
 1 

 
National Conference on Intelligent Systems 
Hyderabad, 24-25 August 2007 
 

A GENETIC ALGORITHM FOR NON-SLICING FLOORPLAN 
REPRESENTATION 

 
Debarshi Chatterjee and Theodore W. Manikas 

The University of Tulsa 
600 South College Avenue, Tulsa, OK-74104, U.S.A. 
{debarshi-chatterjee, theodore-manikas}@utulsa.edu 

 
 

Abstract. Floorplanning is one of the most significant stages 
of the Very Large Scale Integrated (VLSI) circuit design 
cycle. Genetic algorithms (GA) provide immense 
opportunity to efficiently solve the floorplanning problem. 
Previous applications of GA to the floorplanning involve 
slicing floorplan representation and are therefore limited in 
application. We develop a GA for floorplan area 
optimization by applying permutation type crossover and 
mutation operators to the integer string encoding generated 
by Sequence Pair (SP), a non-slicing floorplan 
representation. In addition, we carry out a comprehensive 
comparative study of the performance of GA operators and 
selection schemes. In order to select the best crossover 
operator, we compare the efficacy of Partially Mapped, 
Order1 and Cycle crossovers. We also study the 
performance of Swap Mutation, Insert Mutation and Invert 
Mutation. Finally, we compare the convergence of Roulette 
Wheel, Rank and Binary Tournament Selection and 
determine the optimal values for population size and other 
GA parameters. It is observed that our floorplanner 
generates better results for 3 out of 5 MCNC benchmark 
circuits as compared to Parquet. 
 
Key Words: Genetic Algorithm, Optimization, 
Computer Aided Design. 
 
1.  INTRODUCTION 
 
     Floorplanning determines the relative location of circuit 
components (commonly known as blocks or modules) on a 
chip. It plays a vital role in determining the performance and 
cost of a chip. Let },...,{ 21 NBBB=π denote a set of N 

rectangular blocks with constant areas denoted by )( iBA . 

Then, a packing of π  is defined as a non-overlapping 
placement of the blocks, and the minimum bounding 
rectangle of the is called the chip. The difference between the 
chip area and the sum of all block areas ∑=

N

i iBA
1

)( is known 

as the dead-space and is usually represented as a percentage 
of the total chip area. The floorplanning problem aims at 
finding a packing of π  that minimizes the chip area. 
Reducing the chip-area reduces the silicon cost required to 
manufacture the chip. 
 
There are two major types of floorplans: slicing floorplans 
and non-slicing floorplans. Slicing floorplans are those that 
can be partitioned by recursively bisecting using horizontal 

and vertical cuts. A slicing floorplan can be represented 
using a slicing tree, as shown in Fig. 1. The slicing tree can 
be encoded into a normalized Polish expression that hastens 
the search procedure [1]. Other floorplan representation such 
as SP [2], Bounded Slicing Grid [3], O-tree [4] and B* tree 
[5] are more general in the sense that they are capable of 
handling non-slicing floorplans.  

 
Fig. 1. A Slicing floorplan and the corresponding slicing tree. 
 
          Simulated Annealing (SA) [6] [7], Force directed 
approach [8] and numerical optimization techniques [9] are 
popular in determining the optimal floorplan. The application 
of GA to floorplanning was first done by Cohoon et al. [10]. 
In [10] the authors studied four different crossover operators 
when applied to post fix expressions. The GA developed by 
Schnecke et al. [11] carried out a direct manipulation of the 
slicing tree to maintain legality. Valenzuela et al. [12] bred 
normalized Polish expressions using GA and carried out a 
comparative study of the performance of four crossover 
operators. Till date, all the studies relating to the application 
of GA to floorplanning uses slicing tree representation.  This 
renders the solution space P-inadmissible because the 
minimum area floorplan may not be slicing and hence may 
not be present in the solution space. Our research applies GA 
to SP, a non-slicing floorplan representation. The advantage 
of using SP for our purpose is two fold. First, it makes the 
solution space P-admissible. Second, it makes the 
comparison of our results with those obtained from Parquet 
[6] more meaningful, since Parquet also uses SP 
representation.  
 
2.  SEQUENCE PAIR REPRESENTATION 
 
It is possible to represent a floorplan with N blocks by a pair 
of sequences (S1, S2) each having N elements. This pair 
imposes certain constraints on the relative positioning of the 
blocks on chip. For every element 21 , SSx ∈  we can find a 

set )(xM bb  where: 



 2 

xxxM bb ′′= |{)(  is before x  in 1S  and }2S                  (1)                                                               

 
Fig. 2. Horizontal and Vertical Constraint Graphs 
corresponding to a floorplan      
                                                                                                                                       
 Any element )(xMx bb∈′  is located left of x in the 
floorplan. Based on the “left of” constraint imposed by the 
set )(xM bb , a horizontal constraint graph ),( EVGH  can be 
constructed as follows: The vertex set consist of a source s, 
sink t and N vertices labeled with module names. Directed 
edges are drawn from source to each of the vertices, which in 
turn are connected to the sink t. A directed edge exists 

between   two vertices ix  and jx in ),( EVGH  

iff )( j
bb

i xMx ∈ . Vertex weights are zero for source and 

sink and equal to the module width for the rest of the 
vertices. Fig. 2 shows a floorplan along with its 
corresponding horizontal and vertical constraint graphs from 
which the chip width and height can be computed. 
 
3. GENETIC ALGORITHM  
 
GA was first proposed by Holland in 1975 [14]. In nature 
only fittest individuals survive and reproduce, a natural 
phenomenon known as “the survival of the fittest”. GAs 
mimic the natural evolution process by suppressing inferior 
genotypes and breeding offspring from superior population 
members. The cyclic process is continued for several 
generations and the best member is selected. The 
performance of a GA can be drastically improved by using 
elitism, which ensures that best-known solution is preserved 
and passed on to future generations. A pseudo code for our 
elitist GA is given below (Algorithm 1). 
 
3.1 Fitness Assignment 
In order to create the mating set, each member in the 
population is assigned a fitness value given by: 

   
                               (2)                                             
 
 

Where )( iBA is the area of the ith block and )(πA  is the area 

of the minimum packing of π  imposed by the sequence 
pair ),( 21 SS . )(πA  can be computed from ),( 21 SS  using the 
longest path algorithm [15] that has a time complexity 
of )( 2nO .  
 
3.2 Selection Schemes 
In this paper, we study the performance of the following 
selection schemes: 

(i) Roulette Wheel Selection (RWS): In this scheme, the 
probability of selection of a member in a population is 
proportional to its fitness value. 
(ii) Rank Selection (RS): In this scheme, the members are 
ranked first, with the highest numerical rank being assigned 
to the fittest member. The members are then selected for 
mating on the basis of their ranks. 
(iii) Binary Tournament Selection (BTS): In this scheme, two 
population members are chosen at random and their fitness 
values are compared. The member with higher fitness value 
is included in the mating set. For details on operators and 
selection schemes refer to [13]. 
 
Algorithm 1. Floorplan Area Optimization 
Begin 
input: Block Dimensions, Π∈∀× ihw ii

 /*MCNC  
Benchmark files*/ 
output: Block Coordinates, Π∈∀× iyx ii

  /*Layout 
Files*/ 
1: Initialize population by assigning random pair of 
permutations. 
2: Create empty external population Pext with max. size Next to 
store the best members. 
3: if number of members in 

extext NP >  

4:    Delete the worst member in Pext 

5: Select members from the current population 
6: Apply crossover 
7: Apply mutation 
8: Replace a small proportion of the new population by 
random  members of Pext. 
9: if (no of generations < constant1 or fitness of best member 
in Pext < constant2) 
10:   Go to step 3. 
end 
 
3.3 Crossover Operators 
Using SP representation, a floorplan can be encoded into a 
pair of strings. However, instead of binary bit strings, the 
problem gives rise to an integer string (permutation of N 
integer without repetition). In case of SP representations, we 
can use any one of the following permutation crossover 
mechanisms for generating a valid offspring [13]: 
(i) Order1 Crossover (Order1X): In order1X an arbitrary 
portion of the first parent (P1) is copied to the first child 
(C1). Next, starting from the end point of the copied part, 
elements are copied from the second parent (P2) to C1 in the 
order in which they appear in P2, as shown in Fig. 3(a). An 
element is dropped in case it matches any of the elements 
copied from P1. The same procedure is repeated for the 
second offspring (C2) with the role of the parents reversed.  
(ii) Partially Mapped Crossover (PMX): The entire 
procedure is explained in Fig. 3(b). Please refer to [13] for 
details. 
(iii) Cycle Crossover (CycleX): is explained in Fig. 3(c). 
Please refer to [13] for details. 
 
3.4 Mutation Operators 
The three mutation operators suitable for SP representation 
are as follows: 
(i) Swap Mutation: Swap Mutation exchanges two  
arbitrary elements in a chromosome. 

)(

)(
1

πA

BA
F

N

i i∑ ==



 3 

(ii) Insert Mutation: Insert Mutation picks two allele values 
at random and shifts the second allele until it abuts the first 
one while maintaining the relative order of all other alleles.  
(iii) Inversion Mutation: Inversion mutation reverses the 
order of elements lying between two randomly selected 
alleles. 
 

 
(a) 

 
(b) 

 
(c) 

Fig 3. Crossover operators (a) Order1X (b) PMX and (c) 
CycleX 
 

 
Fig 4. Various Mutation operators  
 
4. SIMULATION RESULTS 
  
We test the performance of Algorithm 1 for floorplan area 
optimization. The GA was applied on MCNC benchmark 
circuits. Details of each circuit including the number of 
modules and the total block area are given in Table 1. 
Simulations were carried out on a Pentium IV computer 
running at 1.8GHz with a 1GB RAM. Our GA generated 
compact layouts for each benchmark circuit. One such layout 
for ami33 is shown in Fig. 5.  
 
In order to compare crossover operators, mutation operators 
and selection schemes, the GA was run several times, each 
time using a different operator or selection scheme within the 
GA and the minimum percentage deadspace (PDS) out of 50 

independent runs of the GA was recorded. For the crossover 
operators, we compared the performance of Order1X, PMX 
and CycleX [11]. The minimum PDS produced by the 
various crossover operators are compared in Fig. 6. PMX 
produces the smallest value for minimum PDS when the 
results are averaged over the MCNC benchmarks. We also 
studied the performance of Swap Mutation, Insert Mutation 
and Inversion Mutation. Fig. 7 demonstrates that for the 
majority of the benchmarks, swap mutation produces the 
smallest value of minimum PDS. Hence, it is most effective 
in guiding the GA towards a global minimum. Finally, we 
study the effects of RWS, RS and BTS in generating the 
optimal floorplan. All three selection schemes work equally 
well for circuits having smaller number of modules. A major 
drawback of RWS is that it causes the GA to converge 
prematurely. This effect becomes prominent for larger 
circuits like ami33 and ami49. Further, it was found that the 
sorting overhead in RS slightly increases the runtime of the 
GA without guaranteeing an equally promising reward in 
terms of decreasing the area. BTS produced the minimum 
area in 4 out of 5 benchmarks as compared to the other 
selection schemes (Fig. 8).  
 
Table 1. Details of the benchmark circuits. 

 
Table 2. Comparison of the area and percentage deadspace 
obtained using Parquet and our floorplanner  

 

 
Fig. 5. Floorplan of Ami33 benchmark generated by our 
GA 
 
In order to study the impact of population size on the 
performance of GA, we varied the population size from 4-50 

MCNC Benchmarks # Modules Area(µm2) 
apte  9 46.5616 

xerox 10 19.3503 
hp 11 8.83058 

ami33 33 1.15645 
ami49 49 35.4454 

Parquet Results Our Floorplanner 
MCNC 
Bench 
-marks 

  
Area 
(mm2) 

Percentage 
deadspace 

Area 
(mm2) 

Percentage 
deadspace 

apte 51.81 10.13 47.52 2.03 
xerox 22.09 12.4 20.55 5.85 

hp 9.59 7.92 9.23 4.32 
ami33 1.25 7.48 1.32 12.68 
ami49 38.89 8.86 39.33 9.87 



 4 

in equal steps. A crossover probability of 0.7 and mutation 
probability of 0.01 were used in all the experiments.  For 
each population size, we plotted the runtime of the GA per 
iteration (in ms) and the corresponding value of mean PDS. 
It is evident from Fig. 9 that increasing the population size 
caused a linear increase in the runtime of the GA. On the 
other hand, it improved the final result due to an increased 
diversity of the initial population. From Fig. 9, it can be 
observed that if the population size is increased beyond 20, 
then the improvement in PDS < 0.1%, but the runtime 
increases drastically.  The optimal population size is thus 
identified as 20. 
 
Based on the results obtained so far, we refined our Elitist 
GA by selecting the best operators and selection scheme. The 
final version of our floorplanner uses PMX, Swap Mutation, 
BTS and a population size of 20 members. We now compare 
results obtained by our floorplanner with those obtained from 
Parquet [6]. Parquet is a fast floorplanner that uses SP 
representation and SA. The chip area and PDS produced bu 
our floorplanner and Parquet are compared in Table 2. 
Simulation results show that our GA based floorplanner 
generates significantly better floorplans for apte, xerox and 
hp benchmark circuits and comparable results for ami33 and 
ami49.  

0

2

4

6

8

10

12

14

Min

apte xerox hp ami33 ami49

Order1X

PMX

CycleX

 
Fig. 6. Comparison of the performance of various crossover 
operators 

0

2

4

6

8

10

12

14

16

18

20

Min

apte xerox hp ami33 ami49

Swap Mutation

Insert Mutation

Inversion Mutation

 
Fig. 7. Comparison of the performance of various mutation 
operators 

0

2

4

6

8

10

12

14

16

18

Min

apte xerox hp ami33 ami49

RWS RS BTS

 

Fig. 8. Comparison of the performance of various mutation 
operators 

 
Fig.9. Run time and minimum percentage deadspace versus 
population size. 
 
5. REFERENCES 
[1] D.F. Wong & C.L Liu, A new Algorithm for Floorplan 
Design, Design Automation Conference, 1986, 101-107. 
[2] H. Murata, K. Fujiyoshi, S. Nakatake and Y. Kajitani, 
VLSI Module Placement Based on Rectangle-Packing by 
Sequence Pair, IEEE TCAD, Vol. 15(12), 1996, 1518-1524. 
[3] S. Nakatake, K. Fujiyoshi, H. Murata and Y. Kajitani, 
Module Placement on BSG Structure and IC Layout 
Applications, ICCAD, 1996, 484-491. 
[4] P.-N Guo, C. -K. Cheng and T. Yoshimura, An O-tree 
Representation of Non-slicing Floorplan and its 
Applications, DAC, 1999, 268-273. 
[5] Y.-C. Chang, Y.-W. Chang, G.-M. Wu and S.-W. Wu, 
B*-Trees: A new Representation for Non-Slicing Floorplans, 
DAC, 2000, 458-463. 
[6] S. N. Adya and I.L Markov, Fixed Outline 
Floorplanning: Enabling Hierarchical Design, IEEE 
Transactions on VLSI, 11(6), 2003, 1120-1135. 
http:/vlsicad.eecs.umich.edu/BK/parquet 
[7] C. Sechen and A. Sangiovanni-Vincentelli, TimberWolf 
Placement and Routing Package, IEEE Journal of Solid State 
Circuits, 20(2), 1985, 510-522. 
[8] F. M. Johannes, K. M. Just and K. J Antreich, On the 
force Placement of Logic Arrays, 6th European Conference 
on Circuit Theory and Design, 1983, 203-206. 
[9] F.Y. Young, Chris C.N. Chu, W.S Luk and Y.C. Wong, 
Floorplan Area Minimization using Lagrangian Relaxation, 
International Symposium on Physical Design, 2000. 
[10] J. P. Cohoon, Distributed Genetic Algorithms for the 
Floorplan Design Problem, IEEE Transactions on Computer 
Aided Design, 10(4), 1991, 483-492. 
[11] V. Schnecke and O. Vornberger, Genetic Design of 
VLSI Layouts, International Conference on Genetic 
Algorithms in Engineering Systems: Innovations and 
Applications, 1995, 430-435. 
[12] C.L. Valenzuela & P.Y. Wang, VLSI Placement and 
Area Optimization using a Genetic Algorithm to Breed 
Normalized Postfix Expressions, IEEE Transactions on 
Evolutionary Computation, 6(4), 2002, 390-401. 
[13] A.E Eiben and J.E Smith, An introduction to 
evolutionary computing (New York: Springer, 2003). 
 [14] J. H Holland, Adaptation in natural and artificial 
systems (Ann Arbor: University of Michigan Press, 1975). 
[15] Nicos Christofides, Graph theory- an algorithmic 
approach (London: Academic Press, 1975). 


