
 AUTONOMOUS ROBOT NAVIGATION SYSTEM USING A
NOVEL VALUE ENCODED GENETIC ALGORITHM

Thomas Geisler, Theodore W. Manikas

Department of Electrical Engineering
The University of Tulsa

Tulsa, Oklahoma 74104, USA

ABSTRACT
This paper describes the development of a genetic algorithm (GA)
based path-planning software for local obstacle avoidance. The
GA uses a novel encoding technique, which was developed to
optimize the information content of the GA structure. Simulation
results were used to further optimize the developed software and
determine its optimum field of operation. The results show that the
GA finds valid solutions to the path-planning problem within
reasonable time and can therefore be used for real world
applications.

1. INTRODUCTION

As a result of increasing automation in almost every section of our
lives, robots have become an important part of many applications.
Recently the field of autonomous navigating robots has become
increasingly interesting for many researchers [2][7]. Autonomous
navigating robots operate in a given environment without being
remotely controlled by a human operator. The work presented in
this paper is part of a project to build an autonomous robot, which
can be used as a platform for various applications.

This project has three major divisions: visual detection of the
environment, path planning, and controls. The path-planning
component is again divided in two sections: global path planning
and local path planning. Running simulations on both global and
local path planning in different environments will determine which
approach yields the best performance. The following are general
specifications for both approaches:
1) Given are the length and width of the room in which the path

planning takes place. A grid system is applied to the room,
similar to a chessboard. Thus, the room is divided into rows
and columns. Locations of known obstacles are marked as
“occupied cells” in the grid.

2) Also given are the row and column coordinates of the start-
point and the end-point of the desired robot’s movement.

3) The robot can move on all ‘free’ cells, where the center of the
robot moves along an imaginary line from the center of one cell
to the center of another cell.

4) A genetic algorithm [3][5][6] is used for the path planning
software since the path-planning problem is NP-hard [4].

Specific requirements for global path planning are that the visual
obstacle detection is done before the path planning and any
navigation of the robot. After the obstacle detection procedure has
been completed, the locations of all obstacles in the navigation area
are assumed to be known. The path planning software is then

applied to the entire room to find the best feasible path from the
start point to the end-point.

For local path planning, the locations of any obstacles are
unknown. Assuming that there are no obstacles in the navigation
area, the shortest path between the start point and the end point is a
straight line. The robot will proceed along this path until an
obstacle is detected. At this point, the path planning software is
applied to find a feasible path around the obstacle. After avoiding
the obstacle, the robot continues to navigate towards the end-point
along a straight line until (1) the robot detects another obstacle or
(2) the desired position is reached. An example for local path-
planning is shown in Figure 1.

X

X

1 2 3 4 5 6 7 8 9 10

ro
w

column

X

X

10

11

12

13

14

15

1

2

3

4

5

6

7

8

9

11 12 13 14 15 16 17 18 19 20

Figure 1. Path planning example for local obstacle
avoidance, applied on a subsection of the search space.

This paper concentrates on the software for local path planning.
The research objective was to produce a software routine that will
be incorporated in the main software that controls all three
different parts of the project: the visual obstacle detection, the path
planning and the actual navigation of the robot.

2. NOVEL ENCODING TECHNIQUE FOR
PATH-PLANNING GA

2.1 Basic Approach and Preliminaries

A genetic algorithm (GA) is used for path planning as specified
earlier. Genetic algorithms are heuristic optimization methods
whose mechanisms are analogous to biological evolution. A GA
operates on a population of chromosomes, which represent
possible solutions for a given problem. Each chromosome
contains a sequence of genes. The following is a pseudo code for a
general GA:
• Generate the initial parent population

• Evaluate the initial parent population
• Loop until termination criteria is satisfied

• Select chromosomes for reproduction
• Create offspring using reproduction operators such as

crossover and mutation
• Replace parent population by offspring population

• Return fittest chromosome of last parent population
The speed of genetic algorithm depends heavily on the encoding
scheme of the chromosomes and on the genetic operators that work
on these chromosomes [1][8]. In order to speed up a GA, the
chromosome’s and gene’s structures need to be as simple as
possible. In addition, only a few, but very effective, reproduction
operators should be applied on the chromosomes. Having that in
mind, a novel encoding technique, based on value encoding [5],
was developed. In value encoding, any type of number, character
or object can be assigned to each gene. Most traditional methods
that use value encoding do not use the information of a gene’s
position. However, this information allows the novel technique to
more efficiently use the value-encoding scheme, which keeps the
gene structure as simple as possible. The remainder of this paper
presents the novel gene structure and the GA operators.

2.2 Gene Structure I: Location

The proposed encoding technique uses the information of a gene’s
position as well as the value stored at that position as an x- and a y-
coordinate. These coordinates define the location of a cell within
the row and column system. Thus, a gene’s position within a
chromosome corresponds to a row-number (RowIndex). The value,
stored in a gene, in a variable called location, corresponds to a
column-number (ColumnIndex).

x
x

x
x

x
x

x
x

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

8

ro
w

column

1 2 3 4 5 6 7 8

1 15 7 9 18 15 17 20

gene position within
a chromosome

chromosome

RowIndex

ColumnIndex

Figure 2. Example of a path being represented by a value
encoded chromosome

The length of the room determines the total number of rows.
Therefore, the length of the chromosomes is also given, since the
total number of rows directly corresponds to the total number of
genes within a chromosome. A complete chromosome represents a
‘path’ from a cell in the first row to a cell in the last row, as shown
in Figure 2.

2.3 Gene Structure II: Direction

The gene structure described so far only represents vertices
(‘corner points’ or ‘intermediate steps’) of a path. To send the
robot on a straight line directly from the center of one vertex to the

center of the next vertex would mean that the robot moves on a
diagonal line across many adjacent cells. This will cause problems
if not all adjacent cells that the robot traverses from one row to the
next are free of obstacles. A better approach is to go to the side
(horizontal) first, turn, and then go down (vertical), or vice versa.
To indicate the first direction the robot will turn to proceed to the
next vertex, a second variable called direction is added to the gene
structure. Direction is a two-state variable (Boolean), which has
either the value horizontal (true) or vertical (false).

x
x

x
x

12 13 14 15 16 17 18 19 20

4

5

6

7

8ro
w

column

Figure 3. continued example with horizontal/vertical
movement included

Figure 3 shows the last four steps of the example path of Figure 1.
Now the connection, and therefore the path, from one vertex to the
next one is not a diagonal line, but a combination of a horizontal
and a vertical movement. Since the first direction that the robot
turns to can be either horizontal (solid line) or vertical (dotted
line), there are two possible ways to get from one vertex to the next
one for each step. The introduced variable direction indicates
which of the two ways the robot will proceed towards the next
vertex.

2.4 Gene Structure III: Validity/Feasibility

A chromosome that uses the proposed gene structure with the
variables location and direction represents an entire path.
However, so far we do not have any information about whether a
path is feasible; i.e., if all steps between the start-point and end-
point of the path are feasible. A step is feasible if all cells between
the start-point and the end-point of that step do not contain any
obstacles. To indicate the feasibility of each step, a third variable is
added to the gene structure, feasibility. Feasibility is a Boolean
variable that will be set true if the step is feasible and false
otherwise. This variable is not a true part of the gene structure,
since it is not assigned a random value during initialization. The
information on a step’s feasibility is later used to determine a
path’s overall fitness.

2.5 Chromosome Structure

In addition to the array of genes, some variables are added to the
chromosome structure. Length, the number of cells in between the
start and the end position, is needed for fitness evaluation
purposes. Another variable is fitness. The fitness of a chromosome
within a population is evaluated during each reproduction cycle.
The chromosome’s fitness determines its probability to be chosen
during the selection process.

The variable NumberOfInfeasibleSteps stores the total number of
infeasible/invalid steps of the path and the variable
NumberOfTurns stores the total number of turns that the robot
performs on its way from the start position to the end position. The
complete chromosome structure is presented in Figure 4.

path (chromosome)
- fitness

- length

- number of
 infeasible steps

- number of turns

step (gene)
- location
- direction
- fitness

step (gene)
- location
- direction
- fitness

step (gene)
- location
- direction
- fitness

...

Figure 4. Example of a path being represented by a value
encoded chromosome

3. GA ELEMENTS
3.1 Fitness Evaluation

The population of paths is evaluated during each reproduction
cycle. The evaluation is based on the paths’ fitness, which depends
on how suitable the solution (path) is according to the problem. In
preliminary evaluations, the values for the path length, the number
of turns and the number of infeasible steps are determined for each
path in the population. Now these values are set in relation to the
entire population and therefore stored as fractional values from 0 to
1, where 1 indicates the optimal fitness value. The shortest path
length corresponds to length-fitness fLength = 1.0; the longest path
corresponds to fLength = 0. The greatest number of infeasible steps
corresponds to fInfeasibleSteps = 0; the least number of infeasible steps
corresponds to fInfeasibleSteps = 1.0 and fNumberOfTurns, respectively.
fLength is the fitness value associated to the path length, fInfeasibleSteps
is the fitness value associated with the number of infeasible steps,
and fNumberOfTurns is the fitness value associated with the number of
turns in the path.

The attempt was made to weigh each part of a path’s fitness
(length, number of infeasible steps and number of turns) according
to its importance to the algorithms objective. A path’s most
important feature is the number of infeasible steps and it should
therefore have the biggest influence on the path’s fitness. Thus, the
other two features will be multiplied by this fitness value. Recall
that all three values are fractions between 0 and 1. The other two
parts of the path’s fitness are multiplied with a weighing factor and
added. This sum will be divided by the sum of the weighing factors
in order to end up with an over all fitness value between 0 and 1.
Finally, the entire fitness function will be multiplied times 100 to
end up with fitness values between 0 and 100, which is necessary
for the selection process.

[]
ba

fbfaff rnsNumberOfTuLengthepsfeasibleStNumberOfInpath +
⋅⋅+⋅⋅= 100

fPath is the fitness value for the entire path, a is the weighing factor
for fLength and b being weighing factor for fNumberOfTurns. For our GA,
weighing factor a was set to one and weighing factor b was set to
two to emphasize the number of turns over the path length.

if Number_Of_Infeasible_Steps != 0 then pathpath ff ⋅= 5.0

The “if-term” introduces a penalty for paths that contain infeasible
steps to emphasize the importance of all steps needing to be
feasible for a usable result path.

After the fitness values for all chromosomes in the population have
been computed, Rank Selection [5] is used to determine the parent
chromosomes that will be used for reproduction.

3.2 Crossover

During the operation of reproduction crossover is applied on the
chosen parent chromosomes only within a certain probability, the
crossover probability. In the chosen crossover operator, two parent
chromosomes are combined applying a single-cross-point, value-
encoding crossover [5]. The crossover operator has been modified
to produce two offspring chromosomes with each crossover
operation. This is achieved by using the gene information, which
were not used to build offspring one, in order to build a second
chromosome. The function of the crossover operator is illustrated
in Figure 5.

1 15 7 9 18 15 17 20

1 3 10 14 17 17 19 20
parent 2

parent 1

crossover point

1 7 16 18 14 17 19 20

1 5 5 11 13 16 16 20
parent 4

parent 3

crossover point

1 3 10 14 18 15 17 20
offspring 2 crossover point

1 15 7 9 17 17 19 20
offspring 1

1 5 5 11 13 16 19 20
offspring 4 crossover point

1 7 16 18 14 17 16 20
offspring 3

...

Figure 5. Single-Cross-Point, value-encoding crossover

3.3 Mutation

For mutation, almost every operation that changes the order of
genes within a chromosome or that changes a gene’s value (such as
location or direction) is a valid mutation operator. The mutation
operator has been designed according to the addressed path-
planning problem.

The chosen mutation operator checks with a mutation probability
for every single gene whether it should be mutated or not. If a gene
is to be mutated, a random number between 1 and the total number
of columns in the search space is assigned to location and a
random direction, either vertical or horizontal, is assigned to
direction. This mutation variant has the advantage that it gives the
opportunity for a chromosome to become significantly altered. That
means that the complete search space will be explored and it
therefore prevents the GA from getting stuck in a local optimum.

The fitness of all affected genes (steps) is re-evaluated and stored
in the variable feasibility immediately after the changes in location
and direction are made. Each step’s fitness is therefore always up
to date.

4. SIMULATION RESULTS
After determining the optimum operators and parameters for the
GA, path-planning simulations have been conducted on different
sized search spaces and with different obstacle configurations.

Figure 6. Example search space (8 rows; 20 columns) for
path-planning simulations

(a)

(b)

Figure 7. Examples for search space (10 rows; 30
columns) for path-planning simulations

Figure 6 and Figure 7 show an example of those simulations. Our
path-planning genetic algorithm yields the best performance on
small to medium sized search spaces (up to 10 rows and 20
columns). This meets the needs of local path planning, whose
requirements are to find a path around individual obstacles and is
thus more likely to be applied on relatively small search spaces.

Future work includes further optimizing the reproduction
operators, incorporating the local path-planning software into the
overall robot control software and testing the algorithm
performance on an actual robot.

5. REFERENCES
[1] Thomas Bäck, Ulrich Hammel, “Evolutionary Computation:

Comments on the History and Current State”, IEEE
Transactions on Evolutionary Computation, Vol. 1, No. 1,
April 1997

[2] Shane Farritor, Steven Dubowsky, “A Genetic Algorithm
Based Navigation and Planning Methodology for Planetary

Robotic Exploration”, Proceedings of the 8th International
Conference on Advanced Robotics, 1997

[3] José L. Ribeiro Filho, Philip C. Treleaven, “Genetic-
Algorithm Programming Environments”, IEEE Computer,
June 1994

[4] Y.K. Hwang, N. Ahuja, “Gross Motion Planning – A Survey”,
ACM Computing Surveys, volume 24, issue 3, pages 219-
291, September 1992

[5] Marek Obitko, “Genetic Algorithms”, Internet publication,
1998, http://cs.felk.cvut.cz/~xobitko/ga/main.html

[6] M. Srinivas, Lalit M. Patnaik, “Genetic Algorithms: A
Survey”, IEEE Computer, June 1994

[7] Prahlad Vadakkepat, Kay Chen Tan, “Evolutionary Artificial
Potential Fields and Their Application in Real Time Robot
Path Planning”, Proceedings on Congress on Evolutionary
Computation, 2000

[8] Jing Xiao, Lixin Zhang, “Adaptive Evolutionary
Planner/Navigator for Mobile Robots”, IEEE Transactions on
Evolutionary Computation, Vol. 1 No. 1, April 1997

	INTRODUCTION
	NOVEL ENCODING TECHNIQUE FOR PATH-PLANNING GA
	Basic Approach and Preliminaries
	Gene Structure I: Location
	Gene Structure II: Direction
	Gene Structure III: Validity/Feasibility
	Chromosome Structure

	GA ELEMENTS
	Fitness Evaluation
	Crossover
	Mutation

	SIMULATION RESULTS
	REFERENCES

