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ABSTRACT 
The goal for real-time mobile robots is to travel the shortest path in minimal 
time while avoiding obstacles in a navigation environment.   Autonomous 
navigation allows robots to plan this path without the need for human 
intervention.  The path-planning problem has been shown to be NP-hard, thus 
this problem is often solved using heuristic optimization methods such as 
genetic algorithms.  An important part of the genetic algorithm solution is the 
structure of the genotype that represents paths in the navigation environment.  
The genotype must represent a valid path, but still be simple to process by the 
genetic algorithm in order to reduce computational requirements.  
Unfortunately, many contemporary genetic path-planning algorithms use 
complex structures that require a significant amount of processing, which can 
affect the real-time response of the robot.  This paper describes the 
development of a genotype structure that contains only the essential 
information for path planning, which allows for more efficient processing.   A 
genetic algorithm using this structure was tested on a variety of simulated 
navigation spaces and was found to produce valid, obstacle-free paths for most 
cases. 

INTRODUCTION 
Mobile robots are desirable for operations such as bomb disposal or hazardous 

material management, which would be potentially dangerous for humans.  An important 
task for the robot is autonomous navigation, where the robot travels between a starting 
point and a target point without the need for human intervention.  While basic 
information may be available to the robot about the navigation area boundaries, unknown 
obstacles may exist within the navigation area.  A path between the starting and target 
points that avoids collisions with obstacles is said to be feasible - this is a path that lies 
within free space.  Thus, robot navigation methods need to solve the path-planning 
problem, which is to generate a feasible path and optimize this path with respect to 
certain criteria. The work presented here is part of a larger project to build an autonomous 
path-planning robot.  This research is motivated by earlier work in this field of interest 
(Geisler and Manikas, 2002) by the same research team. This paper presents the research 
and simulation results of a genetic algorithm based path-planning software. 
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GENETIC ALGORITHM TECHNIQUES FOR ROBOT PATH PLANNING 
Robot path planning is part of a larger class of problems pertaining to scheduling 

and routing, and is known to be NP-hard. Thus, a heuristic optimization approach is 
recommended as shown by Hwang (Hwang and Ahuja, 1992). One of these approaches is 
the use of genetic algorithms. A genetic algorithm (GA) is an evolutionary problem 
solving method, where the solution to a problem evolves after a number of iterations 
(Mitchell, 1996).   A genetic algorithm starts with a population of individuals 
(chromosomes).  Each individual represents a possible solution for a given problem.  For 
robot navigation, an individual may represent a path between the starting and target 
points.  Each individual is assigned a fitness value, based on how well the individual 
meets the problem objectives.  Using these fitness values, individuals are selected to be 
parents.  These parents form new individuals, or offspring, via crossover and mutation.  
Parent selection, crossover and mutation operations continue for several iterations 
(generations) until the algorithm converges to an optimal or near-optimal solution.   

Various genetic algorithm methods have been applied to the robot navigation 
problem. One approach is to combine fuzzy logic with genetic algorithms (Arsene and 
Zalzala, 1999; Kubota et al., 1999; Pratihar et al., 1999). In this approach, the genotype 
structure represents fuzzy rules that guide the robot navigation, so the genetic algorithm 
evolves the best set of rules. While this approach can produce a feasible path through an 
uncertain environment, the genotype structure becomes very complex, as it needs to 
represent a variety of fuzzy rules.   Another approach is to use genotype structures that 
represent local distance and direction, as opposed to representing an entire path (Cazangi 
and Figuieredo, 2002; Di Gesu et al., 2000; Gallardo et al., 1998; Vadakkepat et al., 
2000).  While these are simple to process and allow for faster real-time performance, the 
local viewpoint of these methods may not allow the robot to reach its target. Some 
methods have relatively simple genotype structures that can represent feasible paths, but 
require complex decoders and fitness functions (Hocaoglu and Sanderson, 2001; 
Sugihara and Smith, 1997; Xiao et al., 1997).  This can also affect real-time response.    
Our research has focused on improving the genetic algorithm performance by developing 
a more efficient genotype structure. 

Row-wise Structure 
Previous research by our group used a row-wise navigation model (Geisler and 

Manikas, 2002).   Given a navigation environment that is modeled by N rows, a path in 
that environment is represented by a genotype with N genes.  Each gene position (locus) 
corresponds to a row index, while each gene value (allele) corresponds to a column index 
within that row.  For example, assume that we have the chromosome {3,3,5,1,2,6}.  This 
genotype represents a path that starts in row 1, column 3 (1,3) and ends at row 6, column 
6 (6,6).  The intermediate points on this path are (2,3), (3,5), (4,1), (5,2), respectively.  
Fig. 1 shows the navigation along this path in the world space, where point (1,1) is 
assumed to be at the top left corner. 
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The direction information of a chromosome represents the intermediate steps, or 
vertices, of a path.  However, sending the robot on a straight line directly from the center 
of one vertex to the center of the next vertex would mean that the robot moves on a 
diagonal line across many adjacent cells. This will cause problems if any adjacent cells 
that the robot traverses from one row to the next have an obstacle. A better approach is to 
split the diagonal path segment into a horizontal segment and a vertical segment, which 
will allow the robot to circumvent obstacles. Therefore, we added a direction bit to the 
chromosome structure to indicate the first direction that the robot will turn to proceed to 
the next vertex. 



  

Assume that we have a segment that starts in row 1, column 2 (denoted by (1,2)) and 
ends in row 2, column 5 (2,5).  If the direction bit is 0 (Fig. 2a), then the path segment is 
split into a vertical segment from (1,2) to (2,2) and a horizontal segment from (2,2) to 
(2,5). However, if the direction bit is 1 (Fig. 2b), then the path segment is split into a 
horizontal segment from (1,2) to (1,5) and a vertical segment from (1,5) to (2,5).   

The genetic algorithm using this genotype structure was tested on a set of simulated 
navigation environments.  While this approach is simple, we discovered limitations with 
the row-wise model.  The row-wise model assumes that each path-segment will start and 
end in consecutive rows.  Unfortunately, this may not result in feasible paths for some 
world spaces. 

Row and Column Structures 
In order to address the limitations of our previous research involving only the row-

wise genotype structure, we decided to incorporate more flexibility into the navigation 
model by allowing the orientation to be either row-wise or column-wise.  For row-wise 
orientation, the robot is assumed to travel in consecutive rows from top to bottom, while 
for column-wise orientation, the robot is assumed to travel in consecutive columns from 
left to right.  Thus, we modified the genotype structure by adding an orientation bit to 
each chromosome: 0 = column-wise, 1 = row-wise.  

The row-wise orientation follows the same rules as our previous row-wise genotype 
structure.  However, for a column-wise chromosome, each locus corresponds to a column 
index, while each allele corresponds to a row index.  Fig. 3 shows the navigation for the 
column-wise chromosome {3,3,5,1,2,6}.  This genotype represents a path that starts in 
row 3, column 1 (3,1), and travels along intermediate points (3,2), (5,3), (1,4), and (2,5) 
to reach its target point in row 6, column 6 (6,6).   

For column-wise orientation, the direction bit is interpreted as follows:  Assume that 
we have a column-wise path segment as shown in Fig. 4. The segment starts in row 2, 
column 1 (2,1) and ends in row 5, column 2 (5,2).  If the direction bit is 1 (Fig. 4a), then 
the path segment is split into a vertical segment from (2,1) to (5,1), and a horizontal 
segment from (5,1) to (5,2).  Conversely, if the direction bit is 0 (Fig. 4b), then the path 
segment is split into a horizontal segment from (2,1) to (2,2) and a vertical segment from 
(2,2) to (5,2).  

GA ELEMENTS 
The genetic algorithm parameters were experimentally determined.  Crossover rate 

is 0.7, while mutation rate is 0.07.  The population size is 50.  Termination occurs if there 
is no improvement in the best path after 30 generations, or if a maximum of 800 paths 
have been generated.  The fitness function weights are wl  = wt = 2, wf  = 3.  This 
penalizes infeasible steps, since we want our path to be obstacle free.  Elitism was also 
used in order to keep the best individual (path) within a generation. If elitism is applied, 
the fittest chromosome path is copied to the offspring population without any changes. 

Fitness Evaluation 
Each chromosome represents a path in the world space.  Recall that the goal for 

autonomous robot navigation is to determine the shortest feasible path and traverse this 
path in minimal time.  A path is evaluated by examining its segments.  The total path 
length is the sum of its segments.  If a segment intersects an obstacle, then this is called 
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an infeasible step.  Thus, a path is obstacle-free only if all of its steps are feasible.  
Minimizing path length will minimize travel time; however, so will minimizing the 
number of turns required to traverse this path.   

Given these criteria, our fitness function must consider the following fitness factors: 
feasibility, length, and number of turns.  Equation (1) shows how to calculate the 
feasibility factor ff.  S is the number of infeasible steps in the chromosome, while Smax 
and Smin are the maximum and minimum number of infeasible steps for the population.  
The length factor fl is calculated in a similar manner, as shown in Eq. (2), where  L is the 
total length of the path segments. The number of turns factor ft is also calculated in a 
similar manner, as shown in Eq. (3), where  T is the total number of turns.  Putting this all 
together, we get the fitness function f shown in Eq. (4).  wf , wL and wT are weights for 
feasibility, length, and number of terms, respectively.  After the fitness value for all 
chromosomes in the population have been computed, Rank Selection (Mitchell, 1996) is 
used to determine the parent chromosomes that will be used for reproduction. 
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Crossover and Mutation 
In our GA, two parent chromosomes are combined applying a single-cross-point, 

value encoding crossover. The crossover operator produces two offspring chromosomes 
with each crossover operation. This is achieved by using the gene information, which was 
not used to build the first offspring, in order to build a second chromosome.  

For mutation, almost every operation that changes the order of genes within a 
chromosome or that changes a gene’s value is a valid mutation operator.   A random 
number is generated for each gene.  If this number is less than the mutation rate, then the 
gene is mutated.  If a gene is to be mutated, another random number between 1 and the 
total number of rows or columns in the search space is assigned to location, and a random 
direction, either 1 or 0, is assigned to direction and orientation.  

SIMULATION RESULTS AND CONCLUSION 
The genetic algorithm was applied to seven sample spaces to simulate the navigation 

process. These spaces vary in size and in obstacle configuration. Fifteen trials were run 
for each space.  Table 1 shows the success rate for each data set comparing Geisler’s 
approach (Geisler and Manikas, 2002) to our new approach.  For each test set, our new 
GA had more success navigating the search space.   Figure 5 shows examples of 
successful runs for test sets SPSet05, SPSet06, and SPSet07. 
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Our modification to the genotype structure to allow more options in path planning 
improves the success of robot navigation.   While the success rate was high, there were 
still trials where our new GA failed to find a feasible path.  We are currently exploring 
methods to combine row-wise and column-wise representations in the same genotype 
structure.    Hopefully, this will improve the success rate of the navigation algorithm. 
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Figure 1.   Row-wise navigation in world space. 

Figure 2.  Navigation direction: (a) vertical first, (b) horizontal first. 

Figure 3.  Column-wise navigation in world space. 

Figure 4.  Column-wise direction: (a) vertical, (b) horizontal. 

Figure 5.  Navigation path examples for test sets (a) SPSet05, (b) SPSet06, (c) 
SPSet07. 

Table 1.  Comparison of methods. 

Success Rate (%)  
Test Set Geisler’s GA Our new GA 

SPSet01 0 87 

SPSet02 47 100 

SPSet03 73 87 

SPSet04 87 100 

SPSet05 53 80 

SPSet06 0 93 

SPSet07 0 100 
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