

test_memory[N] = PATTERN + N; 

#10 -> reset_fifo_a; 

End 

 

//event definitions 

always @(reset_fifo_a) 

begin 

$display ("Aysnc Reset"); 

#10 mrst_n=0; 

#10 ; 

for(N=0; N<DEPTH; N=N+1) 

if(DUT.memory[N]!={WIDTH{1'b0}}) 

begin 

$display("Error in async reset"); 

$display("Time %d, DUT.memoryt=%d",$time, DUT.memory[N]); 

$finish; 

end 

#10 mrst_n=1; 

$display ("Async Reset completed"); 

-> write_till_full; 

End 

 

always @(write_till_full) 

begin 

countIn=0; 

$display("write_full start"); 

#10 en=1; 

for(N=0; N<DEPTH; N=N+1) 

if(!full) 



fork 

#10 din=test_memory[N]; 

wr=1; 

#20 clk=1; 

#20 countIn = countIn + 1; 

#30 clk=0; 

join 

if(countIn != DEPTH-1) 

begin 

$display("Error in write full"); 

$display("Time %d, CountIn = %d", $time, countIn); 

$finish; 

end 

#10 en=0; 

wr=0; 

$display("Time %d, Count = %d", $time, countIn); 

$display ("Write Full ended"); 

#10 -> read_out; 

End 

 

always @(read_out) 

begin 

countOut=0; 

$display("read out start"); 

#10 en=1; 

#10 rd=1; 

for(N=0; N<DEPTH-1; N=N+1)//fifo only fills to depth-1 

begin 

//current location is always there 

if(dout!=test_memory[N]) 

begin 

$display("Error in read out"); 

$display("Time %d, CountOut = %d", $time, countOut); 

$display("Read Value %d, Memory Value 

%d",dout,test_memory[N]); 

$finish; 

end 

else 

begin 

$display("Read Value %d, Memory Value 

%d",dout,test_memory[N]); 

end 

#10 countOut=countOut+1; 

if(!empty) //clock out the next value; 

begin 

#10 clk=1; 

#10 clk=0; 

end 

end 

#10 rd=0; 

#10 en=0; 

$display("read out end"); 

#10 ; 

if(second_pass) 

-> fin; 

else 

-> reset_fifo_s; 

end 

. 

. more events 

.



 
Tutorial Assignment 
 
Using the existing test benches you've developed for your full adder circuit expand upon them.  It is 
recommended that you perform this work in a new directory, in order to keep your individual labs separate. 
 
1) Update your test bench so all values are parameters or define macros (delays, finishtime, etc).  Separate the 
global variables into a separate include file. (5 points) 
 
2) Update your test bench to test all possible input & output combinations for the full adder circuit from lab 2 
using loops as discussed in this tutorial. (5 points) 
 
3) Make your testbench properly structured, for readability.  Look at the testbench tutorial and example test 
bench.  Be sure to have separate initial blocks to initialize variables and to generate the test vectors. (5 points) 
 
4) Make your testbench self-checking.  Whenever the adder inputs change check the output sum and carry to 
make sure that they are correct.  Be sure to give yourself some time between updating inputs and checking the 
output, in the event that you reuse this testbench in a timing simulation. (5 points) 
 
5) Write a 1-2 (or more) paragraphs describing your testing strategy, how your testbench decides if the DUT is 
successful and what you learned in this lab. (5 points) 
 
In your report, be sure to include the following: 

● Verilog Testbench 

● Verilog Code for any modules instantiated 

● Simulation log file 

● Waveform showing the correct operation of your adder. 
 
You can look at ECE126 Lab 9C, step 3 for an additional reference of how to do self-checking. 
 
 
6) Repeat steps 1-5, but now update your test bench for the DFF you created as part of HW assignment #1. 
 
 
 
This is an in-lab assignment to be completed before you leave lab today.  
 
 
 
 

 
 


