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Abstract

This study presents an evolutionary computation system
that can generate grid robot path planning problems. An
evolvable cellular representation that specifies how to build
a PPP is used. Also presented is a technique for taxonomizing
path planning problems so that the vast number of problems
that can be generated with the evolutionary computation
system can be subsequently winnowed into a collection of
substantially different problems of specified size. In this study
the most difficult path planning problems, according to three
different criteria, are evolved and those results are used to
demonstrated the taxonomic technique. The hardness criteria
are (i) the minimum number of turns a robot must make, (ii)
the minimum number of forward moves it must make, and
(iii) the sum of these quantities. A dynamic programming
algorithm is used to compute these quantities for a given
path planning program. The technique can be generalized to
find cases of a specified hardness. The size of the board
and maximum number of obstacles used are transparently
specifiable.

I. INTRODUCTION

An important task for mobile robots is autonomous nav-
igation, where the robot travels between a starting point
and a target point without the need for human intervention
[21]. While basic information may be available to the robot
about the navigation area boundaries, unknown obstacles may
exist within the navigation area. This is called an uncertain
environment: the robot must be able to maneuver around these
obstacles in order to reach its target point. The world space
refers to the physical space in which robots and obstacles
exist - the free space is the subset of the world space that
is not occupied by obstacles. A path between the starting and
target points that avoids collisions with obstacles is said to be
feasible - this is a path that lies within free space. Thus, robot
navigation methods need to solve the path-planning problem,
which is to generate a feasible path and optimize this path
with respect to certain criteria. In this study an evolutionary
computation system that automatically generates path planning
problems is presented together with a technique for selecting
a good collection of path planning problems from those that
evolved.

A variety of approaches have been used to solve the path-
planning problem, such as analytical methods [7], [10], [6],
[15], [9], artificial intelligence [3], [18] and neural networks
[30], [4], [17], [19], [28]. However, the path-planning prob-
lem has been shown to be NP-hard [16], which means that
many of the traditional methods can become computationally
intractable [23]. Genetic algorithms have been shown to be
effective in solving NP-hard problems, thus they are often used
for path planning in contemporary robot navigation algorithms
[1], [14].

There have been several contemporary applications of ge-
netic algorithms to the robot navigation problem. One ap-
proach is to combine fuzzy logic with genetic algorithms [23],
[2], [20]. In this approach, the genotype structure represents
fuzzy rules that guide the robot navigation, so the genetic
algorithm evolves the best set of rules. The rules are generated
during the projective component of the navigation algorithm,
and then the reactive component follows this path until the
discovery of new obstacles requires a new set of rules. While
this approach can produce a feasible path through an uncertain
environment, the genotype structure becomes very complex,
as it needs to represent a variety of fuzzy rules. A complex
genotype structure can take a long time to process in a genetic
algorithm, which affects the real-time performance of the robot
during navigation. The experimental results of these methods
on simulated world spaces demonstrate that feasible paths can
be found. However, there are no reported results on a real-time
robot.

Another approach is to use genotype structures that repre-
sent local distance and direction, as opposed to representing
an entire path [5], [11], [8], [27]. While these are simple to
process and allow for faster real-time performance, the local
viewpoint of these methods may not allow the robot to reach its
target. Some methods have relatively simple genotype struc-
tures that can represent feasible paths, but require complex
decoders and fitness functions [1], [14], [25], [29]. This can
also affect real-time response.

The remainder of the study is organized as follows. Section
II gives a representation for evolvable grid robot path planning
problems. Section III specifies the dynamic programming
algorithm used to compute the fitness of the PPPs. Section
IV explains neighbor-joining taxonomy, the classification tech-
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nique used classify PPPs. Section V gives the experimental
design of the evolutionary computation trials done to locate
robot path planning problems. Section VI gives the results of
the experiments and presents an example taxonomy of path
planning problems. Finally Section VII outlines next steps for
this research.

II. A REPRESENTATION FOR EVOLVABLE PATH PLANNING

PROBLEMS

A grid robot is a virtual agent that is situated in an
environment made of square grids. An agent’s presence in
the environment is defined by its position (the grid square it
occupies) and the direction, up down, left, or right, that it
is facing. A path planning problem (PPP) for a grid robot
is a specified by giving the size of the grid, the position of
obstructed grids within the environment, and an initial and
goal position for the grid robot. For simplicity the PPPs in
this study will have an initial placement of the agent in the
upper left corner, facing left, and a goal of the lower right
square. An example of an evolved PPP is given in Figure 1.

##########################################
#->......[]..............[]..............#
#........[]..............[]..............#
#........................[]..............#
#........................[]..............#
#[][][][][][]............[]..............#
#........................[]..............#
#........................[]..............#
#........................[]..............#
#........................[]..............#
#....................[][][]..............#
#..................[][]..[]..............#
#................[][]....[]..............#
#..............[][]......[]..............#
#............[][]........[]..............#
#....................[]..[]..............#
#....................[]..[][]............#
#....................[]..[]....[][]......#
#....................[]......[][]........#
#....................[]....[][]..........#
#....................[]..[][]..........**#
##########################################

Fig. 1. An example of an evolved 20x20 planning problem with 50
obstructed squares, denoted by pairs of brackets. This example is taken from
an evolutionary run maximizing the number of turns the agent must make. The
agent starts in the upper left corner and has a goal of the lower right corner.
This path planing problem requires, at a minimum, 15 turns, 46 forward
moves, and 61 total moves by the agent.

A representation that places each obstacle individually
might be cumbersome and would potentially have an enormous
search space. This study uses a cellular[12], [13] represen-
tation for PPPs. In a cellular representation, directions for
constructing an object of interest are evolved, rather than
direct descriptions. The cellular representation for PPPs is
constructed of single descriptors. A single descriptor specifies
a group of obstructions laid out according to a simple rule.
It has four parameters (x, y, l, t) which specify its starting
grid (x, y), the maximum number of blocks l the descriptor is
permitted to specify, and t the type or pattern of the descriptor.

Six types of single descriptors were used in this study. The
first four place blocks in a line left, right, up, or down from
(and including) the starting position. The last two types place
blocks in a zig-zag with an obstacle at (x, y) and then left,
down, left, down, . . . or left, up, left, up, . . ..

A PPP is made of some number, in this study 4, 8, 20,
or 50, single descriptors. A PPP has a maximum number of
obstructions that are permitted at all in addition to the limits
within the single descriptors. They are used to construct the
path planning problem according to the following rules.

1) The single descriptors are processed in the order they
appear in the PPP’s chromosome.

2) Each single descriptor places its first obstruction at
(x, y) and follows its pattern thereafter.

3) If an obstruction’s position is outside the grid it is not
placed and placement of obstructions for the current
single descriptor are terminated.

4) The number of obstructions placed for a single de-
scriptor may not exceed is own maximum number of
obstructions.

5) If placement of an obstruction is attempted where one
already has been placed then processing of the obstruc-
tions for the current single descriptor not only continues
but that obstruction is not counted against the single
descriptor’s total l.

6) if the number of obstructions placed reaches the max-
imum permitted for a PPP then obstacle placement
terminates.

This set of rules yields an unambiguous map from a list of
single descriptors to obstacle placements for a PPP. Together
with the fixed initial and goal positions for the grid robot
already given a data structure for PPPs is now specified.
The rule set given above, and the list of six types of single
descriptors, are both ad-hoc choices made from a rich set
of possibilities. Additional exploration of the design space of
cellular representation for PPPs is left for future studies.

In order to evolve PPPs we must also specify the variation
operators used. These are two point crossover of the list of
single descriptors, treating single descriptors as atomic objects,
and a mutation operator that functions in the following manner.
With equal probability the mutation operator (i) generates a
new x-coordinate for the starting position, (ii) generates a new
y-coordinate for the starting position, (iii) lengthens a single
descriptor by one obstruction, (iv) shortens a single descriptor
unless this would make its length zero, (v) changes the type
of the descriptor uniformly at random.

III. DYNAMIC PROGRAMMING FITNESS

The PPPs in this study are evolved to maximize three
measures of fitness; the minimum number of turns, advances
or forward moves, and the total moves (turn left, turn right
or advance) that an agent must make to reach the goal. The
evolutionary algorithm is configured to use any one of these
three measures as the fitness function for evolving PPPs but
all three are computed simultaneously during any execution
of the dynamic programming algorithm. Once the obstacles in
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a PPP are placed these three measures are computed via the
dynamic programming algorithm given as Algorithm 1.

Algorithm 1: Dynamic Programming Algorithm.
Input: A PPP.
Output: the minimum number of turns, advances, and
moves=turns+advances a grid robot agent requires to move
from the PPPs initial position to the goal position.

Details:
1) initialize a state space array of all possible triples

(x, y, h) representing the possible positions (x, y) and
headings h ∈ {up, left, right, down} that the agent can
occupy. For each state three values a stored: the smallest
number of turns, advances, and total moves found so
far to reach that state. The initial value for each state
is (∞,∞,∞) for all possible states except the agent’s
starting state, set to (0, 0, right) in this study, which has
an initial values of (0, 0, 0).

2) Place the agent’s initial state in a queue Q.
3) While Q is not empty, remove the first state S. Generate

all possible moves from that state (turn left, turn right,
and advance if possible) and compare one plus the value
at state S to the value at the new state generated for each
of the three statistics. If a better value is found for any
of the statistics record it and place the new state in Q.

4) Examine all four states with position in the lower right
corner; since the final heading is not specified the
smallest value for each of the three statistics in these
four states is reported as the score for the PPP for that
statistic.

As a side effect the dynamic programming algorithm detects
boards in which the goal cannot be reached. Such PPPs are
assigned the lowest available fitness and quickly winnowed
out by evolution.

IV. NEIGHBOR JOINING TAXONOMY

A taxonomy is a hierarchical classification of a set. Linnaeus
established the first definite hierarchy used to classify living
organisms. Each organism was assigned a kingdom, phylum,
class, order, family, genus, and species. This hierarchy gave a
tree structure to the taxonomy for all living creatures. Modern
taxonomy has nineteen levels of classification, extending Lin-
naeus’ original seven. The reader should see [22] for details
on modern taxonomic procedures for living organisms. An
example of a taxonomy of PPPs is shown in Figure 4. Making
such a tree requires that we extract taxonomic characters from
the PPPs. A taxonomic character is simply a measurable or
computable quantity such as number of legs or maximum
number of teeth in a healthy adult. With taxonomic characters
in hand, neighbor joining taxonomy, described subsequently,
is then used to produce a “family tree” of a set of PPPs.
PPPs closer to one another within the tree are considered more
similar, those more distance are less similar.

The choice of taxonomic characters used is critical. They
must avoid bias, they must vary across the set of PPPs, and
they must avoid arbitrary judgments to the greatest degree

possible. Using color in a numerical tree building algorithm,
for instance, requires numbers be assigned to colors in a
fashion that arbitrarily ranks some colors as closer to one
another than others. The preceding brief discussion gives only
a taste of the difficulty of choosing good taxonomic characters.
Readers familiar with automatic classification, decision trees,
and related branches of machine learning will recognize that
those choosing decision variables face similar issues. Any
taxonomic character or decision variable must be relevant
to the decision being made, vary across the set of objects
being classified, and be cleanly computable for all members
of the set of objects being classified. For PPPs we will
use four taxonomic characters: the three numbers computed
by the dynamic programming algorithm together with the
number of obstructions actually placed. All four of these are
normalized linearly to the range 0-1 to prevent characters with
a larger natural numerical range from unfairly dominating the
classification.

For each pair of PPPs P and Q, the Euclidian distance
d(P,Q) between the vectors m(P ) and m(Q) of normalized
characters was then computed by the formula

d(P,Q) =

√√√√ 4∑
i=1

[m(P )i − m(Q)i]2.

d(P,Q) was interpreted as the distance between the problems
P and Q. An “UPGMA” (neighbor joining) tree was used to
describe the relatedness of the the PPPs.

UPGMA is a clustering method commonly used to trans-
form distance data into a tree. It received attention in [24],
and a good recent description may be found in [26]. It is
especially reliable if the distances have a uniform meaning.
Normalization of the numbers in m(P ) makes the widely
different numerical ranges for the statistics comparable so that
the inferred distances are appropriate for analysis by UPGMA.

UPGMA is an acronym for “Unweighted Pair Group
Method with Arithmetic mean.” Given a collection of taxa
and distance dij between taxa i and j, the method first links
the two taxa x and y that are least distant. The taxa x and y
are merged into a new unit z. For all taxa i other than x and
y, a new distance diz is computed as the average of dix and
diy, and it is noted that the new taxon z really represents the
average of two original taxa. Henceforth, x and y are ignored,
and the procedure is repeated to find the next pair of taxa that
are least distant. When two taxa u and v are combined into a
new taxon w, the new distance diw is the average of diu and
div , weighted according to the number of original taxa in u
and v respectively; w contains all the original taxa in both u
and v. The procedure ends when the last two taxa are merged.

V. EXPERIMENTAL DESIGN

The evolutionary algorithm used to evolve PPPs operated
on populations of size 60. The model of evolution used was
steady-state size-seven tournament selection. In this model of
evolution a group of seven chromosomes are selected. The
two most fit are copied over the two least fit, breaking ties
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uniformly at random. The copies are subjected to the crossover
operator and one mutation each. One such tournament with
selection, variation, and replacement is called a mating event.
A run consists of generating a random initial population of
PPP chromosomes followed by 10,000 mating events. For
each set of parameters a set of 100 runs were performed. The
parameters used are given in Table I. Initial populations are
created by generating the number of chromosomes, consisting
of lists single descriptors used in a given run. The values in
an initial descriptor are selected uniformly at random for x, y,
and t from the valid values. The initial value of l in a single
descriptor is generated by averaging two random numbers, one
in the range [0,L-1] and the other in the range [0,H-1] and then
adding 1 where L is the horizontal dimension of the PPP, H
is the vertical dimension. Fractions are discarded.

PPP Single Maximum
Dimensions Descriptors Fitness Obstructions

12x12 4 Turns 20
12x12 4 Adv. 20
12x12 4 Moves 20
12x12 4 Turn 30
12x12 4 Adv. 30
12x12 4 Moves 30
20x20 8 Turn 50
20x20 8 Adv. 50
20x20 8 Moves 50
50x50 20 Turns 200
50x50 50 Turns 500

TABLE I

PARAMETERS FOR EVOLUTIONARY RUNS PERFORMED.

VI. RESULTS
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Fig. 2. An example of the fitness, maximizing the minimum number of
turns, over evolution for one run. This is the 6th run of 100 performed for
20x20 PPPs.

Figure 3 shows the first 12 PPPs generated in the runs for
12x12 PPPs with four single descriptors and a maximum of 30
obstructions. A taxonomy of these PPPS is shown in Figure
4. Juxtaposition of the statistics (turns, advances, obstructions)
with the position in the taxonomy shows that the result is not

PPP1(28-10-23)

PPP8(24-8-25)

PPP0(34-15-30)

PPP3(34-14-30)

PPP2(36-18-30)

PPP5(36-17-30)

PPP4(32-8-30)

PPP7(34-11-28)

PPP6(22-15-30)

PPP10(28-15-30)

PPP11(28-13-29)

PPP9(32-14-25)

Fig. 4. A neighbor joining taxonomy for the boards in Figure 3. The
characters used are the minimum number of required turns, advances, total
moves, and blocks present for the path planning problem. The number of
advances, turns, and obstructions (adv-trn-obs) are given at the end of the
PPP names.

unreasonable and that the taxonomic technique can be used to
divide the boards into groups from which representatives can
be selected to create benchmark sets of PPPs of desired size
with controllable diversity and difficulty.

The evolutionary algorithm functioned nominally in all
11 collections of 100 runs performed. Figure 2 shows the
fitness as a function of evolutionary time for one of the runs
performed to maximize the minimum number of turns required
on a 20x20 PPP with 8 single descriptors and a maximum of
50 obstructions.

Examining the final best-of-run boards showed a wide
diversity of boards and statistics. The character of the boards
differed between the fitness functions with the zig-zag patterns
of obstacles, which excel at forcing the grid robot to turn
when used correctly, being more common in the runs where
turns and total moves were used as the fitness function. Figure
5 gives the distribution of minimum number of turns and
advances required as well as obstructions placed for the 100
12x12 PPPs evolved with 4 single descriptors and at most 30
obstacles. The distribution of these statistics suggest that the
search space has many optima.

The dynamic programming fitness function was gratifiy-
ingly fast; even the populations of 50x50 PPPs with up to 500
obstructions ran in less than a minute per run on an inexpensive
desktop machine. An example of one of these PPPS is show
in Figure 6.

VII. DISCUSSION AND FUTURE DIRECTIONS

The evolved character of the PPPs is apparent in Figure 6
and to a lesser degree in the other PPPs presented. The 50x50
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##########################
#..............[]........#
#..............[]........#
#..............[]........#
#..............[]....[]..#
#..................[][]..#
#................[][]....#
#..............[][]....[]#
#............[][]....[][]#
#..........[][]....[][]..#
#........[][]....[][]....#
#......[][][][]..........#
#............[][]........#
##########################

0

##########################
#......[][]..............#
#....[][]................#
#..[][]........[]........#
#........[][][][][][][]..#
#..............[]........#
#..............[]........#
#..............[]........#
#..............[]........#
#..............[]........#
#..............[]........#
#..............[]......[]#
#..............[]........#
##########################

1

##########################
#................[][]....#
#..............[][]......#
#............[][]....[]..#
#..................[][]..#
#................[][]....#
#..............[][]....[]#
#............[][]....[][]#
#..........[][]....[][]..#
#..........[]....[][]....#
#..........[]..[][]......#
#..........[]............#
#..........[]............#
##########################

2

##########################
#......[][]..............#
#....[][]............[]..#
#..[][]............[][]..#
#..........[]....[][]....#
#..........[]..[][]....[]#
#..........[][][]....[][]#
#..........[][]....[][]..#
#..........[]............#
#..........[]............#
#..........[]............#
#..........[]............#
#..........[]............#
##########################

3

##########################
#..[][][][][][][]........#
#........................#
#[][][][][][][][][]......#
#........................#
#..........[][]..........#
#............[][]........#
#..............[][]......#
#................[][]....#
#..................[][]..#
#....................[][]#
#......................[]#
#........[]..............#
##########################

4

##########################
#..[]..............[]....#
#..[]....[][]....[][]....#
#......[][]....[][]......#
#....[][]....[][]........#
#..[][]....[][]..........#
#[][]....[][]............#
#......[][]..............#
#....................[]..#
#....................[]..#
#....................[]..#
#....................[]..#
#....................[]..#
##########################

5

##########################
#........................#
#........................#
#........................#
#..........[][]..........#
#............[][]........#
#........[]....[][]......#
#........[][]....[][]....#
#........[][][]....[][]..#
#........[]..[][]....[][]#
#........[]....[][]....[]#
#................[][]....#
#..[]..............[][]..#
##########################

6

##########################
#......[]................#
#......[]................#
#......[]................#
#......[]................#
#......[]................#
#......[]..[]............#
#......[]..[]............#
#......[]..[]......[][]..#
#......[]..[]........[][]#
#......[]..[]..[][]....[]#
#..........[]....[][]....#
#..........[]......[][]..#
##########################

7

##########################
#..........[][]..........#
#........[][]............#
#........................#
#........................#
#[][][][][][][][][]......#
#........................#
#........................#
#........................#
#..................[][]..#
#....................[][]#
#......................[]#
#....[][][][][][][]......#
##########################

8

##########################
#..........[][]..........#
#........[][]....[][]....#
#..............[][]....[]#
#............[][]....[][]#
#..........[][]....[][]..#
#[][][][][][]....[][]....#
#........................#
#........................#
#........................#
#........................#
#........................#
#........................#
##########################

9

##########################
#..[]....................#
#..[]....................#
#..[]..................[]#
#..[]....................#
#..[]..........[][]......#
#..[]....[][]....[][]....#
#..[]......[][]....[][]..#
#............[][]....[][]#
#..............[][]....[]#
#................[][]....#
#..................[][]..#
#....................[]..#
##########################

10

##########################
#........................#
#........................#
#..................[][]..#
#................[][]....#
#..............[][]....[]#
#............[][]....[][]#
#..........[][]....[][]..#
#........[][][][]....[][]#
#..............[][]....[]#
#................[][]....#
#..................[][]..#
#....................[]..#
##########################

11

Fig. 3. The best-of-run path planning problems for the first twelve runs using a 12x12 planning space with 4 descriptors and at most 30 blocks optimizing
for the maximum number of turns. Robots start in the upper left corner and are to reach the lower right corner.
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######################################################################################################
#->......[][]......[]................................................................................#
#......[][]........[]................................................................................#
#............[]....[]................................................................................#
#............[]..................[]............................[]....................................#
#............[]................[][]..[][]......................[]....................................#
#............[]..............[][]......[][]....................[]....................................#
#............[]............[][]..[][]....[][]................[][][][][][][][][][][][][][][][][][][][]#
#............[]..........[][]......[][]....[][]................[]....................................#
#............[]........[][]..........[][]....[][]..............[]....................................#
#............[]......[][]..............[][]....[][]............[]....................................#
#............[]....[][]..................[][]....[][]..........[]....................................#
#............[]..[][]..............[][]....[][]....[][]........[]....................................#
#............[][][]..................[][]....[][]....[][]......[]....................................#
#............[][]......................[][]....[][]....[][]....[]....................................#
#..........[][]..........................[][]....[][]....[][]..[]....................................#
#............[]....................[][]....[][]....[][]....[][][]....................................#
#............[]......................[][]....[][]....[][]....[][]....................................#
#............[]........................[][]....[][]....[][]....[][]..................................#
#......[]....[]..........................[][]....[][]....[][]..[][][]................................#
#......[]....[]..........................[][][]....[][]....[]..[]..[][]..............................#
#......[]....[]..........................[]..[][]....[][]......[]....[][]............................#
#......[]....[]..........................[]....[][]....[][]....[]......[][]..........................#
#......[]....[]..........................[]..............[][]..[]........[][]........................#
#......[]....[]..........................[]................[][][]..........[][]......................#
#......[]....[]..........................[]....................[]............[][]......[]............#
#......[]....[]..........................[]....................[]..............[]......[]............#
#......[]....[]..........................[]....................[]........[][]..........[]............#
#......[]....[]..........................[]........................[][]....[][]........[]............#
#......[]....[]........[][][][][][][][][][][][][][][][][][][][][][][][][]....[][]......[]............#
#......[]....[]................[]........[]....................[][]......[]....[][]....[]............#
#......[]....[]................[]........[]..................[][]......[][]......[][]..[]............#
#......[]....[]................[]........[]..........................[][]..........[][]..............#
#[][][][][][][][][][][][]......[]........[]........................[][]..............[][]............#
#......[]....[]................[]........[]......................[][]..................[][]..[]......#
#[]....[]....[]................[]........[]....................[][]......[][][][][][][][][][][][][][]#
#......[]....[]................[]........[]..................[][]........................[][][]......#
#......[]....[]................[]......[][][][][][][][][][][][][][][][][][][][][][]....[][]..[][]....#
#......[]....[]................[]........[]..[][]........[][]........................[][]......[][]..#
#......[]....[]................[]........[]....[][]................................[][]..........[][]#
#......[]....[]................[]........[]......[][]....[][][][][][][][][][][]..[][]..............[]#
#......[]....[]................[]..................[][]........................[][]..................#
#......[]....[]................[]....................[][]............................................#
#......[]....[]................[]..................[][][][][][][][][][][][][][][][][][][][][][]......#
#......[]....[]................[]....................................................................#
#......[]......................[]......[][]..........................................................#
#......[]......................[]........[][]................................................[][]....#
#......[]......................[]..........[][]................................................[][]..#
#......[]......................[]............[][]........................................[][]....[][]#
#......[]......................[]..............[][]........................................[][]....[]#
#......[]......................[]................[][]..........................[][]..........[][]..**#
######################################################################################################

Fig. 6. An example of an evolved 50x50 PPP with 50 single descriptors and up to 500 obstructions. The agent’s initial position is denoted with − > and
the goal is denoted **

PPP shown has many clever traps that the agent cannot reach
and others that can be ignored by an efficient agent because
they are not on its shortest path to the goal. This suggests the
presence of a nontrivial evolutionary lineage. The traps that
the agent cannot reach or need not deal with may be residual
from an earlier evolutionary epoch in which an optimal path
did interact with those obstructions. This suggests both that
this technique for creating PPPs yields interesting mazes and
that rewarding simplicity during the evolution of PPPs might
yield higher levels of difficulty by causing “vestigial” obstacles
to be under selection pressure to become active obstructions
again. On the other hand, this study may have inadvertently
discovered a technique for automatically generating virtual
architectures for video games.

Examine the PPPs shown in Figure 7. These are typical
boards from the 12x12 runs with 4 single descriptors. One is
from a run where the total obstructions were limited to 20 the
other the limit was 30. As in the example shown, many of the
PPPs evolved with at most 20 obstructions produces boards
that did not require all their single descriptors (whether they
used them or not). The top board in Figure 7 could be created
with two descriptors. The average number of obstructions
permitted per descriptor in the initial population for 12x12
PPPs was 12. Since a line of obstructions must reach the edge
of the board to function efficiently in many cases, it may be
that a limit of 20 total obstructions caused all fitness to rest on

the first two single descriptors. In any case there appears to be
a phase change in behavior (and fitness) of the evolved PPPs
when the number of total obstructions was changed from 20
to 30. This suggests that parameter tuning for this system is
not smooth or incremental.

Figure 6 is drawn from tests that showed that the system for
evolving PPPS scales nicely. The system can evolve relatively
large, complex PPPs in modest wall-clock time. Likewise, it
can produce very large collections of PPPs as an initial step
toward building diverse collections of such problems. While it
was not tested in this study, which focused on maximizing the
difficulty of PPPs, modifying the fitness function to reward a
particular difficulty value can further increase the diversity of
PPPs located; at odds with the author’s initial expectations the
system already locates a large diversity of difficulties of PPP
while attempting to maximize their difficulty. The histograms
given in Figure 5 are typical of the diversity of outcomes for
the eleven sets of runs performed.

The taxonomic technique for PPPs, introduced in this study
but not fully exploited, can be used to divide PPPs into
similar groups. In this case the taxonomy is functioning as
a hierarchical clustering technique. The taxonomy software
can be modified to automatically search for sets of PPPs of
desired size and with the large diversity relative to the size of
the set requested.
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16 Histogram for number of turns in evolved boards
12x12 PPS, 4 single descriptors, <=30 obstructions.
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12x12 PPS, 4 single descriptors, <=30 obstructions.
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20 Histogram for number of obstructions in evolved boards
12x12 PPS, 4 single descriptors, <= 30 obstructions.

Fig. 5. The distribution of turns, advances, and obstructions places for the
best-of-run 12x12 PPPS in the 100 runs performed with 4 single descriptors
and a maximum of 30 obstructions.
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Fig. 7. Exemplary best-of-run PPPs from a run with at most 20 obstructions
placed (left) and 30 (right), from runs maximizing forward moves.

A. Possible Applications

The intended application for this work is to creating a tool
with which to explore the space of path planning problems.
There are other possible applications, including automatic
generation of levels or boards for a computer game. Evolution
could rapidly produce boards that have a desired character
from a relatively open “cathedral” to a complex, twisty maze.
Another application is to homeland security where evolution
could generate thousands of floor plans so that anything from
toxin detectors to guard deployment could be gamed thousands
of times and tested for robustness. For both computer games
and homeland security applications the cellular representation
could be extended to embed threats, traps, and other task-
relevant features.

Another potential application is to provide a nontrivial en-
vironment for robot ecology studies. Virtual robots that attack
one another, forage for food, or that must find mates are used
in ecological simulation. Typically they use a single simulated
environment. Using evolved boards with very different levels
of obstruction and connectivity could be used in experiments
that test the hypothesis that different hunting, foraging, or
mating strategies will arise in different environments.

B. Additional Characters

One reason for the lack of emphasis on the taxonomic
technique is the need to develop a richer set of taxonomic
characters for use in classification of PPPs. At present the
characters are the number of turns, forward moves, total
moves, and obstructions. A natural extension to this character
set is to add the length and width of the grid; in this study
the example taxonomy was done entirely on 12x12 PPPs.
Nevertheless this set of characters lacks independence: total
moves is the sum of advances and turns; size is highly
predictive of the number of advances and total moves required.
The following additional characters could be used.

Agent derived characters are those derived from simple
heuristics. The amount of time an agent performing left wall
following, right wall following, or other simple heuristics
might make a valuable taxonomic character for classifying
PPPs. Care must be used since some of these heuristic may
fail on some PPPs but, once noticed, simply assigning a
computationally sensible value for “infinite number of moves
to solution” would make heuristic failure another useful piece
of information for classification. Evolved agents, selected for
their ability to behaviorally distinguish PPPs, might also serve
as a useful source of taxonomic characters.

Geometric characters are those extracted from the pattern
of obstructions within the PPP. The characters used in this
study are all geometric characters, but many others exist. The
mean diameter of a PPP is the average, over all non-obstructed
squares, of the number of unobstructed squares visible in
the horizontal and vertical dimension in both directions. This
character would capture the degree to which the PPP is broken
into compartments.

Representationally derived characters are extracted from
the cellular encoding of the PPP. These characters are less
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generally useful because they can only be computed when
some specific representation is used. If all the PPPs be-
ing taxonomized are derived from, for example, the cellular
representation presented in this study then the number of
vertical, horizontal, or zig-zag single descriptors executed
during the construction of the PPP are a potentially informative
taxonomic character.

C. Different Cellular Representations

The six types of single descriptor used in this study could
be extended to dozens with very little effort, yielding a far
richer design space for evolved PPPs. Additional types of
descriptor might include rectangular shapes with openings (in
effect rooms) or more complex types of zig zags. it is not clear,
however, that increasing the complexity of the descriptors is
the only interesting possibility. The zig-zag descriptors were
of great utility in forcing turns - note the zig-zag “corridors”
in Figure 6. It might be interesting to see which types of PPP
would arise if the zig-zag descriptors were not used.

It is also possible to construct entirely different types of
cellular representations for PPPS. A representation that fills in
sub-squares of the grid from a pallet of smaller PPPs while
maintaining connectivity for example, would yield a simple,
evolvable representation. The representation would consist of
an ordering of the sub-squares. The expression of such a
representation would use the next available sub-square in the
evolvable ordering that maintained connectivity. Evolution of
the order in which sub-squares are considered yields a search
of a rich space of PPPs.
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