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Engineers and scientists use instrumentation and mea-
surement equipment to obtain information for spe-
cific environments, such as temperature and pressure. 

This task can be performed manually using portable gauges. 
However, there are many instances in which this approach 

may be impractical; when gathering data from remote sites 
or from potentially hostile environments. In these applica-
tions, autonomous navigation methods allow a mobile robot 
to explore an environment independent of human presence 
or intervention. The mobile robot contains the measurement 
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device and records the data then either transmits it or brings it 
back to the operator. 

Sensors are required for the robot to detect obstacles in the 
navigation environment, and machine intelligence is required 
for the robot to plan a path around these obstacles [1]. The use 

of genetic algorithms is an example of machine intelligence 
applications to modern robot navigation. Genetic algorithms 
are heuristic optimization methods, which have mechanisms 
analogous to biological evolution. This article provides initial 
insight of autonomous navigation for mobile robots, a descrip-
tion of the sensors used to detect obstacles and a description of 
the genetic algorithms used for path planning.

Autonomous Robot Navigation
Autonomous navigation implies that a robot must decide how 
to travel through a given environment [2]. While basic infor-
mation may be available to the robot about the navigation area 
boundaries, unknown obstacles may exist within the naviga-
tion area. This is called an uncertain environment: the robot 
must be able to detect and maneuver around these obstacles to 
reach its target point.

The navigation environment in which the robot and ob-
stacles both exist is called the “world space.” A path between 
the starting and target points that avoids collisions with ob-
stacles is said to be “feasible.” Robot navigation methods need 
to solve the path-planning problem, which is to generate a 
“feasible” path and optimize this path with respect to specifi c 
criteria.

Many path-planning methods use a grid-based model to 
represent the world space (Figure 1). In this model, the world 
space is partitioned into grids, where the size of each grid 
depends on the particular specifi cations of the autonomous 
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Fig. 1. World space example with grid system representation. Fig. 2. Example of a robot sensing obstacles in the navigation environment.

Note that the switching points 
are part of the evolutionary 

process and vary from 
chromosome to chromosome. 
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vehicle and the navigation area. An obstacle may occupy one 
or more grids, depending on the size of the obstacle relative 
to the size of the vehicle. Squares, fully or partly blocked by 
obstacles, are identified as occupied cells when detected in 
the search space. The robot can move on all free cells, where 
the center of the robot moves along an imaginary line from the 
center of one cell to the center of another cell, either in a vertical 
or horizontal direction.

Sensing the Navigation Environment
Autonomous navigation requires the robot to interact with its 
environment and to adapt to changing conditions. This means 
that sensors must be mounted on the robot to detect and locate 
obstacles in the navigation space (Figure 2). Types of sensors 
that are commonly used in robot navigation include contact, 
orientation, proximity (capacitive and magnetic), imaging, 
ultrasonic and infrared sensors, as well as laser range finders 
and cameras.

Since each sensor type has its strengths and weaknesses 
(suitable for a different application), an autonomous robot sys-
tem will typically combine various sensor types for effective 
obstacle mapping. For example, proximity detectors are used 
to identify items in the proximity (short range) of the robot. 
Orientation sensors such as gyroscopes and global positioning 
systems (GPS) are used to provide the robot with data on its 
orientation and direction.

Imaging sensors such as IR cameras and Omni cameras 
are used to provide visual data in visible as well as the IR 
frequency ranges (to detect temperature differentials). This 
information, in combination with other sensors, can be 
used to help the robot to avoid obstacles such as potholes 
and bodies of water in an unknown terrain. The imaging 
sensors can be used for medium- and long-range detec-
tion.

Ultrasonic sensors are widely used for obstacle detection as 
a result of their simplicity and relatively low cost [3]. An ultra-
sonic sensor system emits a sonar signal and receives its echo 
from an object. The object distance is determined by measuring 
the time difference between the signal emission and the echo 
reception.

While ultrasonic sensors are useful for measuring the 
distance of an obstacle from the robot, they are less suc-
cessful at detecting object profiles (such as edges) because 
of sonar wave reflections. To overcome this limitation, IR 
sensors may be used in addition to ultrasonic sensors [4]. 
An infrared sensor system emits a pulse of infrared light 
that is reflected back from an object. The angle of this reflec-
tion that is received at the sensor yields information about 
the object distance and profile. One disadvantage of IR sen-

Fig. 3. Flow chart of a basic genetic algorithm. Fig. 4. Burchardt’s path chromosome structure [8].
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sors is that they can become 
severely corrupted by other 
light sources. Therefore, a 
robot navigation system 
should typically contain 
several types of sensors, as 
each sensor has its advan-
tages and disadvantages.

Planning Navigation Paths Using  
Sensor Information
The path-planning problem is often divided into global and 
local planning approaches. Global planning optimizes the 
overall traveled distance, while local planning determines 
how to navigate around obstacles. The global approach con-
structs a world model based on sensory information and uses 
this model to plan a global path. Since the construction and 
maintenance of a global map may become computationally 
complex for a robot, the local approach is often used to plan 
paths around specific obstacles. Local path planning uses the 
obstacle location and profile information obtained from the 
sensors to determine a feasible navigation path for the robot. 
The path-planning problem has been shown to be NP (Non-
deterministic Polynomial-time)-hard [5], which means that 
many of the traditional methods can become computation-
ally intractable. Genetic algorithms have been shown to be 
effective in solving NP-hard problems; thus, they have often 
been used for local path planning in contemporary robot 
navigation algorithms [7].

Genetic algorithms are heuristic optimization methods, 
the mechanisms of which are analogous to biological evolu-
tion [6]. Figure 3 shows a flow chart that describes the basic 
operations of a genetic algorithm. The algorithm starts with 
a population of individuals (chromosomes). Each individual 
represents a possible solution for the given problem. For robot 
navigation, an individual may represent a path between the 
starting and target points. Each individual is assigned a fitness 
value, based on how well the individual meets the problem ob-
jectives. Using these fitness values, individuals are selected to 
be parents. These parents form new individuals, or offspring, 
via crossover and mutation. Parent selection, crossover, and 
mutation operations continue for numerous iterations (gen-

erations) until the algorithm 
converges to an optimal or 
near-optimal solution.

The dominant task in 
developing a genetic algo-
rithm to solve a particular 
problem is the develop-
ment of the chromosome 
structure and the operators 

that process this structure, such as the fitness function and 
crossover and mutation operators. For robot navigation, the 
goal is to determine a feasible path as quickly as possible. 
Therefore, the chromosome must be able to represent a valid 
path in the navigation space. In addition, the structures of 
the chromosome and fitness function must allow for efficient 
computation. These factors govern the development of ge-
netic algorithm path planners.

Path Planning Using Genetic  
Algorithms
Various genetic algorithm methods have been developed 
to solve the path-planning problem for autonomous robot 
navigation. Using the grid-based model, the world space 
can be viewed as a set of (x,y) coordinate points, or as a set 

Fig. 5. (a) Sample path; (b) fixed-length chromosome representation. Fig. 6. (a) Chromosome with switching points; (b) resultant path.

The navigation environment 
in which the robot and 
obstacles both exist is  

called the “world space.”
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of rows and columns. Often 
the grid is viewed as a square, 
in which the number of rows 
equals the number of columns 
[7]. The chromosome struc-
ture used by many genetic 
algorithm path planners is a 
value-encoded scheme: x and 
y coordinate information for 
the path points is contained 
in the chromosome structure. 
Figure 4 shows the chromo-
some structure used by Burchardt and Salomon [8]. The first 
gene of the chromosome contains the value of the chromo-
some length, which indicates the number of path points. Each 
subsequent pair of genes contains the (x,y) coordinates for 
each path point. The path fitness is based on both path length 
and feasibility, with a significant penalty for paths that collide 
with obstacles. This fitness function helps the genetic algo-
rithm identify a collision-free path through the world space. 
Alvarez, Caiti, and Onken [7] use a similar representation, 
with (x,y,z) coordinates, since their genetic algorithm was de-
veloped for an autonomous undersea vehicle. Path fitness is 
determined by feasibility and the estimated energy required 
by the vehicle to travel this path.

Encoding path points into a chromosome is an intuitive 
and straightforward approach. However, differences in path 
lengths may result in differences in the number of chromo-
some genes. For a genetic algorithm to function efficiently, it 
is desirable for all chromosomes to have the same number of 
genes, especially for crossover and mutation operations. Fig-
ure 5 shows an example of a fixed-length chromosome, based 
on the model of Geisler and Manikas [9]. Given a navigation 
environment that is modeled by N rows, a path in that environ-
ment is represented by a chromosome with N genes. Each gene 
position (locus) corresponds to an x-coordinate, while each 
gene value (allele) corresponds to a y-coordinate within that 
column. Figure 5(a) shows a path in a 6 × 6 navigation space, 
modeled by the chromosome shown in Figure 5(b). This chro-
mosome represents a path that starts at point (1,4) and travels 
along intermediate points (2,4), (3,2), (4,6), and (5,5) to reach its 
target at point (6,1).

While this chromosome structure is easier to handle for a 
genetic algorithm, a main limitation of this structure is that it 
requires all paths to be x-monotone: xi+1 > xi. Depending on the 
obstacle configuration in the world space, this restriction may 
not allow the genetic algorithm to find a feasible path. Sedighi 
et al. [10] address this limitation by allowing paths to switch 
between x-monotone and y-monotone (yi+1 > yi) orientations. 
This is accomplished by adding “switching points” to the 
chromosome structure to identify where the path switches 
orientation.

Figure 6 shows an example for this model. The chromo-
some structure (Figure 6[a]) contains two parts: path-loca-
tion and path-switch. The path-location part works similar 
to the way it does in the Geisler and Manikas model, except 

that it represents both x- and y-
monotone subpaths within the 
main path. For x-monotone ori-
entation, each locus represents 
a column index, while each al-
lele represents a row within that 
column. For y-monotone ori-
entation, each locus represents 
a row index, while each allele 
represents a column within that 
row. There are two switching 
points that identify the loci on 

the path-location part where the path orientation switches. 
Note that the switching points are part of the evolutionary 
process and vary from chromosome to chromosome. Up to 
two switching points are allowed. However, a given chromo-
some may evolve only one switch point, or perhaps none.

Figure 6(b) shows the navigation path that corresponds 
to the chromosome shown in Figure 6(a). Note that the world 
space origin is in the upper left corner, as per the specifica-
tion of Sedighi et al. [10]. The path always starts at (1,1) with 
y-monotone orientation. The direction bit for locus 1 is 1, so 
the navigation direction to the next point is horizontal, then 
vertical. The next point is identified by locus 2 in the path-lo-
cation chromosome, with an allele of 9. Since the orientation 
is y-monotone, this corresponds to row 2, column 9, or point 
(2,9) in the world space. The path continues through points 
(3,8) to (4,2).

The first switching point is at locus 4 of the path-location 
chromosome. Thus, at point (4,2) the orientation changes 
from y-monotone to x-monotone. The next point is identified 
by locus 5 in the path-location chromosome, with an allele of 
10. Since the orientation is now x-monotone, this corresponds 
to column 5, row 10, or point (10,5) in the world space. The 
path continues to point (6,6), where the next switch point 
occurs.

The second switching point is a locus 6 of the path-location 
chromosome, so the path now changes back to a y-monotone 
orientation. This means that locus 7, allele 8 corresponds to 
row 7, column 8, or point (7,8) in the world space. The path 
continues through points (8,10) and (9,9) to the target point 
(10,10). As with the other genetic algorithm path planners, 
path feasibility is important when evaluating an individual. 
Additional goals are to minimize the total path length and the 
number of turns required by the robot.

Conclusion
This paper has provided an overview of applications of 
genetic algorithms to autonomous robot navigation. Many 
of these methods have been tested using simulated environ-
ments. The genetic algorithm optimization method has been 
previously shown to be effective in solving NP-hard prob-
lems such as path planning. However, these algorithms may 
take some time to converge to an optimal solution, which will 
affect the speed of robot navigation. After the genetic algo-
rithm path planners have been verified using simulations, 

Orientation sensors such 
as gyroscopes and global 

positioning systems 
(GPS) are used to provide 
the robot with data on its 
orientation and direction.



December	2007	 IEEE Instrumentation & Measurement Magazine	 31

these algorithms will need to be tested on actual robots and 
modified as necessary to ensure acceptable real-time naviga-
tion performance.
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