

AUTONOMOUS ROBOT NAVIGATION USING A GENETIC
ALGORITHM WITH AN EFFICIENT GENOTYPE STRUCTURE

ADITIA HERMANU
Vico Indonesia
Project Engineering Dept.
Jakarta, Indonesia

THEODORE W. MANIKAS
University of Tulsa
Dept. of Electrical Engineering
Tulsa, Oklahoma

KAVEH ASHENAYI
University of Tulsa
Dept. of Electrical Engineering
Tulsa, Oklahoma

ROGER L. WAINWRIGHT
University of Tulsa
Dept. of Mathematical & Computer
Sciences
Tulsa, Oklahoma

ABSTRACT
The goal for real-time mobile robots is to travel the shortest path in minimal
time while avoiding obstacles in a navigation environment. Autonomous
navigation allows robots to plan this path without the need for human
intervention. The path-planning problem has been shown to be NP-hard, thus
this problem is often solved using heuristic optimization methods such as
genetic algorithms. An important part of the genetic algorithm solution is the
structure of the genotype that represents paths in the navigation environment.
The genotype must represent a valid path, but still be simple to process by the
genetic algorithm in order to reduce computational requirements.
Unfortunately, many contemporary genetic path-planning algorithms use
complex structures that require a significant amount of processing, which can
affect the real-time response of the robot. This paper describes the
development of a genotype structure that contains only the essential
information for path planning, which allows for more efficient processing. A
genetic algorithm using this structure was tested on a variety of simulated
navigation spaces and was found to produce valid, obstacle-free paths for most
cases.

INTRODUCTION
Mobile robots are desirable for operations such as bomb disposal or hazardous

material management, which would be potentially dangerous for humans. An important
task for the robot is autonomous navigation, where the robot travels between a starting
point and a target point without the need for human intervention. While basic
information may be available to the robot about the navigation area boundaries, unknown
obstacles may exist within the navigation area. A path between the starting and target
points that avoids collisions with obstacles is said to be feasible - this is a path that lies
within free space. Thus, robot navigation methods need to solve the path-planning
problem, which is to generate a feasible path and optimize this path with respect to
certain criteria. The work presented here is part of a larger project to build an autonomous
path-planning robot. This research is motivated by earlier work in this field of interest
(Geisler and Manikas, 2002) by the same research team. This paper presents the research
and simulation results of a genetic algorithm based path-planning software.

1

GENETIC ALGORITHM TECHNIQUES FOR ROBOT PATH PLANNING
Robot path planning is part of a larger class of problems pertaining to scheduling

and routing, and is known to be NP-hard. Thus, a heuristic optimization approach is
recommended as shown by Hwang (Hwang and Ahuja, 1992). One of these approaches is
the use of genetic algorithms. A genetic algorithm (GA) is an evolutionary problem
solving method, where the solution to a problem evolves after a number of iterations
(Mitchell, 1996). A genetic algorithm starts with a population of individuals
(chromosomes). Each individual represents a possible solution for a given problem. For
robot navigation, an individual may represent a path between the starting and target
points. Each individual is assigned a fitness value, based on how well the individual
meets the problem objectives. Using these fitness values, individuals are selected to be
parents. These parents form new individuals, or offspring, via crossover and mutation.
Parent selection, crossover and mutation operations continue for several iterations
(generations) until the algorithm converges to an optimal or near-optimal solution.

Various genetic algorithm methods have been applied to the robot navigation
problem. One approach is to combine fuzzy logic with genetic algorithms (Arsene and
Zalzala, 1999; Kubota et al., 1999; Pratihar et al., 1999). In this approach, the genotype
structure represents fuzzy rules that guide the robot navigation, so the genetic algorithm
evolves the best set of rules. While this approach can produce a feasible path through an
uncertain environment, the genotype structure becomes very complex, as it needs to
represent a variety of fuzzy rules. Another approach is to use genotype structures that
represent local distance and direction, as opposed to representing an entire path (Cazangi
and Figuieredo, 2002; Di Gesu et al., 2000; Gallardo et al., 1998; Vadakkepat et al.,
2000). While these are simple to process and allow for faster real-time performance, the
local viewpoint of these methods may not allow the robot to reach its target. Some
methods have relatively simple genotype structures that can represent feasible paths, but
require complex decoders and fitness functions (Hocaoglu and Sanderson, 2001;
Sugihara and Smith, 1997; Xiao et al., 1997). This can also affect real-time response.
Our research has focused on improving the genetic algorithm performance by developing
a more efficient genotype structure.

Row-wise Structure
Previous research by our group used a row-wise navigation model (Geisler and

Manikas, 2002). Given a navigation environment that is modeled by N rows, a path in
that environment is represented by a genotype with N genes. Each gene position (locus)
corresponds to a row index, while each gene value (allele) corresponds to a column index
within that row. For example, assume that we have the chromosome {3,3,5,1,2,6}. This
genotype represents a path that starts in row 1, column 3 (1,3) and ends at row 6, column
6 (6,6). The intermediate points on this path are (2,3), (3,5), (4,1), (5,2), respectively.
Fig. 1 shows the navigation along this path in the world space, where point (1,1) is
assumed to be at the top left corner.

2

The direction information of a chromosome represents the intermediate steps, or
vertices, of a path. However, sending the robot on a straight line directly from the center
of one vertex to the center of the next vertex would mean that the robot moves on a
diagonal line across many adjacent cells. This will cause problems if any adjacent cells
that the robot traverses from one row to the next have an obstacle. A better approach is to
split the diagonal path segment into a horizontal segment and a vertical segment, which
will allow the robot to circumvent obstacles. Therefore, we added a direction bit to the
chromosome structure to indicate the first direction that the robot will turn to proceed to
the next vertex.

Assume that we have a segment that starts in row 1, column 2 (denoted by (1,2)) and
ends in row 2, column 5 (2,5). If the direction bit is 0 (Fig. 2a), then the path segment is
split into a vertical segment from (1,2) to (2,2) and a horizontal segment from (2,2) to
(2,5). However, if the direction bit is 1 (Fig. 2b), then the path segment is split into a
horizontal segment from (1,2) to (1,5) and a vertical segment from (1,5) to (2,5).

The genetic algorithm using this genotype structure was tested on a set of simulated
navigation environments. While this approach is simple, we discovered limitations with
the row-wise model. The row-wise model assumes that each path-segment will start and
end in consecutive rows. Unfortunately, this may not result in feasible paths for some
world spaces.

Row and Column Structures
In order to address the limitations of our previous research involving only the row-

wise genotype structure, we decided to incorporate more flexibility into the navigation
model by allowing the orientation to be either row-wise or column-wise. For row-wise
orientation, the robot is assumed to travel in consecutive rows from top to bottom, while
for column-wise orientation, the robot is assumed to travel in consecutive columns from
left to right. Thus, we modified the genotype structure by adding an orientation bit to
each chromosome: 0 = column-wise, 1 = row-wise.

The row-wise orientation follows the same rules as our previous row-wise genotype
structure. However, for a column-wise chromosome, each locus corresponds to a column
index, while each allele corresponds to a row index. Fig. 3 shows the navigation for the
column-wise chromosome {3,3,5,1,2,6}. This genotype represents a path that starts in
row 3, column 1 (3,1), and travels along intermediate points (3,2), (5,3), (1,4), and (2,5)
to reach its target point in row 6, column 6 (6,6).

For column-wise orientation, the direction bit is interpreted as follows: Assume that
we have a column-wise path segment as shown in Fig. 4. The segment starts in row 2,
column 1 (2,1) and ends in row 5, column 2 (5,2). If the direction bit is 1 (Fig. 4a), then
the path segment is split into a vertical segment from (2,1) to (5,1), and a horizontal
segment from (5,1) to (5,2). Conversely, if the direction bit is 0 (Fig. 4b), then the path
segment is split into a horizontal segment from (2,1) to (2,2) and a vertical segment from
(2,2) to (5,2).

GA ELEMENTS
The genetic algorithm parameters were experimentally determined. Crossover rate

is 0.7, while mutation rate is 0.07. The population size is 50. Termination occurs if there
is no improvement in the best path after 30 generations, or if a maximum of 800 paths
have been generated. The fitness function weights are wl = wt = 2, wf = 3. This
penalizes infeasible steps, since we want our path to be obstacle free. Elitism was also
used in order to keep the best individual (path) within a generation. If elitism is applied,
the fittest chromosome path is copied to the offspring population without any changes.

Fitness Evaluation
Each chromosome represents a path in the world space. Recall that the goal for

autonomous robot navigation is to determine the shortest feasible path and traverse this
path in minimal time. A path is evaluated by examining its segments. The total path
length is the sum of its segments. If a segment intersects an obstacle, then this is called

3

an infeasible step. Thus, a path is obstacle-free only if all of its steps are feasible.
Minimizing path length will minimize travel time; however, so will minimizing the
number of turns required to traverse this path.

Given these criteria, our fitness function must consider the following fitness factors:
feasibility, length, and number of turns. Equation (1) shows how to calculate the
feasibility factor ff. S is the number of infeasible steps in the chromosome, while Smax
and Smin are the maximum and minimum number of infeasible steps for the population.
The length factor fl is calculated in a similar manner, as shown in Eq. (2), where L is the
total length of the path segments. The number of turns factor ft is also calculated in a
similar manner, as shown in Eq. (3), where T is the total number of turns. Putting this all
together, we get the fitness function f shown in Eq. (4). wf , wL and wT are weights for
feasibility, length, and number of terms, respectively. After the fitness value for all
chromosomes in the population have been computed, Rank Selection (Mitchell, 1996) is
used to determine the parent chromosomes that will be used for reproduction.

min

max min

1f
S S

f
S S

−
= −

−

(1)

min

max min

1l
L L

f
L L

−
= −

−

(2)

min

max min

1t
T T

f
T T

−
= −

−
 (3)

()100 l l t t
f f

l t

w f w f
f w f

w w
+

=
+

(4)

Crossover and Mutation
In our GA, two parent chromosomes are combined applying a single-cross-point,

value encoding crossover. The crossover operator produces two offspring chromosomes
with each crossover operation. This is achieved by using the gene information, which was
not used to build the first offspring, in order to build a second chromosome.

For mutation, almost every operation that changes the order of genes within a
chromosome or that changes a gene’s value is a valid mutation operator. A random
number is generated for each gene. If this number is less than the mutation rate, then the
gene is mutated. If a gene is to be mutated, another random number between 1 and the
total number of rows or columns in the search space is assigned to location, and a random
direction, either 1 or 0, is assigned to direction and orientation.

SIMULATION RESULTS AND CONCLUSION
The genetic algorithm was applied to seven sample spaces to simulate the navigation

process. These spaces vary in size and in obstacle configuration. Fifteen trials were run
for each space. Table 1 shows the success rate for each data set comparing Geisler’s
approach (Geisler and Manikas, 2002) to our new approach. For each test set, our new
GA had more success navigating the search space. Figure 5 shows examples of
successful runs for test sets SPSet05, SPSet06, and SPSet07.

4

Our modification to the genotype structure to allow more options in path planning
improves the success of robot navigation. While the success rate was high, there were
still trials where our new GA failed to find a feasible path. We are currently exploring
methods to combine row-wise and column-wise representations in the same genotype
structure. Hopefully, this will improve the success rate of the navigation algorithm.

REFERENCES
Arsene, C. T. C., and Zalzala, A. M. S., 1999, "Control of Autonomous Robots Using Fuzzy Logic

Controllers Tuned by Genetic Algorithms." Proceedings of the 1999 Congress on
Evolutionary Computation (CEC99), pp. 428-435.

Cazangi, R. R., and Figuieredo, M., 2002, "Simultaneous Emergence of Conflicting Basic Behaviors
and Their Coordination in an Evolutionary Autonomous Navigation System." Proc. 2002
IEEE Conf. on Evol. Comp. (CEC '02), pp. 466-471.

Di Gesu, V., Lenzitti, B., Lo Bosco, G., and Tegolo, D., 2000, "A distributed architecture for
autonomous navigation of robots." Proceedings Fifth IEEE International Workshop on
Computer Architectures for Machine Perception, 2000., pp. 190 - 194.

Gallardo, D., Colomina, O., Florez, F., and Rizo, R., 1998, "A Genetic Algorithm for Robust Motion
Planning." 11th Int. Conf. on Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems, pp. 115-122.

Geisler, T., and Manikas, T. W., 2002, "Autonomous Robot Navigation System Using a Novel
Value Encoded Genetic Algorithm." 45th IEEE Int. Midwest Symp. on Circuits and
Systems, Tulsa, OK, pp. 45-48.

Hocaoglu, C., and Sanderson, A. C. 2001, "Planning Multiple Paths with Evolutionary Speciation."
IEEE Trans. Evolutionary Computation, Vol. 5, pp. 169-191.

Hwang, Y. K., and Ahuja, N. 1992, "Gross Motion Planning - A Survey." ACM Computing Surveys,
Vol. 24, pp. 219-291.

Kubota, N., Morioka, T., Kojima, F., and Fukuda, T., 1999, "Perception-Based Genetic Algorithm
for a Mobile Robot with Fuzzy Controllers." Proceedings of the 1999 Congress on
Evolutionary Computation (CEC99), pp. 397-404.

Mitchell, M., 1996, An Introduction to Genetic Algorithms, MIT Press.
Pratihar, D. K., Deb, K., and Ghosh, A., 1999, "Fuzzy-Genetic Algorithms and Mobile Robot

Navigation Among Static Obstacles." Proceedings of the 1999 Congress on Evolutionary
Computation (CEC99), pp. 327-334.

Sugihara, K., and Smith, J., 1997, "Genetic Algorithms for Adaptive Motion Planning of an
Autonomous Mobile Robot." Proc. 1997 IEEE Int. Symp. Computational Intelligence in
Robotics and Automation (CIRA '97), pp. 138-143.

Vadakkepat, P., Tan, K. C., and Ming-Liang, W., 2000, "Evolutionary Artificial Potential Fields and
Their Application in Real Time Robot Path Planning." Proc. 2000 Congress on
Evolutionary Computation (CEC00), pp. 256-263.

Xiao, J., Michalewicz, Z., Zhang, L., and Trojanowski, K. 1997, "Adaptive Evolutionary
Planner/Navigator for Mobile Robots." IEEE Trans. Evolutionary Computation, Vol. 1,
pp. 18-28.

5

6

Figure 1. Row-wise navigation in world space.

Figure 2. Navigation direction: (a) vertical first, (b) horizontal first.

Figure 3. Column-wise navigation in world space.

Figure 4. Column-wise direction: (a) vertical, (b) horizontal.

Figure 5. Navigation path examples for test sets (a) SPSet05, (b) SPSet06, (c)
SPSet07.

Table 1. Comparison of methods.

Success Rate (%)
Test Set Geisler’s GA Our new GA

SPSet01 0 87

SPSet02 47 100

SPSet03 73 87

SPSet04 87 100

SPSet05 53 80

SPSet06 0 93

SPSet07 0 100

	INTRODUCTION
	GENETIC ALGORITHM TECHNIQUES FOR ROBOT PATH PLANNING
	Row-wise Structure
	Row and Column Structures

	GA ELEMENTS
	Fitness Evaluation
	Crossover and Mutation

	SIMULATION RESULTS AND CONCLUSION
	REFERENCES

