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ABSTRACT 
With microprocessor power densities escalating rapidly as 
technology scales below 100nm level, there is an urgent 
need for developing innovative cooling solutions. In this 
paper, we introduce the concept of power-density aware 
thermal floorplanning and demonstrate its efficacy in 
reducing maximum on-chip temperature. We argue that 
Compact Thermal Model (CTM) based floorplanners will 
be hard pressed by time-to-market pressure for placing 
circuits having large number of modules. To circumvent 
this problem, we present a novel power-density aware 
floorplanning technique for reducing the maximum on-
chip temperature that has much less runtime compared to 
CTM based floorplanners. Based on our method we 
develop a floorplanner that we name COOLER.  Instead 
of using the conventional Simulated Annealing procedure, 
COOLER uses a highly efficient Multiobjective 
Evolutionary Algorithm to generate the Pareto-front. 
Experimental results on MCNC benchmark demonstrate 
that COOLER is 11x-146x faster than 
HOTFLOORPLAN. We use HOTSPOT for thermal 
simulation of the layouts produced by COOLER. Finally, 
we validate our method by demonstrating that 
HOTFLOORPLAN solutions lie on the Pareto-front 
generated by COOLER. It was found that by careful 
arrangement of components at the architecture level, the 
average reduction in peak temperature produced by 
HOTFLOORPLAN and COOLER was 15.1°C and 
15.3°C respectively. 
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1. Introduction 
Microprocessor clock frequency doubles each generation 
and the supply voltage scaling has been unable to 
compensate the resulting increase in power [1]. If the 
trend continues, power density will reach 10,000 W/cm2 
by the year 2015 [2]. Increase in power density increases 
the operating temperature which has severe detrimental 
effects on the performance of the chip. First, increase in 

average temperature of a chip deteriorates the chip’s 
reliability due to a phenomenon known as 
Electromigration (EM). Second, due to the temperature 
dependence of carrier mobility and interconnect 
resistivity, the current driving capability of transistors 
decrease by approximately 4% and the interconnect delay 
increases by 5% for every 10°C rise in temperature. 
Furthermore, high temperature increases the risk of a 
thermal runaway caused by its exponential dependence on 
leakage power. In order to avoid failures, thermal 
packages are designed to withstand peak power 
dissipation. As the peak temperature increases, so does 
the cost of cooling. The estimated increase in the overall 
cost of chip due to every Watt of power dissipated above 
35-40W is $1/W [3]. Without proper design methodology, 
this burgeoning cost of cooling will become an 
impediment for future scaling of devices. The objective of 
power-density aware floorplanning is to uniformly 
distribute the power-density, thereby reducing the 
maximum on-chip temperature and associated packaging 
cost. 
 
Previous power based methods have failed to reduce 
maximum on-chip temperature. Skadron et. al. [4] found 
very small correlation between power and temperature. 
Temperature-aware design [5] has thus been proposed to 
address such problems. However, temperature-aware 
floorplanners using Compact Thermal Model (CTM) 
suffer from high time-to-market, especially for circuits 
having large number of modules. Our study shows that 
there is a high correlation between the steady-state 
temperature at the center of a block and the distribution of 
power-density around it. In this paper, we thus introduce 
the concept of power-density aware thermal floorplanning 
and study its role in reducing the maximum on-chip 
temperature. 
 
2. Related Work 
One of the pioneering efforts on thermal placement was 
done by Chu et al. [6]. They developed a matrix synthesis 
approach for placing square blocks in a way, so as to 
minimize the maximum sum of powers in all nn ×  



submatrices. Unfortunately, the floorplanning blocks are 
not necessarily squares and hence their method cannot be 
applied to thermal-aware macrocell placement. Tsai et al. 
[7] proposed a compact substrate thermal model that can 
be used to estimate temperature profile from a distribution 
of power dissipating sources on chip. Using their model, 
it is possible to obtain better thermal distribution for cell 
level placement without any increase in area. However, 
for macrocell placement their method gave better 
temperature distribution at the cost of 30% increase in 
area. Hung et al. [8] used a Genetic Algorithm (GA) 
based method for thermal aware floorplanning. Recently, 
Skadron et al. released HOTFLOORPLAN [9], a 
temperature aware floorplanner that uses HOTSPOT [10] 
within a simulated annealing procedure. 
 
However, none of the previous research has directly 
focused on making power-density uniform. All of the 
aforementioned methods suffer from high runtime 
complexity. Moreover, all previous methods reduce the 
problem of simultaneous optimization of maximum 
temperature and area to a single objective optimization 
problem by taking the weighted mean of the two 
objectives as the cost that is to be minimized. 
Accordingly, they produce a single optimal solution in a 
single run. The solution depends on the relative 
importance of the objectives as defined in the cost 
function. It requires tedious manipulation of weight terms 
in the cost function to meet certain specification, such as 
an upper limit on the area.  In this context we make the 
following contributions: First, we introduce the concept of 
power-density aware floorplanning. Second, we develop a 
novel power-density aware technique for macrocell 
placement that actually reduces the maximum on-chip 
temperature. Third, we demonstrate that our method is 
much faster than existing CTM based floorplanners and 
yet as effective in reducing the maximum on-chip 
temperature. Fourth, by formulating the thermal 
placement problem as a Multiobjective Optimization 
Problem (MOP), we show that a set of Pareto-optimal 
Solutions can be generated in a single run. Existing 
methods find solutions that are subsets of the Pareto-
optimal Set. 
 
3. Thermal Aware Floorplanning 
Given a set of rectangular blocks, thermal-aware 
floorplanning determines a non-overlapping placement of 
the blocks to minimize the chip area and maximum on-
chip temperature. Floorplan representations have been 
studied in details. There are two major types of 
floorplans: slicing floorplans [11] and non-slicing 
floorplans [12], [13], [14]. Various optimization 
techniques such as Simulated Annealing (SA) and 
Genetic Algorithm (GA) have been applied successfully 
to minimize area. Reducing thermal effects is a relatively 
nascent area of research. To date, temperature-aware 
floorplanning has been most effective in reducing peak 
temperature. We first discuss temperature aware 

floorplanning technique in brief and then introduce the 
concept of power-density aware floorplanning.  
 
3.1 Temperature Aware Floorplanning 
Temperature-aware floorplanners use an RC circuit to 
model the steady state and transient temperature at an 
architectural level. The RC model proposed in [15] has 
been incorporated in a tool named HOTSPOT [10]. Given 
the dimensions and relative positioning of all the blocks 
on chip, HOTSPOT computes the transfer thermal 
resistance matrix and determines the temperature at the 
center of each block using:  
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(1) 

Where Pi denotes the average power dissipated by the ith 
block.  
3.2 Power-density Aware Floorplanning 
The motivation behind power-density aware 
floorplanning is to model maximum on-chip temperature 
using a power-density based metric. Since information 
about the block power-density is readily available, such 
an approach is computationally efficient. To understand 
the relation between power-density and temperature, 
consider the equation for steady-state temperature in a 3D 
substrate: 
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Subject to the boundary condition: 
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Where T is the temperature as a function of position; k 
and ρ  are thermal conductivity (W/m°C) and density 
(Kg/m3) of the material respectively, hi is the heat transfer 
coefficient of the packaging components (W/m2°C), Q is 
the power-density (W/m3), 

in∂∂ /  represents the 
differentiation along the outward normal drawn at the 
boundary surface and

if  is any arbitrary function. 
 
If the power-density Q is uniformly distributed across the 
spatial coordinates and the initial and boundary conditions 
are identical for all points, then from symmetry of the 
differential terms in (2) we can conclude that the 
temperature distribution will also be uniform. The 
assumption of uniform initial and boundary condition is 
justified because any thermal aware methodology, 
including CTMs must be BICI (Boundary and Initial 
Condition Independent) [4]. Because power densities are 
localized and it is not possible to make any changes to the 
circuitry within a block, it is not possible to obtain an 
absolutely uniform power-density or temperature 
distribution simply by redistributing the blocks. However, 
it is possible to identify high power-density modules as 



potential candidates for developing hotspots and surround 
them by whitespace or low power-density module to 
reduce the effective power-density around potential 
hotspots. 
 
In order to carry out a mathematical analysis of the 
problem, let us define the following terms:- 
H: Ordered set of high power-density modules (modules 
having power densities greater than the 80 percentile 
value) sorted in descending order. 

iΩ : Set of all blocks adjacent to block i Hi ∈∀  
Wij: Shared boundary between Hi ∈ and 

ij Ω∈  
Pi: Surface power-density of block i 
W, L: Width and length of module i respectively. 
Let us construct an imaginary rectangle of length 

xL ∆+ 2 and width xW ∆+ 2 around block i as shown 
in Fig. 1. 

 
Fig. 1. Diagram showing an imaginary rectangular 
boundary surrounding block i for computing gradient 
of power-density reduction. 
 
The effective power-density within the imaginary 
rectangle is given by:  
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The rate at which power-density diminishes with x∆  can 
be calculated from (4) and is given by:  
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The idea is to determine a layout such that the effective 
power densities around high power-density modules are 
minimized. This is equivalent to maximizing the gradient 
of power-density reduction Hi ∈∀ . In order to reduce 
the peak temperature, xP ∆∆ /  for the first element in H, 
(i.e. the highest power-density block) must be maximized. 
Once xP ∆∆ /  for the first element in H has been 
maximized, we want to select the second element in H 
and maximize xP ∆∆ /  for that block. Thus, it will not be 
correct to develop a scalar thermal objective simply by 
summing up xP ∆∆ /  from different blocks in H. This is 
because, the second highest power-density block might 
have much greater perimeter, in which case maximizing 

∑ ∆∆ xP /  would result in surrounding it with lowest 

power-density blocks. This will certainly neglect the 
highest power-density block and hence would fail to 

reduce the maximum on-chip temperature. To overcome 
this problem, we define the thermal objective (T.O) to be 
as follows: 
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Where S is the scaling factor (~ 10). The entire procedure 
is summarized in Algorithm 1. From experimental results 
we find that T.O as defined in (6) has high degree of 
correlation with maximum and mean temperature across 
the chip. The correlation coefficients are given in Table1. 
It is to be noted, that during the calculation of T.O, any 
whitespace abutting module i should be considered as an 
ordinary block with zero power-density.  
 
 Algorithm 1: Procedure for Reducing Tmax 
1: ←H vector of high power-density blocks in descending 
order 

2: for all Hi ∈  
3:     find ←Ω i

set of blocks adjacent to i , 1←Scale  

4:     for all 
ij Ω∈  

5:       ScaleWPPOTOT ijjdid /*)(.. )()( −+←  

6:     end for 

7:     SScaleScale *←  

8:  end for 
 
 
Table1. Correlation Coefficients between Thermal 
Objective (T.O) and maximum and mean on-chip 
temperatures. 

BENCHMARKS T.O VS TMAX T.O VS TMEAN 
apte 0.94 0.67 

xerox 0.92 0.91 
hp 0.96 0.87 

ami33 0.83 0.71 
ami49 0.85 0.89 

 
Computing the Area Objective (A.O) is relatively 
straight-forward. Let 

nP  be the set of all permutations 

of },...2,1{ NX = . We use the sequence pair floorplan 
representation of Murata et al. [12], where every element 
in 

NN PP ×  represents a valid floorplan. The area 
objective (A.O) of the floorplan can be defined as 
follows: 
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Where A(Bi) is the area of the ith block and Achip is the 
area of the chip represented by the sequence pair 

>< 21, XX . Chip area can be determined from the chip 
length and width, which in turn are computed as follows: 
For every element Xx ∈  it is possible to find a set )(xM bb  
where: 

xxxM bb ′′= |{)(  is before x  in both 
1X  and  }2X  (8) 



Any element )(xMx bb∈′  is located left of x in the 
floorplan. Based on the “left of” constraint imposed by 
the set, a horizontal constraint graph ),( EVG H

 can be 
constructed. The length of the chip represented by ),( 21 XX  
is the distance of the longest path from source to sink 
in ),( EVGH

. The height of the chip can be obtained from 
the vertical constraint graph ),( EVGV  in a similar manner. 
 
4. Multiobjective Evolutionary Algorithm 
Having defined the area and thermal objectives, let us 
now formulate the problem of thermal-aware 
floorplanning as a Multiobjective Optimization Problem 
(MOP). Consider a vector function Φ that maps a 
decision vector x (with decision variables: 

1X  and
2X ) 

belonging to the parameter space 
NN PP ×  to an 

objective vector y (with objectives: T.O and A.O) 

belonging to the objective space 2ℜ . The MOP can then 
be stated as: 
max )( xy Φ=  
Where 

NN PPXXx ×>∈=< 21 ,  
2),( ℜ∈= AOTOy                                                         (9) 

Where T.O and A.O are given by (6) and (7). We 
incorporate our power-density aware floorplanning 
strategy (Algorithm1) in a Multiobjective Evolutionary 
Algorithm (MOEA) to produce a thermal-aware 
floorplanner that we name COOLER. To the best of our 
knowledge, this is the first application of MOEA to 
thermal floorplanning problem. A variety of MOEA's 
have been reported in the literature, including VEGA 
[16], HLGA [17], NSGA [18] and SPEA [19].  
Comparative studies based on a large number of test cases 
have shown that SPEA (Strength Pareto Evolutionary 
Approach) is best suited for our purpose. Therefore, we 
use SPEA for solving the MOP. The various steps of 
SPEA are as follows: 
1: Generate a random initial population P and create the 
empty external nondominated set P′ . 
2: Compute A.O and T.O for each member in P. 
3: Copy nondominated members of P to P′ . 
4: Remove those members in P′  which are covered by 
other members in P′ .   
5: If the number of members in P′  exceeds a given 
maximum N′ , prune P′  by means of clustering. 
6: Calculate the fitness of each individual in P and P′   
7: Select individuals from PP ′∪  until the mating pool is 
filled. 
8: Apply crossover and Mutation 
9: Stop if the maximum number of generation is reached, 
else go to step 2. 
 
Operators and Parameters: In our simulation, we used 
Partially Mapped Crossover (PMX), Swap Mutation and 
Binary Tournament Selection.  We have used crossover 
and mutation probability values of 0.8 and 0.01 

respectively. External and evolving population sizes are 
set to 40 and 20 respectively. 
Clustering and Fitness Assignment Technique: 
The clustering technique uses the average linkage method 
to partition members of P′  and then selects the centroid of 
each cluster as a representative solution. For details on the 
clustering algorithm, please refer to [19]. The procedure 
for fitness assignment in SPEA is a two-step process.  
Step 1: At first, each member Pi ′∈  is assigned a fitness 
value (strength) given by:  

1+
=

N
n

fi
  

(10) 
Where n denotes the number of individuals in P that are 
covered by i and N is the size of P. 
Step 2: For each member Pj ∈ , the sum of the strengths of 
all nondominated members in P′ that covers j has to be 
computed first. The fitness assigned to j is one greater 
than the computed sum (to ensure that the members in 
external population have better fitness values).  
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5. Simulation Results 
We first use HOTFLOORPLAN [9] to place MCNC 
benchmarks circuits. The results were computed on an 
Intel Pentium IV laptop running at 1.8 GHz with a 1GB 
RAM.  In the absence of details on power dissipation for 
MCNC benchmarks, power densities are randomly 
assigned in the range 1mW/mm2 to 1W/mm2.  Results in 
Table 2 show almost cubic growth in runtime as the 
number of modules increase. It is also observed that 
reduction in peak temperature for ami33 and ami49 is 
accompanied by considerable increase in deadspace, 
which may not fit design specifications. On the other hand 
for apte and xerox it is possible to bring down the 
temperature further by relaxing the area constraint. In 
short, a single run of HOTFLOORPLAN does not give us 
a clear idea of the trade off surface or the Pareto-optimal 
solutions at our disposal. 
 
Next we used COOLER to generate thermal-aware 
layouts for all MCNC benchmarks. One such layout for 
apte is shown in Fig 2(a). We found that the runtime for 
placement varies from 23 sec for apte to 401 sec for 
ami49. Thus our method is around 11-146 times faster 
than HOTFLOORPLAN. Fig. 3 shows the comparison of 
runtimes for COOLER and HOTFLOORPLAN. This 
clearly demonstrates the superiority of our method over 
CTM based floorplanners especially when the number of 
modules is large. 
 
We use HOTSPOT [10] to analyze the spatial distribution 
of temperature (at the block level granularity) for the 
layouts produced by COOLER. The temperature 
distribution for the apte layout in Fig. 2(a) is plotted in 
Fig 2(b) using MATLAB. For each MCNC benchmark, 
COOLER produces a Pareto-optimal solution set. The 
maximum and mean temperature for each layout in the  



 
Table 2. Percentage Deadspace, Maximum and Mean on-chip temperatures and runtime for HOTFLOORPLAN 

MCNC Benchmarks Percentage 
Deadspace 

Tmax (K) Tmean(K) Runtime (sec) 

apte 3.27 348.90 343.91 257 
xerox 7.83 337.5 329.01 399 

hp 13.14 349.6 348.01 501 
ami33 44.89 327.5 327.02 13526 
ami49 17.43 341.8 336.21 58838 

 

                    
Fig. 2. (a) Thermal Aware Layout of apte generated by COOLER (b) Spatial Distribution of temperature for the same 
layout. 
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Fig. 3. Runtime versus the number of modules for COOLER and HOTFLOORPLAN. 

 
 
Pareto-optimal set is extracted using HOTSPOT and 
plotted in Fig. 4. This plot delineates the Pareto-front for 
each benchmark by joining the Pareto-optimal solutions 
using a smooth curve. The maximum temperature and 
percentage deadspace corresponding to the layouts 
generated by HOTFLOORPLAN are also plotted on the 
same figure. It is observed that the solutions produced by 
HOTFLOORPLAN lie on the Pareto-front generated by 
COOLER. We thus conclude that COOLER is as 
effective in reducing Tmax as CTM based temperature-
aware floorplanners and yet has very less runtime. 
Moreover, our method allows the designer to explore 
various design possibilities without having to modify the 
objective function in the source code. For example, Fig. 4 
indicates that Tmax in apte can be reduced from 357K to 
347K by increasing the deadspace by 7%. In short, by 
using an MOEA as opposed to conventional Simulated 

Annealing or single objective GA it is possible to get a 
complete picture of the trade-off surface. Fig. 5 shows 
that COOLER and HOTFLOORPLAN are capable of 
reducing Tmax by 15.3°C and 15.1°C on an average. 
 
6. Conclusion  
Power-density aware thermal floorplanning has immense 
potential to reduce peak temperature and thereby enhance 
performance and reliability of current and future 
generation ICs. Modeling the maximum on-chip 
temperature using a power density based metric enables 
reducing the runtime considerably without sacrificing the 
quality of the solution. The Multiobjective framework 
helps to study the trade-offs between the various 
objectives. The technique introduced for reducing the 
peak temperature has very low time-to-market and hence 
will find potential application in industrial IC design.  
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Fig. 4. Pareto-optimal solutions generated by 
COOLER (CLR) and solutions produced by 
HOTFLOORPLAN (HFP) for MCNC benchmarks. 
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