
A GENETIC ALGORITHM FOR MIXED MACRO AND
STANDARD CELL PLACEMENT

Theodore W. Manikas
Department of Electrical Engineering

The University of Tulsa
Tulsa, OK 74104

Marlin H. Mickle
Department of Electrical Engineering

The University of Pittsburgh
Pittsburgh, PA 15261

ABSTRACT
The objective of mixed macro and standard cell placement is to
arrange components on a chip such that the resultant layout area
and interconnection wire lengths are minimal.   A common
approach is to divide the problem into separate macro cell and
standard cell placement problems.  However, this approach
ignores the relationships between the macro and standard cells,
which can affect the quality of the final solution.  This paper
describes a genetic algorithm that uses the relationship
information to determine a more efficient placement solution.

1. INTRODUCTION

An important part of VLSI circuit design is the placement
process. Many contemporary systems use a combination of
macro cells and standard cells in order to implement all the
desired functions on a chip: this is the mixed macro and
standard cell design style.   In a typical design, there are
usually many more standard cells than macro cells. Thus,
before the placement procedure is performed, the standard
cells are partitioned into groups, or domains, to reduce the
total number of components to be initially placed.
Contemporary mixed macro and standard cell placement
tools use a top-down, multiple-stage approach to determine
the arrangement of components on a chip [1-3]. During the
first stage, block placement, the arrangement of the macro
cells and domains is determined.  The dimensions of each
domain have not yet been defined, so they must be
estimated before block placement can be performed.  After
the block placement stage has been completed, a cell
placement stage is applied to each domain to determine the
arrangement of its standard cells.

Unfortunately, there are often significant differences
between the estimated domain dimensions and the actual
dimensions after cell placement. When domain estimation
errors occur, it becomes necessary to adjust the domain
dimensions and repeat the placement process.  For a large
circuit with many domains, there may be many repetitions
of this process before the estimation errors are within
acceptable levels of tolerance. One way to address this
limitation is to incorporate the relationship between the
block and cell levels into the placement process.  This
paper describes the development of a genetic algorithm
placement tool that uses this relationship to determine an
optimal mixed macro and standard cell layout.

2. GENETIC ALGORITHM FOR
PLACEMENT

Genetic algorithms are heuristic optimization methods
whose mechanisms are analogous to biological evolution
[4].  A genetic algorithm starts with a set of genotypes,
which represent possible solutions for a given problem.
Each genotype is assigned a fitness value, based on how
well the genotype meets the problem objectives.  Using
these fitness values, genotypes are randomly selected to be
parents.  These parents form new genotypes, or offspring,
via reproduction.  Parent selection and reproduction
operations continue for several iterations until the
algorithm converges to an optimal solution.

For the placement problem, previous applications of
genetic algorithms include Esbensen's method for macro
cell placement [5] and GASP for standard cell placement
[6]. Each method uses a particular genotype structure to
represent the layout for a given design style. We developed
GAP (Genetic Algorithm for Placement) for mixed macro
and standard cell netlists. Our work builds upon previous
efforts by expanding the genotype structures to handle
both macro cell and standard cell layout.

First, GAP uses the hMetis program [7] to partition a
netlist into a specified number of domains. Then, GAP
uses a genetic algorithm to produce a valid mixed macro
and standard cell layout. Figure 1 shows the structure of
this genetic algorithm.

2.1.1 Genotype Structure
The partitioning process forms a cell membership tree:
each leaf corresponds to a cell in the netlist, while the
internal nodes represent domains.  GAP constructs a
genotype template by proceeding top-down on the cell
membership tree. Each level of the tree has its own
encoding to represent a valid layout for the particular level.
An example of a GAP genotype is shown in Figure 2,
while Figure 3 shows its corresponding layout.  This
genotype is for a small netlist with two macro cells (A and
B), and ten standard cells (1 – 10) that are grouped into one
domain (C).  Thus, the genotype template tree has a system
node (block level) with one domain node C (cell level).



First, an encoding is randomly generated for the system
node. For the block level layout representation, GAP uses
Esbensen's genotype structure: a Polish expression [8] is
randomly generated to represent the block topology
(relative locations), while a bitstring is randomly generated
to represent the block orientations.  In Figure 2, the Polish
expression is AB+C*, while the bitstring is 001 000 111.
This means that macro cell A is below macro cell B, while
domain C is to the right of A and B.  Macro cell A has
orientation 1 (rotated 90 degrees), macro cell B has
orientation 0 (no rotation), and domain C has orientation 7
(rotated 270 degrees and reflected across the y-axis).

The cell level consists of standard cells within a domain.
GAP uses the genotype structure of GASP [6]: an ordered
string is randomly generated to represent the standard cell
topology within the domain.  In Figure 2, the ordered
string for domain C is {1 2 3 4 5 | 6 7 8 9 10}.  This means
that domain C has two rows of standard cells: row 1
contains cells 1 – 5, while row 2 contains cells 6 – 10.

2.1.2 Fitness Evaluation and Parent Selection
Each genotype is evaluated according to a fitness function.
This function determines the quality of the solutions that
are represented by the genotypes, with respect to the
problem objectives. For mixed macro and standard cell
layout, the objectives are to minimize the layout area and
interconnection wire lengths.   Thus, each genotype must
be decoded to yield an area cost and a wire length cost for
the fitness function.  The area cost is computed as the
product of the layout height and width, while the wire
length cost is computed as the sum of all wire lengths for
the nets in the layout.  Since nets will not be routed until
after the placement process has been completed, the wire
lengths are estimated using the half-perimeter wire length
metric [9].

GAP uses the approach of Esbensen for fitness evaluation
and parent selection.  Genotypes are ranked based on
Pareto dominance using the method of [10]; Whitley's
rank-based selection method [11] is then used for parent
selection based on these dominance-assigned ranks.

2.1.3 Reproduction
Reproduction consists of crossover and mutation.  The
crossover operator creates a new genotype, based on the
structures of two parent genotypes.  Since each parent
genotype tree follows the structure of the genotype
template, the offspring genotype tree must also follow this
structure.  The main difference between the offspring and
its parents will be the encoding for each node on the
genotype tree.

Figure 4 shows two parent genotypes (a) P1 and (b) P2,
and the resultant offspring (c) Q.  The root of each

genotype tree is the system node, and the node encoding is
a combination of a Polish expression and a bitstring.   For
offspring Q, the corresponding root node is created by
applying Cohoon's  crossover operator [12] to the Polish
expression and uniform crossover [13] to the bitstring.

The next node on the genotype trees is domain C; this has
an ordered string encoding.  Therefore, the corresponding
node on the offspring genotype Q is created by applying
cycle crossover [14].  An additional operation is to
determine the number of rows r for the offspring Q.  The
number r is randomly generated: 1 ≤ r ≤ #cells.  For this
example, r = 5.

An offspring may also undergo mutation, which alters its
structure.  The mutation operator developed for GAP
follows the same general principle as the crossover
operator: traverse the offspring tree in a top-down manner
and apply the appropriate mutation operation to each node
encoding. For the system node, Wong's mutation operator
[8] is applied to the Polish expression and bitwise mutation
[5] is applied to the bitstring. At each domain node,
pairwise mutation is applied to the ordered string [6].

3. EXPERIMENTAL RESULTS

GAP was compared against the previous top-down,
multiple-stage placement approach.  In order to provide a
fair comparison, Esbensen's placement tool was used for
the block placement stage of the top-down approach, while
GASP was used for the cell placement stage.  The methods
were tested on the MCNC mixed macro and standard cell
benchmark netlists a3, g2, and t1 [15]. Each netlist was
partitioned into ten domains, and ten trials were run for
each method on each data set.  Figure 5 shows the mean
area response for each netlist, while Figure 6 shows the
mean wire length response.  Compared to the top-down,
multiple-stage approach, GAP yielded an average of 27%
improvement in layout area and an average of 10%
improvement in layout wire length.

The reason for these improvements is most likely due to
the elimination of the need for domain size estimation in
GAP.  Domain size estimation methods tend to
overestimate dimensions in order to allow space to
complete standard cell placement within the domain.
Large domain dimensions result in large layout areas and
increased interconnection wire lengths.  In contrast, GAP
is able to obtain the actual domain size since this
information is encoded in its genotype structure.  This
eliminates the overestimation of domain sizes, and results
in reduced layout areas and wire lengths.

4. ACKNOWLEDGEMENT

This work was partially supported by the University of
Tulsa Faculty Development Summer Fellowship Program.



5. REFERENCES
[1] D. P. Mehta and N. Sherwani, "On the Use of Flexible,

Rectilinear Blocks to Obtain Minimum-Area
Floorplans in Mixed Block and Cell Designs," ACM
Trans. on Design Automation of Electronic Systems,
vol. 5, pp. 82-97, 2000.

[2] A. Shanbhag, S. Danda, and N. Sherwani,
"Floorplanning for Mixed Macro Block and Standard
Cell Designs," in 4th Great Lakes Symposium on VLSI,
1994, pp. 26-29.

[3] M. Upton, K. Samii, and S. Sugiyama, "Integrated
Placement for Mixed Macro Cell and Standard Cell
Designs," in Proc. of the 27th ACM/IEEE Design
Automation Conf., 1990, pp. 32-35.

[4] M. Mitchell, An Introduction to Genetic Algorithms:
MIT Press, 1996.

[5] H. Esbensen and E. S. Kuh, "A Performance-Driven
IC/MCM Placement Algorithm Featuring Explicit
Design Space Exploration," ACM Trans. on Design
Automation of Electronic Systems, vol. 2, pp. 62-80,
1997.

[6] K. Shahookar and P. Mazumder, "A Genetic Approach
to Standard Cell Placement Using Meta-Genetic
Parameter Optimization," IEEE Trans. on Computer-
Aided Design of Integrated Circuits, vol. 9, pp. 500-
511, 1990.

[7] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar,
"Multilevel Hypergraph Partitioning: Application in
VLSI Domain," in Proc. 34th ACM/IEEE Design
Automation Conf., 1997, pp. 530-533.

[8] D. F. Wong and C. L. Liu, "A New Algorithm for
Floorplan Design," in Proc. of the 23rd ACM/IEEE
Design Automation Conf., 1986, pp. 101-107.

[9] D. G. Schweikert, "A 2-dimensional Placement
Algorithm for the Layout of Electrical Circuits," in
Proc. of the 13th ACM/IEEE Design Automation Conf.,
1976, pp. 408-416.

[10] C. M. Fonseca and P. J. Fleming, "Genetic Algorithms
for Multiobjective Optimization: Formulation,
Discussion and Generalization," in Proc. 5th Inter.
Conf. on Genetic Algorithms, 1993, pp. 416-423.

[11] D. Whitley, "The GENITOR Algorithm and Selection
Pressure: Why Rank-Based Allocation of Reproductive
Trials is Best," in Proc. 3rd Inter. Conf. on Genetic
Algorithms, 1989, pp. 116-121.

[12] J. P. Cohoon, S. U. Hegde, W. N. Martin, and D. S.
Richards, "Distributed Genetic Algorithms for the
Floorplan Design Problem," IEEE Trans. on Computer-
Aided Design of Integrated Circuits, vol. 10, pp. 483-
492, 1991.

[13] G. Syswerda, "Uniform Crossover in Genetic
Algorithms," in Proc. 3rd Inter. Conf. on Genetic
Algorithms, 1989, pp. 2-9.

[14] I. M. Oliver, D. J. Smith, and J. R. C. Holland, "A
Study of Permutation Crossover Operators on the
Traveling Salesman Problem," in Proc. International

Conf. on Genetic Algorithms and their Applications,
1987, pp. 224-230.

[15] CBL, MCNC benchmark suite, Collaborative
Benchmarking Laboratory, North Carolina State
University, http://www.cbl.ncsu.edu, Directory:
/pub/Benchmark_dirs/LayoutSynth90/bench/mixed.

http://www.cbl.ncsu.edu/


construct population of 200 genotypes
evaluate population
for g = 1 to 100 do

for i = 1 to 50 do
select parents
create offspring
with probability P{0.015} do

mutate offspring
add offspring to population

end for
evaluate offspring
eliminate the 50 lowest-ranked

genotypes from population
end for
final solution = top-ranked genotype

Figure 1.  GAP genetic algorithm.

Figure 2.  Genotype encoding example.

B 

A 

6   

7   

8   

9   

10   

1   

2   

3   

4   

5   

Figure 3.  Layout represented by genotype example.

Figure 4.  Crossover on (a) and (b) to form (c).

Figure 5.  Mean area response.

Figure 6.  Mean wire length response.

System 
 

AB+C* 
 001 000 111 
 

1 2 3 4 5 
 6 7 8 9 10 
 

C 
 

System 
 

AB+C* 
 001 000 111 
 

1 2 3 4 5 
 6 7 8 9 10 
 

C 
 

(a) 

System 
 

CAB*+ 
 011 001 100 
 

8 6 3 1 
 10 2 4 9 
 

C 
 

(b) 

System 
 

AB*C+ 
 011 000 110 
 

C 
 

(c) 

5 7 
 

1 6 
3 4 
5 2 
7 8 
9 10 

0.00E+00

2.00E+07

4.00E+07

6.00E+07

8.00E+07

a3 g2 t1

Top-Down GAP

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

a3 g2 t1

Top-Down GAP


	INTRODUCTION
	GENETIC ALGORITHM FOR PLACEMENT
	
	Genotype Structure
	Fitness Evaluation and Parent Selection
	Reproduction


	EXPERIMENTAL RESULTS
	ACKNOWLEDGEMENT
	REFERENCES

